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Quark confinement in the infinite-momentum frame
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We formulate the problem of quark confinement in the infinite-momentum frame. In this frame the
dynamics is naturally described as a many-body problem; Quarks and gluons can be thought of as
nonrelativistic particles moving in the two-dimensional transverse space with mechanical mass related to the
longitudinal momentum P+. In this language, a natural quark-confining mechanism is the condensation of
gluons along a tube joining a separated quark and antiquark. This condensation is favored by two
circumstances: (1) The fact that bare gluons are massless reduces the minimum energy for gluon pair
production to zero, and {2) the octet color structure allows gluons to form into chains with long-range
attractive nearest-neighbor interactioiis. We investigate the viability. of this mechanism first in the limit N, ~ ao,

N, g fixed, where N, is the number of colors in the theory. We analyze in detail a simplified version of the

N, —+ oo dynamics which preserves the essential features of the full problem. This simplified model exhibits

quark confinement and describes mesons as relativistic open strings. It also yields a relationship between the

Regge slope a' and the scale p,o, measured in deep-inelastic leptoproduction: p,0-2/{+~a') -0.4 GeV,
which is not too far from the experimental number 0.25 GeV', We discuss next the problem of finite N, . We
argue that the 1/N, expansion is likely to have a vacuum instability which must be handled

nonperturbatively before 1/N, corrections can be calculated. We suggest that the true vacuum is a
condensate of closed strings w'hich have a finite density by virtue of repulsive interactions inherent in the four-

gluon term in the Hamiltonian. A crude estimate of the condensate energy density yields an order-of-
magnitude relation of the form e —N, /a . z ".' should be a rough estimate of the thickness of the string.

I. INTRODUCTION.

During the past few years, a number of promising
schemes have been proposed to explain quark con-
finement as a dynamical cons'equence of a non-
Abelian gauge theory such as quantum chromo-
dynamics (QCD). While strong-coupling schemes
based on lattice qauge theories' have provided val-
uable intuition about the confining phase, it is now
clear that a real understanding of the phenomenon
involves either an understanding of the continuum
limit of lattice gauge theory or a rbformulation of
the problem in the continuum theory. As Wilson
has emphasized, ' the first program requires an
implementati:on of renormalization-group ideas.
The second program has been initiated by Mandel-
stam' and by Callan, Dashen, and Gross. '

Mandelstam's scheme is motivated rather di-
rectly by the Meissner effect in superconductivity:
He models the vacuum as a plasma of magnetic-
monopoles which confines color electric flux via
the Meissner effect. The central dynamical prob-
-lem in this scheme is to show that the monopole
vacuum has lower energy than any state which al-
lows color electric flux to spread out into all of
space. So far he can show that the energy of his
new vacuum is lower than that of the bare vacuum.

The approach of Callan, Dashen, and Gross is
different in formulation from that of Mandelstam.
They follow ideas of Polyakov' in which the prob-

lem is formula, ted in terms of a Euclidean path
history approach to quantum mechanics. In this
approach an approximate evaluation of the func-
tional integral is attempted by saturating it with a
dilute gas of "merons. " The Wilson confinement
criterion is satisfied in this evaluation, but the
difficulty is to show that the dilute gas of merons
does indeed dominate the functional integral. In'.

this scheme and in Mandelstam's, the hope is
that confinement will be described in a weak-coup-
ling regime, with nonperturbative effects incor-
porated through quasisemiclassical calculations.

We finally mention the work of 't Hooft' which
classifies the possible "phases" of a gauge theory
as (l) normal with massless gluons and unconfined
guarks, (2) Higgs mode in which color symmetry
is spontaneously broken, or (3) a confined mode .

in which quarks are permanently trapped. Although
this work does not introduce a new mechanism
for confinement, it does provide a neat algebraic
characterization of the different modes.

The various approaches we have just outlined
are not in obvious conflict, although the details
of the dynamical descriptions, are superficially
very different. Each approach provides a distinc-
tive intuitive basis and calculations framework.
A problem formulated in one framework may have
an obvious solution which in another framework
would be hard to find. There seems to be agree-
ment that quark confinement involves a complex,
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subtle dynamics. The analogy to superconduc-
tivity has often been made. There also one has
more than one framework to describe the phen-
omenon. The Bardeen-Cooper-Schrieffer (BCS)
theory is of course the fundamental one, but the
Ginzburg-Landau theory, although admittedly phen-'

omenological, is indispensible for the understand-
ing of such effects as vortices and phase boundar-
ies.

In this article we describe yet another formula-
tion of the problem of quark confinement —an in;
finite-momentum-frame description. ' This ap-
proach has the virtue (drawback?) that the dynam-
ics can be analyzed without having to find a com-
plicated vacuum. Every dynamically interesting
state carries finite energy momentum, so one
deals directly with excitations above the vacuum.

The issue of confinement is simply the question
of whether it is energetically favorable for gluons
to condense along a tube joining a spatially separ-
ated quark and antiquark in such a way that there
is finite energy per unit length along the tube. It
seems likely that this will happen for a sufficiently
large gauge group (i.e., a sufficiently large num-
ber of colors). The essential prereguisites for
this condensation seem to be that the bare quanta
are massless and that there is a net attraction
between them. 't Hooft's K,-~ limit, ' where N,
is the number of c'olors, seems to enforce these
requirements and in this limit the tubes become
strings of zero thickness, thus we make contact
with dual dynamics.

Our calculational scheme does not introduce new
parameters into the theory, and the mechanism
for dimensional transmutation is explicit: this
of course means that in the absence of quark mas-
ses we have no parameters at all, except for an
overall scale. We illustrate this mechanism in
a simplified model of the N, —~ dynamics and ob-
tain for this model a relationship between the slope
of Hegge trajectories, n', and the scale p, , which
characterizes the onset of asymptotic freedom,

2
, = 0.4 GeV,

mq So.'

where p, defiries the scale in the running coupling
constant, which in the N, - limit is

12'
111n(- / ') '

Fits to deep-inelastic data suggest that p, o~= 0.25
GeV', but we believe our simplified model is
crude enough that this discrepancy is not serious.

We should perhaps emphasize that in this
article we are describing an approach to the
very complicated problem of performing calcula-
tions in a theory such as QCD. The actual- calcula-

tions we have performed, such as the relation be-
hveen p.,2 and n', are very preliminary in that they
are made using over-simplified analog models of
what we believe to be the essential physical mech-
anisms operating in QCD. The fact that these cal-
culations yield the correct order-of-magnitude
relationships between fundamental parameters is
encouraging but certainly not conclusive. Our hope
is that our ealculational procedure can be refined
to deal with the foll problem at least in the N,

limit, without making such over-simplifica-
tions, but this is a problem for the future.

Our article is organized as follows. In Sec. II
we review the (standard) formulation of QCD in
the null plane gauge A. '= 0. We find that the in-
frared divergence Mandelstam encounters in the
timelike axial gauge is not present for the null-
plane vacuum, but it does limit the dynamics of
excited states. In Sec. ID we describe the quark-
confining mechanism as it appears in infinite-mo-
mentum frame. Section IV contains the bulk of
the calculations we have so far carried out. We
point out that 't Hooft's N, -~ limit singles out a
subset of planar graphs with long-range attraction
between gluons. We then reinterpret the sum over
all N, -~ graphs as a many-body problem involving
particles (gluons) ordered on a line arid with only
nearest-neighbor interactions. This problem is
still formidable, and as a first step toward its
solution we consider a model Hamiltonian which
we believe retains the essential binding effects
of the full problem. For this model Hamiltonian
we can demonstrate the quark-confining mechan-
ism and see how' dimensional transmutation occurs.
In Sec. V we give a brief summary of the results
of the previous sections and discuss the problem
of finite-N, effects. We give a simple argument
that our N, -~ closed string is unstable and in-
dicate how this fact (if it does not destroy con-
finement) will give the string a thickness. The re-
sulting picture of a fattened string is similar to
long hadrons which occur in the MIT bag model.
We suggested that the latter model may be a mean-
field-theory description of hadronic states which
occur in QCD.

I

II. QUANTUM CHROMODYNAMICS IN THE
INFINITE-MOMENTUM FRAME

In this section we discuss the formulation of—

QCD in null-plane variables. Following standard
treatments, ' we take

to be our quantum evolution parameter, and we
define



19 QUARK CONFINEMENT IN THK IN FINITE-MOMENTUM FRANK 64 l

x = (x -x)1
2

x= (x', x'} .
(2.2)

Evv = ~vA v ~vAv +g[AvlAv] ~ (2 4)

where A„(x) is an anti-Hermitian N, &&N. matrix.
[The trace of A„ is a free field in the absence of
quarks, so we only need project it out of the quark-
gluon vertex. For convenience we allow this free
(singlet) field to be present in our formalism. ]
The QCD Hamiltonian is simply

xdx Tr E+ + Tr I,
&&

+ Pquarks ~

(2.5)

In (2.5), E+ is a dependent variable given by
the formula

8E 8
V A-g[A, , 8 A, ]+jq„,k,x (2 6)

and the quantum dynamics is completed by the
commutation relations

[A p'(x, x-), aA,'-"'(O, O)]

=—5(x)5(x )5" '68s'5„. (2.&)

It is very convenient to represent (2.V) by Fourier
transformation in x-:

AP+x, x )= ~ ~ ~ [ Pa'(x, P') e'" +
7T p

-a,8. (x, P')e'" ~']

(2.8)

with

[a, (x, P"), ,
"' '~(y, q"))

= 5„5""5~'5(x -y)5(p' q') . (2.9)

It is apparent from (2.6) and (2.8) that the P' = 0
point is in general singular. In particular, if the
P"= 0 projection of the right-hand side of (2.6)
is not zero, there will be an (infrared) infinite
contribution to the energy (2.5). This is the light-
cone version of the k, = 0 divergence in Mandel-
s tam' s formulation. In our case, however, the
null-plane vacuum does not have this singularity;
for

dx ( g[A, 6 A ]+j" k )Io) = o. (2.10)

The only' gauge choice for which null-plane quan-
tiz ation is simple is

A+= -A =0,
which we henceforth adopt. The field strengths
are given (as usual) by

This is because (2.10) contains no term quadratic
in its creation operators. In fact the state lo) is
an exact eigenstate of P

P 1 o) =E,l o&, (2.11)

and we can measure all energies relative to Ep.
Of course, it is still true that a general state lg)
must be carefully chosen to avoid an infrared sin-
gularity in (PlP lg). lg) must at least be invariant
under x -independent gauge transf ormations which
leave (2.3) invariant. An example of such a state
would be

g

q(x, x )P exp ig d$ A(g) q(y, y )lo). (2.12)

Of course (2.12) is not an eigenstate of either P
or P', but its structure indicates the need for
gluons to accompany sources of color electricity.

It is incorrect to conclude from (2.12} that a
physical str ing of glu ons attaches the quark to the
antiquark. In the ease of quantum electrodynamics
the path-ordered phase in (2.12) merely reflects
the fact that soft photon bremsstrahlung accom-
panies any process involving the acceleration of
charged particles. It is a question of dynamics
whether gluons actually condense along a tube be-
tween the quark and antiquark with a finite energy
per unit length. In the next section we explore this
question in some detail.

j(x) = —$*(x)Vg(x) A4, *$, ——

and if the second term dominates this expression
there would be a Meissner effect. When one cal-
culates the current response in a metal to a weak
external A field, there is also a contribution from
the first term. For a free electron gas (which
might model an ordinary conductor) the two terms
cancel except for a weak Landau diamagnetism
and there is no Meissner effect. In a supereon-

III. A MECHANISM FOR QUARK CONFINEMENT

In the preceding section we have seen that the
requirement that there be no infrared divergence
in (glP lg) led to the inclusion of the path-ordered
phase in (2.12), but we stressed that this path had
nothing to do with a physical string, as is clear
from the example of QED. A proper understanding
of quark confinement must explain at the same
time why QED does not confine electrons and posi-
tions .

There is an amusing parallel to this subtlety in
the distinction between ordinary conductors and
superconductors, only the latter exhibiting the
Meissner effect. The expression for the electronic
current density is in either case



CHARLES THORN 19

ductor the condensation of Cooper pairs causes
a gap in the electron excitation spectrum. For
sufficiently weak fields the contribution from the
first term to the transverse current response is
zero and there is a Meissner effect.

One may also describe this situation dynamical-
ly. If one builds up a magnetic field from zero,
the instantaneous response of either a conductor
or a superconductor is to exclude the magnetic
field from its interior. The difference is that this
situation is the lowest-energy state in a super-
conductor and the magnetic field can never pene-
trate into the interior. Whereas an ordinary con-
ductor can lower its energy by allowing the mag-
netic field to penetrate in a characteristic time
proportional to the conductivity.

In approaching the issue of quark confinement
we must be cautious and consider carefully what
may be wrong with a conventional interpretation of
QCD describing quarks and massless gluons in-
teracting weakly, a la conventional perturbation
theory. %e know we must include various instan-
ton effects, but these are known not to yield con-
finement. It does not take much thought to realize
there is a much more prosaic danger in perturba-
tion theory. Gluons are interacting massless par-
ticles and in some channels these interactions are
attractive. It could easily happen that these at-
tractive forces bind gluons together into con-
densed lumps of matter, in which case perturba-
tion theory would break down. Indeed, one pos-
sible interpretation of the pole in the leading-log-
arithm approximation to the renormalization in-
variant charge,

(3.2)

is that such binding is taking place. The famous
asymptotically free sign is indeed associated with
the predominantly attractive self-gluon interac-
tions. This argument for a breakdown of perturba-
tion theory is of course not rigorous since the
approximations leading to (3.2) are only valid for
(t~ large, and one cannot rule out the possibility
that the exactg(t) is not singular for finite t. None-
theless gluon condensation is a possibility, and in
this article we are exploring the consequences of
such an effect for quaxk confinement.

The scenario we envisage is pictured in Fig. 1.
The gluon field is a matrix A. ~, n being a 3 index
and P being a 3 index. We therefore picture a
gluon as sort of a 3 3 dipole: There are attractive
forces between the 3 index of one gluon and the 3
index of another gluon. It is possible that the en-
ergetics is such that a chain of gluons will con-
dense along a line joining a spatially separated
quark and antiquark. If this chain has a finite en-

33 33 33 33 33 33
q q

Gluons

FIG. 1. Possible mechanism for quark confinement.
Gluons condense along a line, locally canceling the
color-triplet charge of the quark and antiquark.

ergy per unit length, 'then quark confinement would
b@ a reality. Of course this scenario is very simi-
lar to that in strong-coupling lattice gauge theory
where it is a reality because the potential energy
ls forced to dominate.

In the next section we develop plausibility argu-
ments that such a condensation could easily occur
without making a strong coupling assumption and
without introducing a lattice. The infinite-mo-
mentum-frame dynamics discussed in Sec. II will
be a great aid in developing this intuition. Our
scheme for quark confinement will amount to an
ansatz within which calculations can be performed
in great enough detail so that nontrivial self-con-
sistency checks can be made. All quantities are
calculable within the ansatz, and in particular di-
mensional transmutation is explicit.

IV. A DETAILED CALCULATIONAL FRAMEW'ORK
FOR THE DESCRIPTION OF QUARK CONFINEMENT

We should perhaps begin this discussion by re-
minding the reader of some of the novelties of in-
finite-momentum-frame calculations. " The fact
that the null-plane vacuum is passive is, of
course, the most striking feature of this approach.
We have already seen that this feature avoids an
immediate crisis with an infrared divergence in
the E, ~ term of the Hamiltonian. The essential
feature here is that the Fourier decomposition
(2.8) has a natural separation of positive P" and
negative P' components. The unique state with P"
= 0 is the bare vacuum (0) which satisfies

(4.1)

Every other state of the theory is of the form

polynomial(s~(x, P')) (0)

and has total P+ ~ 0. In order to handle the P+= 0
point, we shall establish a temporary infrared cut
off by discretizing P' (Ref. 12):

(4.2)

with the understanding that 5- 0 at the end of the
calculation. Let us spell this 5- 0 limit out a
little more carefully. Because P" is a conserved
quantum number, we can decide to work at fixed
total P+. Because of the cutoff (4.2) P' will be a
large integer multiple of b:
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p„„.) =M&.+ (4.3)

in the Hamiltonian which would suppress low P'
and would prevent an infinite condensation, so one
prerequisite is that the quanta be massless.
Another prerequisite is that there is a net attrac-
tion between gluons.

Vile know that the gluon force has both attractive
and repulsive components depending on the quan-
tum numbers. If we tentatively focus on the long-
range gluon-gluon force, it is given in perturba-
tion theory by the diagrams in Fig. 2. The arrows

The dynamics will never carry us out of this P'
sector and we uniquely specify the b-0 limit by
holding M5 fixed. Note that for fixed P' and 5,
there are a maximum number of quanta which can
be present in the state, namely M .

The Fourier transform (2.8) takes the form

& r=~&
sc't (x)eix lb j («)

and (2.9) the form

[aP,B(x),a, g."~(y)j = O„a""'5~5„.5(x -y) .
%hen- these and analogous expressions for quark
fields are plugged into the Hamiltonian, the reader
will recognize that the problem has been converted
into a nonrelativistic many-body problem in two
space dimensions, with, however, an infinite num-
ber of species of particles Labeled by l, the non-
relativistic mass of the particle. It is an unusual
many-body problem in that mass can be transferred
between particles and there are also processes in
which a particle can fission into several particles,
or several particles can fuse into a single one.

%e can now begin to formulate the problem of
gluon condensation in a very concrete way. The
issue is whether a state containing many gluons,
by virtue of attractions, has a lower P than one
containing only a few, and whether these many
gluons form into clumps. If the gluons had mass,
there would be terms such as

indicate the flow of color. The reader will recog-
nize that the diagram in Fig. 2(a) is attractive in
the color channel where the 3 3 indices connected
by the gluon form a color singlet and the diagram
in Fig 2.(b) is predominantly repulsive at long
distances. Now both diagrams are the same
strength; but when they are iterated to develop
an effective potential, they have very different
behaviors. The iteration of Fig. 2(a) enhances
the attractive singlet channels by factors of N,
over the repulsive channels and over the iteration
of Fig. 2(b). Thus if N, »l the attractive inter-
action is enhanced over the repulsive interaction.

Now consider the many-body potentia1 described
by Fig. 3. Its iteration wi11 similarly enhance the
attractive singlet channels over the iteractiog. of
any of the potentials with crossed color lines. %e
therefore conclude that the graphs with planar
color flow contain mainly attractive long-range
gluon-gluon forces and it is precisely these graphs
which are enhanced if N, »1. Thus we adopt a
new attitude toward 't Hooft's N, -~ limit with
N, g' fixed. ' It is a way of selecting a gauge-in-
variant subset of graphs which contain the im-
portant long-range attractive forces between
gluons. From this point of view it seems eminent-
ly sensible to assess the possibility of quark con-
finement in this limit first as a necessary (but not
sufficient) condition for confinement at finite N,
If we have the right confinement mechanism, this
limit should optimize our chances. %e shall have
a little more to say about finite-N, effects in the
succeeding section.

Even after taking the N, —~ limit we still have a
formidab1e problem to solve, i.e., we must sum
an infinite sum of planar diagrams, and we have
not yet succeeded in doing this. However, we can
gain considerable insight into the solution of the
problem by studying a simplified model of the N,-~ dynamics which shares what we believe are
the essential features of the N, -~ limit. Let
us first describe these features. Our infinite-mo-
mentum-frame description has converted QCD into
a many-body problem involving a system of mutual-
ly interacting quarks and gluons. The only inter-
actions which survive in the X,-~ limit are de-
scribed by planar diagrams with a minimal num-

FIG. 2. Feynman diagrams containing the long-range
gluon-gluon force. (a) is attractive and (b} is repulsive
at long distances.

iiii

'lt

33 33 55 53
Y

Gluons

33 q

FIG. 3. Diagram describing many-body force res-
ponsible for gluon condensation.
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ber of quark loops. By taking an equal-x+ cut of
a generic planar diagram with, say, one quark
loop, we see that the many-body problem is in fact
a chain problem: The ends of the chain are a quark
and antiquark, and the constituents of the chain are
gluons. Planarity means that only nearest neigh-
bors interact and we know from the preceding par-
agraph that these nearest-neighbor interactions
are attractive and spin independent at least at long
distances. The second important feature we should
include is the fact that gauge invariance assures
that the perturbative interactions do not give the
gluons a rest mass, so the kinetic energy required
to add gluons to the system is minimal. The third
and last feature of QCD we will include is the scale
invariance of the interactions.

We now present a simple many-body chain prob-
lem which shares these three features of the X,

limit:
(1) attractive nearest-neighbor interactions,
(2) massless constituents,
(3) scale invariance.

Consider a system of M' particles, each carrying
an amount b'. of P" and described by the Hamilton-
ian P:

(4.6a)

where the wave function depends on the transverse
coordinates x, . This model suppresses the role
of gluon spin, P+ exchange and gluon creation and
annihilation, but does exhibit features (1) and (2)
if '0(x) is attractive. The simplest choice for U(x)
which satisfies (3) is

is a free parameter: States with different num-
bers of gluons do not mix in our model. If weak
mixing were turned on, the system would choose
M' to minimize the energy. We therefore roughly
take this into account by treating M' as a varia-
tional parameter.

Before we discuss (4.6), we should remark on
the crudeness of its representation of the full prob-
lem. We have replaced a complicated gluon-
gluon potential, which is in general long range
and momentum dependent, by a short-range con-
tact interaction. We might hope that screening
will make this replacement a lot less atrocious
than it seems. We shall see that the final result
is largely independent of the details of the poten-
tial. A more severe limitation of (4.6) is that we
have assumed each particle has the same P+, b'

and have forbidden particle destruction, creation,
and P' transfer between particles. We shall see
that M'- ~ lowers the energy and so 5'- 0 and no
constituent will carry a finite amount of P". Our
representation thus forbids the occurrence of
valence partons and thus an important phenomeno-
logical feature will be missing. We should get a
decent description of wee partons. We have hopes
that this Limitation can be removed by later re-
fined calculations. Finally we have neglected spin-
spin and spin-orbit forces which are important
for the hyperfine structure.

Let us first establish that our model many-body
system in fact binds together. That is we want to
establish that it costs energy to separate the sys-
tem into two clumps. We first take out the center
of mass by defining

'U(x) = —;5(x), (4.6b)
(4.7)

and we shaLL use this choice for numerical evalua-
tions. The fact that gluon creation and annihila-
tion has been suppressed means that M' =P'/b'

y, =x„,-x
so that (4.6) becomes

N'-2
83+g

y& '
ay&+a

(4.8)

where Let E~~ be the ground-state energy of the M' body
system. Using the variational principle one can
establish rigorously the inequality

+Af+N . & N

by taking a trial

(4.9)
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4»+» = 'CIA (y) .
(4.1o)

If 8~2& 0, i.e., if the two-body system forms a
bound state, then (4.9) establishes that the ground
state is absolutely stable, with an ionization I'
of at least (1/t))IZI I.

So consider the problem

82—,;. -~.5(y), y(y) =~.y(y) .

In momentum space this equation is

~(p)= 2: p-z
x. q(o)

from which follows the eigenvalue condition

p
2 ~2

(4.11)

z'„(~' —1)ze & O, (4.13)

and. this estimate for'the ground-state energy cor-
responds to the trial

4= .... C(yi»

which is a Hartree-Fock-type approximation. lf
5' is treated as a variational parameter, (4.13)
verifies that the lowest energy state corresponds

Thus the ground-state energy is

Z', = -a'e "'+-(41g)

a relation characteristic of dimensional trans-
mutation. Note that the binding energy is in the

. infrared, i.e, , much smaller than A', provided
X, «1, characteristic of asymptotically free theo-
ries.

Applying (4.9) repeatedly leads to the inequality

to f)'-0, so in this limit the ionizationP =~@e(/f)'

Finally, we must seek the low-lying ezcitations
of the system which are to be identified, e.g. ,
with Hegge recurrences. Goldstone" has apylied
a sort of random phase approximation (RPA) to
this system and has shown within this approxima-
tion that there are indeed finite I' excitati. ons as
b'- 0. The following discussion is due to him.

Vfe must analyze the Hamiltonian

.V'- 2
= g (p,'+&(y„))- P p, p„,.

I

(4.14)

The analysis -is simplified if we add to H a weak
time-dependent forcing term

p p, f,(f)

and calculaI;e .the linear response

&t „(t)&, fc'.-(=t t)f.,(t )«- (4.153

The Fourier transform of G,'~(t) has poles at the
eigenvalues of g in (4.14).

The BPA is to replace H+ P„p„ f „by

ffRPA(f~)=g I:p~ + &(y,)]

+ Q p„(f„-&p„„&-&p„,&) (4 16)
r

One can now calculate & p„,(t)) in terms of the one-
body problem

h=P+&(y)+p f(f)

for which the response to f is defined by

&&~(f)&g =- J" dt'G" (t-t')f, (t').

Thus

&0 i(t)&r = f dt G '(t t')If„(t') J« -[Gt'„„(t +t-)+G!'„"(t' t )']j,"(t")I, -"
z.e.,

('4(t —t') G" (t t')ll„- f dt"G="(t —t")[G'-t„,(t" —t )+G"(t —t'')1. , , , "

Now, defirie the Fourier transforms:

go(,)
21T

G'„', (t) =
2

du) 8„",((o)e '~,1
(4.1'7)

This recursion relation may be solved by normal
modes:

so the above re'cursion relation becomes so that
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(4.18)

(4.19)

I

~

~ ~

~a++28 "(ra) cos-M-, ) ))'„'(ar) = ))"(ro)

& ~

An explicit formula for t"" is

G"(f —f') = i e(t - f')(P, (t)P, (f') —P, (f')P, (f)&q=.

=i-.'5&;e(t-t')(p(t) p(t') —p(t') p(t))

with the force between elementary quanta. We
might hope that a refined version of our calcula-
tional framework would yield a calculation of e'.
in terms of deep-inelastic data.

Indeed, even at this point we might crudely as-
sociate 4lE, l

=—g,' with a typical energy scale
in deep-inelastic phenomena. Taking n' = 1 GeV ~,

in (4.24) yields
(ol pin&. ( Ipl»(E. -Ed

0 ~ (g~ (E p, o = 0.4 GeV . (4.25)

The excitation energies of the many-body system
are given by the locations of the poles in Q"„'(&o)

which from (4.18) are the locations of the zeros
of

This number determines the onset of asymptotic
freedom. For example, one can use the model
Hamiltonian (4.8) to calculate the running coupling
constant governing the scattering of hvo elemen-
tary quanta:

5"+28"( ) cos nv
(4.20) A(-q ) 1

4v In(-q'/p02)
'

and low-lying excitations wQl occur in the limit
of large'M' if g"(0)= —,'5".

The ~- 0 limit of (4.19) can be obtained using
the relation (olpln& = ~(E„-Eg(0)xln&:

g" (0)= —,'5" p ( olxln)( nlxl 0&( E„- Eg

=-,'5'& p (ol[~, [x„JI]]lo&= —,'5„, (4.21)

Fits to deep-inelastic data suggest a value for po
around 500 MeV or for g,' of 0.25 GeV'. Our num-
ber (4.25) is nearly a factor of two larger, but we
feel this is not bad agreement considering the
roughness of the calculation. This preliminary
calculation does indicate that our model may have
enough predictive power to be tested in both the
scaling and Hegge regions.

as required. Thus for a general potential the low-
lying excitations are, in the limit of large M',
given by

nv, g (ol pl m&(m l pl 0&

(E.-EJ'
ol

(olplm)(mlplo& ')' nw

(E„-E,)' 2M '

so that

(g (olplm)(mlplo& '~' nv
(4 22)(E„-E4'

The p+ dependence of (4.22) is in accord with the
requirements of Lorentz invariance, a nontrivial
consistency check. From (4.22) we infer that the
slope of Hegge trajectories is given by

a ~o (4 23)p
,„,„(E„-Eg'

For our 5 potential the formula for o.' is

.~»IE, I

.
I

(1/I)) lE~l is the binding energy of the two body-po-
tential, or -4lE2l is invariant (mass) . Equation
(4.23) is remarkable in that it relates the hadronic
scale associated with a collective phenomenon,
Regge behavior, to a parameter lEal associated

V. DISCUSSION AND CONCLUDING REMARKS

In the preceding section we pushed through to
the end a calculation of the spectrum of a system
of q, q, and gluons, making approximations and
simplifications left and right, with the main ob-
ject of illustrating our quark-confining mechanism
and seeing how dimensional transmutation arises.
In this section we shall review these approxima-
tions and discuss to what extent they are essen-
tial.

We believe that the most drastic approximation
was the N, -~ limit, and this more because of the
implied interchange of limits than that N, = 3 is
not large. (Indeed, 30/0 accuracy for a zero-pa-
rameter calculation should be regarded as astound-
ing success). But this approximation is also math-
ematically mell defined and one can imagine sys-
tematically calculating 1/H, corrections. We shall
devote the bulk of this section to this subject,
after we have. discussed our handling of the N, -~
calculation themselves. At first sight, our re-
placement of the full sum of N, —~ graphs by the
many-body problem Eq. (4.6) seems very crude
indeed. But in retrospect, one realizes that the
final results are insensitive to many of the details
of this approximation. For example, the only fea-
ture of the two-body potential which is essential
to our results is the existence of a bound state,
all other aspects of the potential being lumped in-
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to the numerical value of e' [Eq. (4.'28}]. Thus
the only essential limitation of (4.6} is the assump-
tion of a uniform P" distribution; in effect we are
including only an infinitesimal bit of P' phase space
in the problem, the assumption being that the dy-
namics enhances this part of phase-space. over all
the rest. The fact that taking b'- 0 lowers the
energy is a reflection of this dynamical effect:
The mutual attraction favors the presence of
many gluons which in turn must share-e finite
amount of P' among themselves, thus limiting the
available P' phase space per gluon.

If the quarks are, massive, we would certainly
expect the P' distribution of the gluons near them
to be nonuniform and not accurately described by
our model Hamiltonian, and in general the ab-
sence of finite-momentum partons in the giound-
state wave function is a defect of (4.6). We be-
lieve (4.6) does give an accurate picture of the
build up of the confining force via wee-parton
(gluon) condensation. We should reiterate that our
calculation is only a first crude indication of what .

the sum of the N, -~ graphs might look like. We
believe that the full problem should in fact be solu-
able at least numerically. The limit has convert-
ed the problem effectively to a (1+1)-dimensional
field theory, the fields being x;(x'), P,'(x') and per-
haps gluon spin variables S, (x ), and it is just this
type of problem (two-dimensional statistical mech-
anics) that many-body physicists are making great
progress with.

We would like to compare these results on N,- ~ to previous work on strong-coupling fishnet
-diagrams on g+, 9+ Lattices. "'~ The results of
Sec.. IV indicate that the strong-coupling assump-
tion is not necessary, nor is the ultraviolet cutoff
(i.e., we now have continuous x+). The infrared
cutoff remains in (4.6). We have suppressed gluon
spin dynamics but it seems very likely that the
results of Brower, Giles, and Thorn'~ may de-
scribe these effects in the wee-parton approxi. -
mation. This approximation seems to naturally
suppress spin-orbit forces and it will clearly
be worthwhile to get beyond wee partons.

But suppose now we were given the exact solu- .

tion to the N, -~ problem, and it had all the qual-
itative features we expect, in particular quark
confinement. %hat, if anything, does this teach
us about the problem of interest, namely N, =3,
or even about the problem of large but finite N, ?
One possibility" is that one can define an orderly
expansion in 1/Ã, which would resemble the dual-
loop expahsion. . That is, the X,-~ model does
not. change qualitatively for large but finite N„
except that hadronic resonances acquire finite
lifetimes (I'-1/N, ) because qq pair production
is allowed to first order in 1/N, .

We should interpolate here, . that the N, - ~ limit, -

among other simplifications, simplified the cri-
terion for quark confinement. Because qq produc-
tion is O(l/N, ), confinement is simply the state-
ment that it takes an infinite energy to separate
the q and q an infinite distance. %hen we address
the issue of finite 1/N, effects on quark confine-
ment we shall relegate quarks to be external sour-
ces so the confinement criterion is again simple.

If the 1/N, expansion is to be well defined, it
must be true that the N, -~ limit gives a zero-
yidth model with no tachyons. We now give an ar-
gument that indicates that tachyons in the closed-
string sector are very hard to avoid. The problem
is that the N, - ~ limit allows only nearest-neigh-
bor bonds. Compare a closed string with P'= P',
+P,' with bvo closed strings with P'= P'„P'„re-
spectively (see Fig. 4). If we think of the strings
as consisting of particles held together by bonds,
one can pass from (a) to (b} conserving the num-
ber of bonds and it seems reasonable that this
should not cost potential energy. On the other
hand, the kinetic energy in (b) can be lowered by
taking the two strings far apart, so we expect

min(P, +P, ) & P&,+~»,

and this is the tachyon instability: A large closed
string is'unstable for evaporation into a large
number of closed stringlets. This argument is
actually rigorous if the P' distribution of the string
constituents is assumed uniform. Although it is
conceivable that clumping effects could get around
the argument, we feel it is sufficiently compelling
.to force us to seriously consider the possibility
that the 1/N, expansion breaks down due to vacuum
instability.

The argument of the previous paragraph strongly
suggests that one cannot perform a simple 1/N,
expansion. But, just as with field theories with
spontaneous symmetry breaking, this does not im-
ply that large N, calculations cannot be performed,
but only that the instability be handled nonpertur-
batively before proceeding with the expansion. We
can identify two approaches to the problem.

The first is to go back to the full problem and

try to identify these nonperturbative effects as Ã,
gets large but not infinite. For large N„we should
really only say that the planar graphs are being

(b)
FIG. 4. A closed string may be unstable to decay into

two smaller closed strings.
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FIG. 5. For finite N~, gluons are not completely
ordered on a line, and the string acquires thickness.

enhanced, but that there are many more nonplanar
graphs which describe non-nearest-neighbor in-
teractions which are both attractive and repulsive.
In these nonplanar graphs, the long-range attrac-
tive and repulsive components of the forces are
roughly of the same strength and will tend to can-
cel each other. Thus for very large N, there would
be no rigid ordering of particles but only a tenden-
cy to order because the ordered graphs are en-
hanced by factors of N, as mell as containing con-
sistently attractive forces. So for finite N, we
have a picture more bke Fig. 5, with the string
having a thickness which goes to zero as N, -~.
It is obvious that to finite order in 1/Ã„ the string
can never acquire a thickness over its whole
length. So the problem of instability might well
be resolved by keeping the finite-thickness effects
as one goes toN, ~. This procedure would avoid
the above argument for instability. If this is the
resolution we can then identify the regime for
validity of the N, - ~ calculations: This would
be for processes in which the typical distance be-
@veen the quarks is much larger than the thickness
induced by 1/N, effects. Thus they should apply
to long hadron calculations as mell as high-energy
peripheral interactions, precisely the domain
where duality ideas are most successful.

In order to estimate 1/N, effects we shall adopt
a different approach. This is to interpret the
naive 1/N, expansion as a weak-coupling expansion
around a wrong vacuum. Kith respect to this wrong
vacuum the N, ~ spectrum is noninteracting open
and closed strings with the ground-state closed
string being a scalar tachyon. As 1/N, is turned
on, the bare strings start emitting closed strings
into the vacuum. It is clear that the condition for
stability is that repulsive interactions between the
closed-string tachyons determine a limiting den-
sity of strings in the vacuum. It is the presence
of these repelling closed strings in the vacuum that
stabilizes the string configurations.

%e now crudely estimate these effects by repre-
senting the closed string tachyon -as an effective
scalar field P(x), with an effective Lagrangian
density,

(5.1)

We may identify p' with 1/n', the scale of excita-
tions of the bare strings. To estimate A, we must

FIG. 6. A diagram giving rise to a repulsive closed-
string-closed-string contact interaction. This one re-
presents the scatteri. ng of a pair of two-gluon systems.
For topoloj ical reasons the strength of the diagram is
(N, g~)/N, 2.

identify an effective contact interaction between
closed strings. In spite of the fact that N, g' is not
a small parameter, we boldly identify this inter-
action as the one we obtain in lowest-order per-
turbation theory. in N,g . Thus

8wo. ,K,X=c -.~3
C

where c is a pure number of order (1).
example the graph indicated in Fig. 6 yields a re-
pulsive contact interaction of this form with e =1
(see the Appendix).

The physical quantity we would like to extract
from this rough physics is the energy density e,
associated with the condensate. This is

Sp, ' 9
2A. 16m@,a."c

We should probably choose g' appropriate to the
scale set by n' for which e,= 1. This formula
should only be, taken as a rough indication of the
relation between parameters in our scheme, in
particular the value of c depends on very complic-
ated dynamics.

Figures 1 and 5 remind us of a kind of color
electric Meissner effect. The gluon matter be-
bveen the q and q possesses a kind of color elec-
tric dipole moment density which effects a local
cancellation of color charge down the tube con-
necting the quark and antiquark. The analogous
situation for superconductivity would be to place
a north and a south magnetic monopole inside a
vast superconductor. Because of the Meissner
effect, the response of the superconductor is to
produce solenoidal currents surrounding a tube
joining the monopoles flowing in just such a way
as to cancel the magnetic field in the bulk of the
superconductor and necessarily collimating the
magnetic flux into the tube (see Fig. 7). Thus the
current vortex plays the same role in supercon-
ductivity as the gluon matter does in our model
for quark confinement. In fact we could formally
replace the gluonic tube in Fig. 5 with a solen-
oidal current distribution of magnetic monopoles
and obtain the same qualitative physics (as long as
we do not probe the microscopic details). This
"dualized" model resembles very closely the MIT
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FIG. 7. Magnetic monopole confinement in a super-
conductor. The solenoidal pattern of supercurrents sets
up an effective dipole distribution which, so to speak,
locally cancels the magnetic charge of the north and
south monopoles. This mechanism is analogous to
Fig. l.

bag model, even explaining the color electric
Meissner effect. In such an analogy, we could
roughly identify e (5.2) with the bag constant

Using this analogy we can interpret c' ' as a con-
fining pressure which determines the thickness of
the tube to be roughly & '~4. Putting n, = 1, and
using the relation between o. ' and 1/p, 02 from our
model calculation [Eg. (4.25)] yields

2 Vs

64 &o

or

Bg/ 4 ~1.1

Deep-inelastic data indicate p, o is about 500 MeV.
Within the bag model, Johnson and Thorn" have
calculated n' in terms of 8 and &,:1,~(2 1

g 8 3/p kp/
8

This gives 0.9 GeV for a, =2.2 and B' ~=150
MeV. For 0.,=1 the correct slope would corre-
spond to B'~4=330 MeV. So c mould have to be 8
to give a completely consistent relationship. We
regard this as uncomfortably large, but putting
c = 1 gives a factor of two wrong for B' and per-
haps our calculations are just too crude to expect
better agreement.

In the foregoing discussion of finite 1/N, effects,
we have implicitly assumed that large but finite
N, still yields a confining theory. We know that
these effects work against the confining mechan-
ism. For example for N, = 1 we know that all the
complicated 1/N, effects sum up to cancel all self-
gluon interactions leaving a theory of free quarks
and gluons for SU(N, ) or a presumably noncon-
fining Abelian theory for U(N, ). The 1/N, expan-

sion describes a continuous range of theories
from a normal gauge theory (N, = 1} to a confining
one (N, = ~). Our scheme therefore includes the
conjecture that there is a critical value of N, be-
low which confinement is lost. It is a logical pos-
sibility that this value is N, = ~ so that our mech-
anism would not confine for any finite N, . Whether
or not this is so is of course a complicated dynam-
ical ques tion.

To conclude, me have in this article outlined a
new approach to the problem of quark confine-
ment. It is strongly motivated by intuition gained
from dual string models and in particular the fish-
net idea of Nielsen and Olesen and Sakita and Vir-
asoro" as elaborated by 't Hooft and more recent-
ly by Thorn, and Brower, Giles and Thorn. ' It
is amusing that the scheme yields a relationship
between the fundamental hadronic scales, to wit
the Hegge slope n', and the scale in deep-inelastic
lepton scattering p o The calculations we have
outlined form a crude bridge between these two
very different kinematic domains. There is a real
hope that our formulation can make meaningful
contact with the whole range of phenomena which
come under the name of strong-interaction physics.

Note added in proof. We have recently recog
nized that the effects of the closed-string conden-
sate described in Sec. V are in fact present in the
sum over all possible P' distributions for the
gluons in the N, —~ graphs. Thus the tachyon in-
stability might well be removed if the X,- limit
is not treated approximately. In an approximate
treatment, such as given in Sec. IV where the P'
of each gluon is assumed to be constant, the in-
stability will be present unless the condensate is
put in explicitly, for example, along the lines
described in the latter part of Sec. V. We shall
discuss these matters in more detail in a future
communication.
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APPENDIX

In this appendix we calculate the repulsive con-
tact interaction between closed strings due to the
four-gluon term in P, viz. ,
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P~ = — — xcfx Tr A, A~A]A~ -A~A]A]A~

(Al)
The bare closed string (i.e., N, -~) can be repre-
sented by a state of the form

11 string& = g c, Tr[a+,a,' a~])0),
I

where we have suppressed all labels, x, P', i. A

state describing two bare closed strings is there-
fore of the form

~2 strings) = pc, c„' » [a',a', ~ .a)]
l,~

x Tr[g', ,g,', ~ ~ a+, j(0) . (A2)

So consider the application of (A1) to a typical
. term in (A2):

8

C

x(Tr[A, a,".a,']Tr[A, ,a,'""a~+.j1

—Tr[A&, am' aJj Tr[A, a,'. . a'„ijj( 0)

+ cyclic permutations+ noncontact terms. (AS)

In (AS) the noncontact terms include contractions
which do not tie together the two traces and those
which do not reproduce a state of identical struc-
ture to the original state. We are picking out the
part of P~ which leaves the internal structure of
the two closed strings unaltered. The factor of

I/N, comes from projecting back onto the color-
singlet configurations of closed strings. If each of
the closed strings originally have spin 0, we must
consider only the spin-zero projection of the hvo
factors in (AS). Then the second term will yield
minus —,

' the first and we obtain

x Tr[gt(x„Q')a2t ~ ~ a~tj

xTr[a ti(x~'„P '~P+', -Q')a~t t at„.]~ 0)

+ cyclic permutations+ noncontact terms.

dQ'
2n'[16P',P~+Qt(P~+ Pm —Q')]~~

x ~(x„Q')g (tx„P', + P,
'- Q')) )0.

For comparison, the repulsive contact interaction between two scalar quanta in P» theory is

dx A y»at(x„P', )at(x„P2)~0) = ,'X6(x, —x,)-
0

Our crude analog [Eq. (5.1)] ignores the composite
nature of the closed strings, and it is not clear
what effective A, we should choose. At our present
level of crudeness we make the blind identification

(A4)

[note: with our normalization (2.5), n, =g'/2nj. '
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