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Quantum electrodynamics on a lattice: A Hamiltonian variational approach to the physics of
the weak-coupling region
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We develop and apply a Hamiltonian variational approach to the study of quantum electrodynamics
formulated on a spatial lattice in both 2+1 and 3+1 dimensions; Two lattice versions of QED are
considered: a noncompact version which reproduces the physics of continuum QED, and a compact version

constructed in correspondence with lattice formulations of non-Abelian theories. Our focus is on photon
dynamics with charged particles treated in the static limit. We are especially interested in the
nonperturbative aspects of the solutions in.the weak-coupling region in order to clanfy and establish aspects
of confinement. In particular we find, in accord with Polyakov, that the compact QED leads to linear

confinement for any nonvanishing coupling, no matter how small, in 2+ 1 dimensions, but that a phase

transition to an unconfined phase for sufficiently weak couplings occurs in 3+ 1 dimensions. We identify and

describe the causes of confinement.

I. INTRODUCTION

This paper presents a study of two different lat-
tice versions of quantum electrodynamics (QED)
in both 2+ 1 and 3+ 1 dimensions. The focus of
this work is on photon dynamics with the charged
particles treated in the static limit. In this limit,
the q'uestion of whether or not the theory exhibits
l.inear confinement is reduced to computing the
ground-state energy of the electrodynamic field
theory in the presence of a pair of opposite charges
separated by a distance D. Variational methods
developed earlier' are used to estimate this
ground-state energy.

Our study of QED is a step towards the goal of
using nonperturbative variational methods to ana-
lyze confinement and other fundamental. properties
of non-Abelian gauge theories. We start with an
analysis of the simpler Abelian theories in order
to l.earn how to handl. e the additional constraints
on the states imposed by gauge invariance, and in
order to ascertain the extent to which the require-
ment of gauge invariance restricts the dynamical
structure of the theory. As we will see, Abelian
QED admits many inequivalent Hamiltonian form-
ulations. In order to illustrate how changes in the
Hamiltonian that are apparently minor can lead to
major changes in physics, we analyze two specific
models. The first model is constructed to repro-
duce the physics of continuum QED, which has non-
interacting photons; this is called the noncompact
version. The second version of QED is defined in
correspondence with lattice formulations that have
been bereiofore constructed for non-Abelian theo-
ries, ' such as the quantum chromodynamics (QCD)
of quarks and gluons. This is the sort of theory
which would arise naturally for QED if one started

with a unified gauge theory of weak and electro-
magnetic interactions and identified the photon
with the gauge field of an unbroken one-dimensional
subgroup of the larger theory. ' The version cf
QED which emerges in this way inherits from the
larger theory the fact that photons are sel.f-inter-
acting through a potential. which is a bounded peri-
odic function of the photon field. Ii is this version
of the theory which has been presented in the work
of Wilson and of Kogut and Susskind' and which is
referred to as compact, for reasons which will
soon become clear. It is now well known that, for
sufficiently strong coupling, compact lattice theo-
ries, Abelian or non-Abelian, exhibit linear con-
finement in both 2+ 1 and 3+ 1 dimensions. ' '
Hence, whether or not they can provide a satis-
factory formulation of QED depends on their be-
havior for small:couplings.

In 2+ 1 dimensions we find that the linear con-
finement persists for all nonvanishing couplings
g'&0, no matter how weak. This is in agreement
with results obtained by Polyakov' who demon-
strated it in 2+1 dimensions for continuum SO(3)
theory by path-integral methods and argued that
it should also occur in a' lattice self-interacting
Abelian theory.

In 3+ 1 dimensions we find a different situation
in that for weak coupling, g'«1, there is no linear
confinement and the interaction between charges
is Coulomb type. This result has also been ob-
tained by Banks, Myerson, and Kogut' who used
a Vil. lain approximation to the Abelian lattice theo-
ry and argued by analogy to the work of Polyakov.

Our analysis shows that confinement in the com-
pact theory is directly attributable to the fact that
in thi~ form of the theory photon self-interactions
have been introduced. The reason these self-inter-

19 6l9 1979 The American Physical Society



SIDNEY D. DRELL, HELEN R. QUINN, SVETITSKY, AND %EINSTEIN 19

actions can lead to confinement can be qualitatively
understood if we consider creation of a particle-
antipar tie le pair. When a pair of charges is
created at two separated lattice points, causality
demands that initially the electric field is confined
to some small region in the neighborhood of the
charges. This field can be interpreted as the Cou-
lomb field of the separated charges plus a coherent
cloud of transverse photons which cancel the Cou-
lomb field everywhere except near the charges.
In the noncompact version of the theory, as in the
continuum case, the photons do not interact with
each other, and they simply radiate away to infinity
leaving the ground state of the system —the Cou-
lomb field. In the compact formulation, for strong
coupling, the photons interact so strongly among
themselves that the coherent photon state is an ap-
proximate eigenstate of the system and does not
radiate away. Hence the two charges remain joined
by a tube of flux. At weaker couplings quantum
fluctuations occur, and these randomize the co-
herent state to some extent. As we will demon-
strate, in two spatial. dimensions this randomiza-
tion can never be sufficient to completely destroy
this tube and one obtains linear confinement. In
three spatial dimensions we show that for weak
couplings the fluctuations become large enough to
wipe out the tube of ft.ux, and confinement does not
survive. This greater randomization can be under-
stood as a consequence of the fact that there is one
more dimension in which the quantum fluctuations
can occur (It is .interesting to note in connection
with this picture of confinement, that non-Abelian
gauge theories automatically describe self-inter-
acting gauge fields. }

The next section of this paper gives our notation
for and formulation of lattice @ED in the A, = 0
gauge. In Sec. III we discuss in some detail the
physics of (2+ 1)-dimensional @ED in a very small
universe —namely a single square of the lattice.
We will be able to present most of our techniques
in the context of this very simple problem, and
also to demonstrate much of the physics discussed
above. Section IV will then be devoted to the gen-
eralization of this treatment to a larger lattice,
thus completing our discussion of 2+ 1 dimensions.
In Sec. V we present the analysis of 3+1 dimen-
sions, and in Sec. VI we summarize and speculate.

II. FORMULATION OF QED ON A LATTICE

A. Latticization

We present our analysis in the Ao= 0 gauge be-
cause it is best suited to our Hamiltonian approach.
For simplicity we describe our notation in terms
of a two-dimensional planar lattice. Its extension
to a cubic lattice in three space dimensions is

P+j ll

)) A"
P

XA-
P

P

FIG. 1. Labeling of sites and links in a bvo-dimen-
sional lattice.

a- = (v x A) —= —(A".+ A', -A.",.-A.'), (2.1)

where a is the lattice spacing. Like all pseudo-
vectors B has one component, directed out of the
plane in accord with a right-hand rule and located
at plaquette centers; plaquettes are labeled by
their lower left-hand corners (Fig. 2). We also
define the divergence of a vector (a scalar defined
at each site; see Fig. 3)

1
(v E).= —(Ef,+ E)' -Ef, -, -E~ I) . .

a
(2 2)

The Hamiltonian for the photon f";eld in the A.,= 0
gauge can be latticized as

a"'=-' d2~ Z'+ a'

2

g (E;)" g (E,)'.
—links plaqueftes

The canonical commutators become on the lattice
(Latin superscripts are vector indices)

(2.2)

(2 4)

JE
P+J

X-A
t)+ J ~L h h
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V

i+~ Bp )( A- e
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h

FIG. 2. Identification of the plaquette variable B~ in
terms of link variables A-'.

straightforward. We define the canonically conju-
gate vector fields A and E by placing them on the
links of the lattice, so that each site p= (p„,p„} has
associated with it field components A-" and A-" re-

P

siding on the links leaving the site in +x and +y
directions, respectively (see Fig. 1). We then de-
fine 8 as the lattice curl

P



QUANTUM ELECTRODYNAMICS ON A LATTICE: A. . .

-EX

p

FIG. 3. {V~ E)~ shown |n terms of contributing links.

Equations (2.3) and (2.4) define a version of the
lattice QED that is closely parallel to the contin-
uum theory and is referred to as the noncompact
version since the variable 8 can assume arbitrar-
ily l.arge values.

Alternative versions of Iatticized QED replace
B' in (2.3) by other "potentials" V(B). In particu-
lar, the Hamiltonian in the compact formulation
developed by Wilson and by Kogut and Susskind is
equivalent to

B(2) — 2 L ~ (Ba)2
links

+, , g (1 —cosea'B&), (2.5)
1

e2 4

plaq uettes

where the coupling constant e has the dimension of
(length) '~' in two dimensions. Equation (2.5) re-
duces to (2.3) in the earn-0 limit. ' However, (2.5),
in contrast to (2.3), depends on the magnitude of
the charge, and the higher-order terms in 8' give
rise to nonlinear corrections to a free photon de-
scrxptlon.

Henceforth all variables will be made dimension-
less by dividing through by appropriate powers of
a, which will be set equal. to unity. Further, we
represent the new dimensionless e as g and canon-
ically reseale

A -A/g,
B B/g,
@~gE

so that our two Hamiltonians become

(2.6)

HQ ) & +2 @2+ 82
links plaquettes

H =2 g E + —
2 ~ 1 —cos8

links plaquettes

(2.V)

(2.8)

8. The Hijbert space and gauge fixing

We must next specify the Hilbert space on which
our operators aet. In order to exhibit more clearly

the crucihl role played by the specific form chosen
for the Hamiltonian we depart from earlier formu-
lations of the compact theory' and choose to realize
the commutation relations (2.4) for both the com-
pact and noncompact versions of QED by interpret-
ing A& and E& as the operators of multiplication
and differentiation on the space of square integrable
functions of the variables A& (-~ ~AT, ~ ~).

The next step is to. recognize thai not all of the
E&'s are truly quantum variables. First we notice
that there is only one variable 8& but several. vari-
ables E& for each plaquette. Hence we would like
to rewrite the kinetic part of the Hamiltonian in
terms of the variables conjugate to the 8&'s plus
those linear combinations of E&'s which commute
with al.l of the 8&'s and hence can be diagonal. ized
along with H. This is readily achieved if we note
that certain linear combinations of the E's are
the generators of the time-independent gauge
transformations, which commute with H. To be
specific, in the A, =O gauge, the Hamiltonian is
unchanged if we make the transformation

Af, -A~~+ (VA)~, (2.9)

where the lattice gradient is defined as

(VA)~= A~, -,. -A~,

(VA)~= A~,I -A~. (2.10)

v"' (2.12)

we can identify the gauge generators G by

G,=(V E),. (2.13)

Since U(fAj) and the generators G& commute
with H, as well as with all physical observables,
we can diagonalize them and work within any in-
dividual eigensubspace. The eigenvalues of G& may
be interpreted as static external charges p&, and
in this way we see that the eigenvalue equation is
nothing but Gauss's law, i.e. ,

[(v E),—p, ] ~y}=O, (2.14)

for all States
~
g) in this sector of our Hilbert

space.
Restricting ourselves henceforth to any such

eigensubspace we now decompose the electric
field into a classical (longitudinal) and a quantum

From (2.4) it follows that this transformation is
effected by the operator

U((Ai))=exp i g (Vi)&E( =exp( —i g AiGi).
$, a I)

(2.11)

Noting that, for A(~)=0,
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(2.15)

(2.16}

(transverse) part, writing

F —E~+ E

where E and E are defined by the conditions

(v x E')= 0 v. E'= 0.
links

[(E&) + 2E& E~+(Er)2]

(2.25)

The lattice curl and divergence in (2.16) are de-
fined as in (2.1) and (2.2}. Now, (2.16) implies
that

links

In the continuum,

E =-VQ

and, by (2.14), @ satisfies

V E=V Ei=-V Q=p,

where the lattice Laplacian is defined to be'

(2.17)

(2.18)

dVEi Er= J( dVQV E =0

and the same integration by parts is easily demon-
strated on the lattice. Hence we are left with the
usual c-number Coulomb term plus the dynamical
term written in terms of variables conjugate to the
B's, i.e. ,

(v'&)»= &» l+ &.l+ &»-f-+ &»-f -4&». (2.19)

We observe that (2.18) and (2.19) are compatible
only if Q»p»=0; however, this constraint is auto-
matically satisfied. ' Since

a„„=~ p [(z')2+(E')']
links

=
2 g [(vy)'+(vxL)']. (2.26)

p y(v'y)»= —g (vy)»'- 0,

the homogeneous equation (V'p), = 0 is solved only
by a constant P. However, it is clear from (2.17)
that any constant in p does not affect the physical
variables E~. We can therefore restrict P to lie
in the space of functions ZP»= 0, on which (2.18)
can be inverted uniquely to give g and hence E~.

As for Er, (2.16} implies

and

(1) 1a&'.,&=, P s'
plaquettes

(2.27)

H„",,'= —, g (1 —cosB) .(2)

p1aquettes

(2.28)

The potential terms in the two versions are, re-
spectively,

=gxL, (2.20)
C. Periodicity and the compact Hamiltonian

(v xL)» L» —L» &,
—-

(V x L)» = L»+ L»-
Equation (2.21) can be inverted to give

(2.21)

&(p";). (2.22)

Summing up, for each l.ink of the lattice,

E;= -(y,.;-y,) -(L, -L, ;).
From (2.22) and (2.4) we can easily deduce

(2.23)

(2.24)

Thus L and B are conjugate quantum variables.
We now rewrite the Hamiltonian as

where L is a pseudovector (loop variable) defined
on each plaquette of the lattice, and zero outside, '
and

T ~2&i Ly (2.29)

which shift B& by 2z and thus commute with the
Hamiltonian H=H"'"+H„",,' as well as the gauge gen-
erators. Furthermore, the T&'s are unitary op-
erators and hence their eigenvalues are phases
which can be written as e""&, where =,' ~

E&
& &.'

The problem of simultaneously diagonalizing the
T& and H is reminiscent of the Bloch wave problem
for conduction electrons in a periodic potential. "

The periodicity of the potential term (2.28) in
the compact version introduces crucial differences
between it and the noncompact theory. When we
add (2.26) to the potential term (2.27) for the non-
compact version we have a two-dimensional array
of coupled harmonic oscillators, which is a
straightforward probl. em to solve. In momentum
space one finds simply the spectrum of discretized
oscillators. However, the potential (2.28) defines
a problem that is far from trivial. As a conse-
quence of the periodicity, there exists an infinite
set of operators
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The states corresponding to definite eigenvalues
E& satisfy

P((Be+exec))= exp(-2e( P epee) (((B)) (2 20)

and hence can be expressed as

~particle M ~,I, &,~, + ~particle
kin (2.36)

are introduced. Referring to previous studies of
fermions on a lattice" we write the Hamiltonian
for electrons

P((BJ)= exP( -i P eepe) P((Be)), (2.31)
where HPk',

"'"' is written as a sum over gauge-in-
variant operators of the form

1
L~= —. + E~.

g, Bg~
(2.33)

In this representation the Hamiltonian becomes

links

g' 1 s 1
+ — —. ——. + Cg+y —Egj 88~„-. i 88-

1 ~ 1 8

g „'gg %+i

1
+ —,P (1 -cos8&) (2.34)

and operates in a space of periodic functions

(2.35)

where again all integrations may be restricted to
-m & e& & v. In either case (2.32} or (2.33} the
spectrum of I

&
is

L&=m&+E&, m&=0, +1, ~2, . . . .
When p = 0 we identify the physical sector as that
in which the time-averaged E field is everywhere
zero. In other words, along with Wilson, we set
a&= 0 when no charges are present.

D. Introducing charges

To complete our formulation of QED on a lattice
we now specify the way in which quantum charges

where $(fBg) has period 2v. From this it follows
that in all computations we can with no loss of gen-
erality restrict J3& to the range [-v, m] denoting it
by the angular variable -8&. This explains our use
of the term compact for this version of the theory.
We represent the canonically conjugate operators
L& as differentiation with respect to 8&, that is,

L~= —.
1 8

(2.32
~ ge

Notice that (2.31) tells us that we could equiva-
lently restrict our wave functions to be always
periodic functions of the variables 8& and redefine
L& to be

$+(D-1 )g

Petexp(-e P Be.)02. ;, (2.37)

$+(D-1 )a

U& &,D,-= exp
5'=5

Formally we show this by observing that if we
start from a state defined by

(2.38)

we find, using the commutator (2.4),

with suitable weighting factors so that in the g-0
limit H„',.'„"'"'becomes the correct free fermion lat-
tice kinetic energy Th. e operators (2.37) insert
only integer flux on links of the lattice.

The form of H„;„gi ev nby (2.37) is not the most
general expression one can write consistent with
the requirement that the Hamiltonian be gauge in-
variant. As already noted there are many inequiv-
alent Hami1tonian formulations possible. Our goal
in this paper is to study confinement (or the lack
of it} in two extreme cases: ordinary noncompact
@ED and a simple generalization of the compact
version of the theory formulated by Wilson and
Kogut and Susskind. Since in the compact version
the eigenvalue of E on any link is always an integer
we are led to the choice (2.37}. As we have pre-
viously discussed causality requires that the quan-
tum fluctuations which create a fermion pair are
accompanied by changes in the electric fields only
in some finite region of space around the pair.
There are clearly less restrictive ways of satisfy-
ing the dual constraints of gauge invariance and
causality than (2.37). We have not studied these in
any detail; however, it is obvious that by spread-
ing the flux in the initial state (with fractional flux
along each of several paths} one tends to weaken
rather than strengthen the confinement. The form
(2.37) represents an extreme case, and we find
thai even -in this extreme case confinement does
not persist at weak coupling in 3+ 1 dimensions.

It is clear that each operator of the form speci-
fied in (2.37) creates a pair of opposite charges at
two separated points joined by a string of unit elec-
tric flux created by
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E;U».,„„&Ifb;)&= [s; U, ,„„-]I(hg&+ h.;uIjbg& (Ol )" ::(~i)

ga+g g U ga 2 39
r=O

III. THE ONE-PLAQUETTE UNIVERSE

%e turn now to the problem of a very tiny uni-
verse made of a single square, or plaquette, as
illustrated in Fig. 4. Our reason for doing so is
that this very simple problem allows us to present
most of our calculational techniques as mell as
much of the physics of the more interesting prob-
lem of a lattice whose linear dimension, (2'+ l)a,
is arbitrarily large.

I et us examine first the noncompact Hamilton-
ian [(2.26)+ (2.27)] which for a single square be-
comes

II&"=~ g (Vy)'+g (4I.')+-,-a', (3.1)

It is also clear from the structure of the fermion
operators in (2.3V) that only states of zero total
charge, containing equal numbers of particles and
antiparticles, are createQ from the vacuum by the
Hamiltonian. Nom the general problem of interest
is to compute the ground-state energy in the sec-
tor of the Hilbert space containing such a config-
uration. In the static, or large M, limit we can
find the eigenstates of (2.34) plus (2.36) by study-
ing pair states created by applying operators of
the form (2.37) to the ground state of the theory
(2.34).

Since the U& &,D,- do not commute with the opera-
tors T» (2.29) the eigenvalues «» are changed when
a state with pairs is created by the operation
(2.3V). The specific change in vaiues of c» can be
computed directly from Gauss's lam as follows.
U& &„- creates a stringofunitfieldstrengthalongthe
link from p to p+a and thereby changes (V E) by
+1 unit at p and by' -1 unit at p+ a. By (2.18) this
means a change in the static Coulomb field owing
to the additional field of a dipole pair with+1 unit
of charge at P and -1 unit at p+ a. According to
(2.23) and (2.33) there must then be a compensat-
ing change in && defined by J -I + 5& =—UI.U ' such
that

(V x 5&)»- E»""' E»""'. (2.40)

Since the static Coulomb dipole field, E&'"', in gen-
eral has fractional units of flux on each link, it
follows that the 5&& are nonzero. In particular if
we start mith a state with no charges and e&=-0,
there will necessarily be nonvanishing (fractional)
&& everywhere in the sector of states with charges
present.

i.e. , each of the four links contributes g'[ —,'L'
+ o(fg)'] to the energy. It is clear that for this
Hamiltonian the value of the parameter g appears
in the classical Coulomb energy as determined
from (2.18), but is entirely irrelevant for the
transverse dynamical part from mhich it can be
rescaled away by undoing (2.6). Furthermore this
is a trivial theory to solve. The energy of the
ground state for any charge distribution is the en-
ergy of the Coulomb configuration corresponding
to that distribution plus the ground-state energy of
a harmonic oscillator of frequency u= 2. Thus the
difference in energy between a state with no
charges and a state with charge +1 at (0, 0) and
charge -1 at (1,0) as illustrated in Fig. 4 is clear-
ly just the Coulomb energy of that state.

It is also interesting to compute the expectation
values of the electric field strengths created on
the links of the plaquette by the presence of the
dipole in Fig. 4. I et us denote by

I poo= Pox = Pro= Pu = 0i 4o&

the state in the sector of no charges with the os-
cillator in (3.1) in the ground state. Obviously for
this sector

E' =0, (p»=0;goII I p, =0;go&=0,

so that the expectation value of E vanishes.
I et us now consider the expectation value of the

electric field components E0"„E10p @p1 and E00
in the state

e '"-Ip»=0;4.&

=
I
poo= 1 Pro= 1 Pox= Pzx= 0 it& (3.2)

with the charge dipole present. It follows from
(2.17) and (2.18) that the Coulomb field correspond-
ing to this charge distribution is

gCoglg &
00

Ecoul, x Ecoul, y
00 01 10 4 '

(3 3)

Since e '"oo creates a unit string Eoo= 1, (2.23) and
(3.3) tell us that (/II I

P&=
—at t=0. Since by (3.1)

this state describes a coherent oscillator with co= 2
the time-dependent expectation values of the elec-

(oo) ..
+

FIG. 4. A single-plaquette universe showing the charge
configuration and notation discussed in the text.
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tric field are

&E,",(t})= a+ —,
' cos(ut,

&&'o.(t))= &&". (t))= -&~,".(t))
1= ———cosset.

(3.4)

2

&"'=5„.„, +
2

4I'+ —,(1 —cosB), (s.s)

where 6-,„, is the Coulomb energy of the charge
configuration. Since B and L are conjugate vari-
ables, e"~ are simply raising and lowering op-
erators, viz. ,

[f, eaie] = peai~ (3.6}

This state describes a static Coulomb configura-
tion plus an oscillating photon cloud. Even though
the cloud oscillates it is clear that the time-av-
eraged value of the E field in this state is exactly
the Coulomb value. The oscillating nature of the
cloud is an artifact of our very small ".universe"—
the radiation cloud cannot radiate away because it
hits the nearby boundaries of this small system
and is reflected back. In an infinite system the
coherent cloud would simply radiate away, un-
shielding the Coulomb field of the two charges.

We now examine the same problem in the com-
pact version:

this is an energy eigenstate. In the no charge sec-
tor p&=0, &=0 the E field vanishes identically,
whereas in the sector with the pair of charges as

this strong-coupling limit the "photons" do not
radiate away but remain to focus the electric field
on the string between the charges. This result
continues to apply for a larger lattice. ,

For weak coupling, g'«1, we can use the argu-
ments usually given to obtain an approximate solu-
tion to the corresponding Bl.och wave problem. The
ground-state energy has contributions owing to
barrier penetration. " Keeping only the leading
correction due to tunneling between neighboring
minima of the periodic potential we have

@(&) @harmonic g(g2}&-BfE
c

These tunneling corrections, although very small,
are nonanalytic in g' at g'= 0 and depend upon the
charges through the e distribution. They are the
crucial new feature in the compact theory. We
now give a variational estimate of these terms and
discuss physical effects.

The terms in (3.9) proportional to e are removed
in terms of the Bloch momentum by introducing
a trial wave function of the form [undoing (2.31)
and (2.33)]

and so we can write in an L basis
2

Hi'&=@,.„, +~ 4(m+ ~)2+, (2-J'-Z-), (8.&)

(= e '"x(e),

X(~+ 2v) = e""'X(~).
(s.10)

where e= 0 for the configuration with no charges
and e=-,' with the Coulomb configuration (3.8),
using (2.40), Z'—= e"~. Alternatively we can work
in a B basis, treating L as the momentum. For
this we introduce

Since the potential term in (3.9} is a very deep
well, a reasonable trial form for the variational
calculation is a narrow Gaussian packet" centered
about 8=0. However, in order to satisfy the
boundary conditions (8.10) we must construct a
superposition of the form

1 8 1 8L= ——+a= ——+4j 88 j 88

(3.8) X(e) = g e"""p„(&- 2vn), (3.11)

requiring that the eigenfunctions of (1/i) S/&8 be
periodic on the interval -m & 8 & m as is necessary
'for integer eigenvalues. Since the problem in this
representation is to solve the Hamiltonian

2

2 2 1 8
&

1 1-cos8 3.9

in the space of periodic functions on the interval
[-v, vj, it is a precise analog of the Bloch wave
problem for a Schrodinger particle in a periodic
potential. "

For strong coupling, g'» 1, (3.'f) is dominated
by the momentum term 4(g'/2}(m+ h)'. Since —2
&(& &, the ground state is clearly m=0 and has
energy E=@c,„,+ 2g2&2. We notice that for g-~

where $„(e -2vn} is the oscillator ground-state
trial wave function fear the potential centered at
8= 2'. The ground-state energy is then just the
energy of the ground state for a single such well
plus correction terms which correspond to the
overlap between two wells with different values of
n. For g2«1 the dominant correction comes of
course from tunneling between nearest wells. To
illustrate our variational procedure we write the
trial function

(g} e-ir/a)8 (3.12}

where y is the variational parameter which we ex-
pect to be large for small g2. The normalization
integral is then
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(X [X&= J[ de X(e)X(e)= g f de exp[pe(e(n, -n ))exp[--,'y(e —Pen)') exp[--'y(e -Pen)).
n n =-~1' 2

(3.13)

One of the n sums can be done, since it simply extends the range of integration to (-~,+~). To wit, if we
redef ine variables

A —n~ -n2, n- n~,

(3.13) becomes

&X~X)= g 8"" d8exp(--,'yP) exp[ —,'y(g+ 2vN)'] .
ee OO

(3.14)

Therefore we have for each N a simple Gaussian integral. The dominant contribution, for narrow packets,
comes from.V= 0 and the leading corrections are -e " cos2mc «1 corresponding to tunneling between
neighboring weBs with X=+1. The variational energy is

E{~)= «&= &X (I'f ~X&/&XI X)
2 Z e "' " cos(2veN)( 2g'y-m N'+(1/g')e '' "[1-(-1) ]}

ar&oQ + g2~+
1+ 2 Z e "' " cos(2m~)

Ã&0

(3.15)

and y is fixed by minimizing E(y)." For g'«1, the term in (3.15) which is independent of e and N domi-
nates and gives Z= 1/2g» 1. We find in this way, up to higher-order tunneling corrections,

E(y) -C,, „, =1+(O(g'), &-independent terms)

—e' ~" cos2v~ —— =+O(g') +O(e' ")
g2 (3.16)

The first term on the right-hand side is, to lead-
ing order in g, the zero-point energy for an os-
cillator of frequency 2 and mass 1/4g', just as in

the noncompact theory. The remaining terms are
the tunneling corrections in the compact formula-
tion. Since they depend on a they introduce, in
addition to the Coulomb energy, a contribution to
the energy which depends on the positions of the
interacting charges. This contribution is nonana-
lytic in the cha, rge atg=0 and is the crucial new
term in the compact theory which is responsible
for confinement on a large lattice. The role this
plays can be understood better if we compute the
time-averaged value of the electric field strength.
This average can be computed directly since, from
(3.9),

(3.1V)

Hy (3.16) we have

2

&E«)=-, + —, e '! ' sin2ma,
m m -4,2, 2

there is a residual. effect from the coherent cloud
which is proportional to (1/g')e ' '~. The sign
of this added tunneling contribution, with a = —, (cor-
responding to the charge configuration in Fig. 4),
is such a,s to increase the strength of the field
along the link between the charges, while at the
same time decreasing its other components rela-
tive to their Coulomb values (3.3). Thus its ef-
fect is to focus the field along the link joining the
dipole. In the next section our study of the large
lattice in 2+1 dimensions also reveals such a
focusing. This leads, for large separations, to
an energy which is proportional to the distance be-
tween the charges. This is the dynamical origin
of the linear confinement in (2+ 1)-dimensional
QED first described for g'«1 by Polyakov.

The trial function (3.12) is also a good variation-
al guess for the strong-coupling region where g'
» 1 and y —0. We then have to sum contributions
from large values of N to the variational energy
since all N's (w'y) ' will contribute significantly
to (3.15). This can be done by transforming to a
dual form of the periodic Gaussian using the Pois-
son sum formula

&Eoo&= &Eo,)= -&Efo&

m -4,2, 2
2

2
e ' ~ sin2n e.

(3.18)

pd(n)= p f dpe'" 'd(p). (3.19)

We see that in addition to the Coulomb component In (3.11) this gives
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~(g) Q f di g
'

~ '0 ~-1~ / by

Eg' = -(Vit)~, (4.2)

peg jm8 -(m+6) /2y

42m m=-~

(3.20)
with

(4.3)

which approaches

x(s) ~ e"',
for g-, which is the region y«1. Recalling
(3.10) we have for the ground-state trial solution

g= constant,

which is the exact ground-state solution for (3.7)
in the strong-coupling limit g- ~ (m = 0). Since
it does well in both the strong- and weak-coupling
limits, (3.12}is presumably a reasonable trial
form for studying intermediate coupling as well. "

IV. TMfO-DIMENSIONAL ABELIAN THEORY

%e now turn to the compact formulation of the
hvo-dimensional Abelian theory on a lattice of
(2ND+ 1) x (2N, + 1) points. As discussed in Sec. II,
our interest is in calculating the energy of a pair
of oppositely charged particles as a function of
their separation, for the coupling region g2«1.
Under the assumption that the configuration with
no charges corresponds to the sector &&= 0, the
problem is to compute the ground-state energy of
the theory in the sector defined by the c- deter-
mined from (2.39}, i.e. ,

(V x e}~= E~''""-E ii'" . (4.1)

Here E&"""is unity for links lying on the line be-
tween the charges at (-D/2, 0) and (D/2, 0), (see
Fig. 5} and is zero otherwise, and E&'"' is defined

Once we have determined the E& distribution for
this dipole configuration, our problem is to solve
for the ground state of the Hamiltonian (2.34) and
(2.35).

A. The strong-coupling limit

hen g'» 1 the kinetic term
2

H„, =(Rc „i+—P (V xL)
links

(4 4)

(H& 2 „=(Ic,+ —Q (V x c)'
links

2

-V '+ Vxe'
links

+g XC '.
2

links

Referring back to (4.1) and (4.2) we have

(4.6)

dominates the compact Hamiltonian since the po-
tential is a bounded operator; therefore in the g2
-~ limit eigenstates of H are products of eigen-
states of L&, i.e. ,

L~( (m j& = (m~+ ~~) [(m~)& (4.5)

[see (2.33)]. If we start with the state specified by
the m& determined in (4.1) (i.e. , all ~,= 0 for this
case of the dipole}, '» we find for the energy in the
g2- ~ limit

(ff& (~tring)2

links

(4.7)

FIG. 5. The larger two-dimensional lattice showing
the charge configuration of interest, and the E-field
string of the strong-coupling ground state. Periodic
boundary conditions are indicated by extra links at the
edges.

where D is the length of the string. %e can also
shift the rn's away from zero in order to construct
other states in this z sector. In such states the
original string is lengthened by the creation of
new string segments and/or loops according to
(4.5). The energy of these states will thus be high-
er than that given in (4.7) for the state with all m
= 0 which is hence the ground state. " In short, in
the g'- ~ limit the coherent cloud of transverse
photons corresponding to the eigenstate ~m&= 0)
holds itself together for all time and focuses the
Coulomb field to a string, giving rise to a linear
confining potential in (4.6}.

9. The weak-coupling limit

The weak-coupling analysis is more complicated
and, as we saw for one plaquette, essential con-
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(4.8)

and we must require that the eigenfunctions satisfy

8(«.,e 2rre))=exp(2rrr P epee) 8(«r». (4.9)

[In (4.8) we can define the contribution of links at
the edge of the lattice by I &=0 if either p„or p, is
less than -N or greater than or equal to N. Al-
ternatively we can impose periodic boundary con-
ditions by defining

tributions of the photon self-interactions will be
missed in a perturbative expansion about g'= 0.
The procedure we mill use can be justified by the
recursive variational technique which we have used
in other applications. ' Fortunately, however, very
littl. e of the physics we wish to discuss in the g'
«1 limit depends upon a detailed knowledge of
how this calcul. ation is carried out, and we can

finesse these complications by using information
gleaned from our analysis of the one-plaquette
problem. In that case we saw that in (3.15) the
X= 0 terms dominate the expectation value of the
energy, which is sensitive only "to very small val-
ues of 6j=g«1. Those terms corresponding to
N40, which arise from our prescription render-
ing the wave function periodic, were sensitive to
values of

~
8

~

= m, and hence were reduced by fac-
tors of e ' ~ « i. Therefore for the purpose of
determining the form of the trial wave function
we could both forget that the variable is restricted
to ~8

~

& m and replace (1 —cos8)/g' by (1/2g')8'.
Returning now to the Hamiltonian on the two-di-

mensional lattice we first change representation
as we did for one plaquette so that the operator
(I/i)8/&8& has eigenvalues (m.,+ e&). In this case,
(2.34) becomes

2 + (868 868.r )

8 =—~ e'~'8 V=(2N +1)'.fr) 0 (4.10)

Incorporating the boundary conditions (4.9) this
choice gives a trial wave function of the form

with

where

ef k (5-~')y1
%5' p k

k

and

(4.12)

gn
k No ~ n„,n„NO ~

0

V(j8,))-, g8,', g'«I,1
2g

(4.13)

the Hamiltonian reduces to non-self-interacting
photons on a lattice and we can solve for the y
directly:

The 5 function on the sum of the angles that ap-
pears in (4.11), viz. , 5(Q&8&), arises from the fact
that the kinetic term in the Hamiltonian (4.8) con-
tains only. differences of the canonical momenta'
and hence Z&8&, or by (4.10), 8&, is a classical
variable that we can fix at an arbitrary constant
value. In general we can treat y-„as a variational
function to be determined for arbitrary g' using
the recursive variational procedures developed
earlier. In the weak-coupling limit of replacing
the potential by its quadratj. c approximation, i.e. ,

y&= (4 —2 cosk„-2cos}2,,) '~', k 220. (4.14)

The difference between these two formulations is
only of order 1/V, and for convenience we shall
use the periodic formulation in our subsequent
discussion. ]

Having imposed the proper aperiodicity by (4.9)
we can replace the potential in (4.8) by its (quad-
ratic approximation for the purpose of determining
the form of the ground-state trial wave function.
This approximation turns (4.8) into a massless
free field theory and the ground-state wave func-
tion of this system is easily written in momentum
space as a product of Gaussians in the variables

&(~) = &0„;„~II
~ 4„,,)/&0„,„~0„,„&. (4.15)

straightforward generalization of the manipula-
tions used for the one-square problem yield

However, owing to the aperiodicity conditions there
are nonperturbative contributions to the energy
even in the meak-coupling limit as in the one-pla-
quette analysis of the preceding section.

We turn next to a calculation of these contribu-
tions, using (4.11) and (4.12) as our trial func-
tions, to
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E(y)=(fc,„,+ —, gy.,(4 —2cosk„-2cosk„)+ —, (1 c—os8&),
1 1

k

y-„'(4 —2cosk„—2cosk„}(iV~N &)+—,g (1-(-1)"s}(eos8I},,
5

where we have used the same trick in carrying out one of the n& sums for each p as in (3.14), and we
define

II( f" d8 ) exp[-(1/g')Z8 a»,8,]f(8~)&(Z8 )

II( f" d8$ exp[-(1/g')Z 8~a@,8!,,) 5(Z8~)

(4.16)

(4.1V)

II( Z ) exp[-(v /g2)QN~b». Nt, ,+ 2viZNgeg]f(X;)&(ZN)()
&y(IV-,)& =

II( Z ) exp[ (v'/g*)ZX, ~».X, +2viZ. z,e,]6(Zx,)
(4.18)

with

1
Ã~= —Q e' IV~vV'

(4.19)

E((z))=Qc, + —,
' g (4 -2cosk„-2 cosh„)'~'

The constraint on the fV-sums 5(Z&N&) arises
from the constraint 5(Z 8&) in (4.11) and tells us
that the overlap of initial and final states vanishes
except for values of N& such that Z&N&= 0.

It is clear from (4.16)Q4. 18) that the N&= 0
terms dominate the energy for weak coupling, as
they did in the one-plaquette example, since the
N& 40 contributions are suppressed by tunneling

2
factors -e """''. A very good approximation to

y„ is obtained if we ignore the N&NO terms in (4.16)
and variationally compute 8E/sy„ for all kp(:0. This
gives (4.14) up to corrections of order g' due to
the difference between the potential term (2.28) and
its quadratic approximation (4.13}. Substituting
into (4.16) and using (4.17}and (4.19} leads to

C. Vfhy doing the N& sums by brute force does not work

Calculation of the sums over N& in (4.20) can be
reduced to the evaluation of a single normalization
factor Z((ej} since from (4.18}

{4.22)

where

(po 7r2
Z{(ej)= Q exp

$ Py=- oo H'

+psi QÃsss )5(ZÃs),j

(4.23)

Z(fe]) can be thought of as the partition function"
for a neutral gas of charged particles which inter-
act, via the potential 6&&. For such a system one
expects that the free-energy density, defined by

+(O(g'), e independent) E(faj) =—lnZ(f e]),
-1

(4.24)

, p (~2','-2[1 -(-1) ~](cos8,),},
(4.20)

where

2

(sosss), = ssp (- P s., ')= ) so(g*) . (4.21)

This ends the quantum-mechanical part of our
problem; aB that remains is to do the sums over
fV& as defined by (4.18). The rest of this section
wiB be devoted to doing these sums.

is well defined in the infinite-volume limit. An ex-
pansion of Z in powers of E will give terms of or-
der V"E /m!. Since there are O(V") terms with
m nonvanishing IV& in the N sum (4.23) one is
tempted to try to resum by identifying such terms
with the terms of mth and. lower order in I'. This
resummation can be performed if the interaction
has sufficiently short range: This is the Mayer
cluster expansion in statistical mechanics. "

Let us illustrate this, for E&= 0, for the extreme
case 6,&, = 0 for all p 4p'. We then can readily see
that
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with

—e-VFp &

g- exp ——2~p N&'

OO m'
exp ——,6,N»', (4.25)

N =-~p

factors,
co P oo

g((&i}) I P J dPq) exP(2wi Q Nq(I)
N»=-

x exp -g2 &+ e& 6 '&&, &,+ E&,

N'

The sum on the right-hand side of (4.25} is finite
and we see that

OO r'0=t, = -ln (+Rg exp ——,i,N*), (4.M)
N=l

which shows that I'p is mell defined for V- ~.
We nom examine the change in this result. when

we include the correct 4;;, for p4p', considering
the case e»

——0. We rewrite (4.23) in the form

z(}0})=
' '

( g )
i (p )i,)

where

2

x exp ——,hp N&2 1+
%&5'

(4.2'l )

fbi exp ——,iiii .=ii,)ii )—( . .(4.28)

D. Doing the N& sums by Feynman graphs

In order to develop a correct resummation pro-
cedure we rewrite Z((c»)) by making use of the
identity"

dq»e ~'+» "» +» f(/ri»)) .

(4.29)

Substituting (4.29) in (4.23) and doing the q» inte-
grations yields, up to irrelevant normalization

We can attempt to evaluate the correction to I'p
from the nonvanishing f.,», by keeping terms with
successively higher numbers of f's In this ap. -
proximation the first correction to VI'p is of the
form of Z», », f»»„which must grow no faster than
V if this expansion procedure is to make any
sense. However, 4»&, hence f»»„ fall off only as
fast as 1/

~ p —p'
~

for large separations
~ p —p'

~
.

Hence Z»», f»», is proportional to V'~', and this
method of evaluating the X sums does not work.
The problem evidently is a consequence of the long
range nature of 4&&,. We will now discuss a pro-
cedure for resumming (4.23) in a way which avoids
these volume divergence difficulties.

where

1
N' V k

k

(4.so)

(4.s1)

Note that the exclusion of the k= 0 mode is irrele-
vant in 6 '»», since y-„'=(4 -2cosk„-2 cosh, ) van-
ishes for 0„=k, = 0, and so the constraint 5(Z»N»)
plays no role in the evaluation of (4.30).

One can now rewrite Z((e}) as Z= Z, ((('.)) with

p
oo C)O

Z,((~))= ( dy» 1+2m g cos2~N»y»
Ng=l

x exp -g + & &d-l&&,

Ko'

(4.32)

The parameter X has been introduced in (4.32) in

order to simplify subsequent bookkeeping. The
term of order X in (4.32) is clearly identical to
tbe term in the original N sum, (4.23), corre-
sponding to configurations with m nonvanishing N&.

Hence, an expansion in powers of A. has the same
volume divergence diseases as the N sums. How-
ever, the reformulation of the X sum in (4.32) has
an important advantage in that it allows us to re-
late the expansion in powers of X to a summation
of Feynman graphs. In this way we can convert
the problem of volume divergences to that of in-
frared divergences of Feynman graphs and use
well-known techniques for resumming the series
in X so as to avoid all problems.

First we simplify the calculation by truncating
the N sums in (4.32) to N»=1. This can be justi-
fied by evaluating also the sums keeping N&

=1,2, 3, . . ., N and showing that the additional
contributions to (N»'} and (1 -(-1}~»)are higher-
order corrections to our result. " We also tem-
porarily set all e»= 0 in (4.32) since our resolu-
tion of the volume divergence problem can be
demonstrated in this simple case. We will of
course reinstate the proper values of E& in order
to calculate the energy.

The relation of the X series in (4.32) to a sum
of Green's functions which can be evaluated by
Peynman graph techniques can be made explicit
if we observe that
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?t4?tt= '*p(-IQ t'?+'??t's. ,l

M'

(4.33)

is the ground-state wave function of a free mass-
less field theory whose propagator is

1 1 . , 1
~ jk ("$-$')

g& 55 geV (g
k k (4.34)

o?-„=r&
' = (4 —2 cosk„- 2 cosk,)'~'.

The Feynman graphs for the first few terms in
the expansion of (cos(2ttg&)) and

(cos(2ttg&) cos(2wp&)) are shown in Figs. 6 and r,
respectively. Graphs such as these are valuable
guides in resumming appropriate subsets of terms
so as to avoid all volume divergence problems.
The decomposition into connected and disconnected
terms shown in Fig. 7 yields the exponentiation
desired in (4.24) if the connected graphs grow no
faster than V for V-~. Figure 8(a) shows a
typical term in the calculation of the order X' term
(cos(2ttg&) cos(2tt((?&))"""-"'and it is obvious that
all remaining loop integrations are infrared di-
vergent. However, Fig. 8(b) shows that in every
higher order of X there are graphs corresponding
to insertions of tadpoles anywhere on the propa-
gators joining points p and p'. The sum over all
such tadpoles on each l.ine corresponds to modify-
ing the propagator, viz. ,

-1 -1 , -1
g CO g(0 g(d g COg

962K?& = M +Px K)o + ace) + Q + ...
+ [I ~]+2x [I c&]+[w w]+ px [~ ~]+ ~ ~ ~

[~~]connected
[ ]

2

FIG. 7. Contributions to (cos 2m (3t) ~ cos 2x ft)~. ) .

?

thai we recognize what we are looking for. We
rewrite, still keeping E= 0,

00

Z,(j0j)=, J
d(t?&[(1+ 2cos2wtI??&)e" 'e ]

«co

(I+ 2cos2tt(t?&)e" e& = a„:(t?&'".2 2

fg «0

(4.37)

and choose p,'.so that g, =-0.

Equation (4.37) simplifies considerably for g'
«1, in which case, self-consistently, p.

2 is very
small so that we can expand to first order in p.2.

This gives

7r2
it, '= 4tt' exp-

g V
k

(4.38)

exp g2 + g + p
2 2

$5'

(4.36)

In (4.36) it,
' is defined so that when one normal or-

l'2 2
ders the bracket [(1+2cos2tt(t?&)e" e& ] with respect
to the new propagator (I/g') [4 'itf?+ ( p, '/g') 5&&]

'
then the coefficient of:g'. vanishes. Specifically
we define a by

where
2

o)-(p, e)= co-+—e and tt, ~(cos2tttt q).g2

g & (0)

(4.35)

with higher -order contr ibutions exponentially
damped by powers of e '~~.

The essential accomplishment of the resumma-
tion indicated in ( ..36)-(4.38) is to construct a
propagator in Z((ej) that has sufficiently strong
screening to guarantee that a loopwise expansion
of the graphs contributing to Z„((ej) will be infra-

The new propagator ~-,(it, ') is no longer singular
at k„=k, = 0 and correspondingly the disease pre-
venting Mayer clustering .'.n the preceding section
is cured by this procedure. It is clear, however,
that no finite approximation to the series (4.35)
can cure the disease.

In practice manipulating pieces of the graphical
summation in this way is cumbersome. We can,
however, obtain the same result efficiently, now

~ + + + ~ ~

FIG. 6. Contributions to (cos 2tt tf?e ) . Each loop cor-
responds to a sum over spatial moments (1/V)Zz t?- (1/
4?? 2)Jd k and each line is a factor —1/go? I

(b)

FIG. 8. (a) Diagram of order X2 contributing to a
connected two-point function. (b) Diagram of order X 9

which corresponds to mass insertions in Fig. 8(a).
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red finite. In fact the new propagator

1 1 e~k'~~' g2
CKg' »' g'V . &u-„+ Ii'/g' li' Ip - jF I' ' (4.39)

length g'/p, n. We can now finally turn to the eval-
uation of E({c)) in (4.20).

E. Evaluation of E((e))

for a separation
~ p -p'

~

greater than the shielding
With the restriction of Nt, to 0, +1, (4.20) and

(4.22) simplify to

E({eg)=@c,„,+2 g co-„+(O(g'), a independent)+» g (tt' —4(cos8$o)
k 5

with

f OO

Z({eg)= dyt[(1+ 2 cos2vy~)e" ns j exp — Q g'(yt+ at)a-t». (yt, + at„)+ p,
' Q Q»' (4.40)

and we can, to leading order in g «1, replace (cos(8&)), by unity in accord with (4.21). By the definition
of p, 2, the bracket contains no terms in:p&2. . To leading order in e '~s the bracket can now be replaced
by unity since the:p&'.. and higher-power terms are all reduced by powers of pa-e '~s ."

ln this approximation we find that

Z({ag)= exp -Ii Q Et (g 6 + p, ) gg (g~4 )g I cg (4.41)

which implies that the energy changes from its a= 0 value by

2

«({a))=2» Ii' P ~&(Z'& '+ Ii') 't, &(r'& ')'» at, .
PgP2 P3

Rewriting this in k space,
2 ~2

5E({e))= 2 2 li'g ~~ —Q e'"' -", "", „, e~.
H'

Inserting Nk= 4-2coskx -2 cosky and rearranging the sums gives
2 2 2

V

(4.42)

(4.42)

(4.44)

where V' denotes the Laplacian on the lattice as
given by (2.19). The e& are defined such that

V26 = —V X (V X E) = -V X (Entrina ECo"i)

V X Estring (4.45)

We find, by inserting (4.45) in (4.44) and again "in-
tegrating by parts" (rearranging the Q»,), that the
energy shift is

2

tIE({~)) tin ~ (Estrins Ecoul). Estrtnnf
2&2+ ~ '5 5 5' '5fr

5%'

(4.46)

and "ss" means "string-string" energy and "st.""
is "string-Coulomb. " The contribution in (4.46)
proportional to the square of the string field in-
creases linearly with the distance between the
charges for large separations Dkg /p, '. This is
shown directly using (4.47) and going to the limit

(tin 4), ' sin'(I'2@7)/2
ss 2V2 2 OJr '2 y 2[(I2 2+ I'2 2)l/2+ li2/+2]2

(tt' -4) "'n sin'x
p D -

4 I' dx
2F p X

(4.48)

2 -2
I»,= —Y e'""t" (4 —2cosk —2cosk )'~'+-

V~ x
k

(4.47)

The contribution from (5E)„ is a negligible cor-
rection proportional to the Coulomb energy.

Although our methods are very different we have
arrived at the same conclusion for @ED in 2+ 1 di-
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mensions as Polyakov —namely, that there is lin-
ear confinement in the weak-coupling region and
hence no "phase transition" encountered as the
coupling constant is turned down from strong cou-
pling. The effects of monopoles in Polyakov's de-
scription are replaced in the present calculation
by the tunneling effects as expressed by the dis-
tribution of N& in (4.23). The nonmero NI have a
small but finite density on the lattice according to
our calculation of (4.23).

p+ j

h
Z

h= X

h

p+k '.

A- B-y z

P~ P

g= Ax
z

P~
h

P+ I

FIG. 9. Labeling of site, link, and plaquette variables
for a three-dimensional lattice.

V. THREE SPATIAL DIMENSIONS

Much of the formalism and discussion of the
previous sections can readily be extended to a
three-dimensional. spatial lattice, but there are,
as we shall see, crucial differences. Once again
we begin with A& and E& defined on the link leaving
the point P' in the direction g. We associate three
faces with each point f as shown in Fig. 9. As be-
fore for each face we can define one gauge-invari-
ant combination of.A' s,

B~=(V xA~),

e.g. ,

Bb=Aba, l -Af, -(Aba, b -Aba), (5 1)

(V' 8)i] -=Bf„;.-Bb+ Bba,f -Bba+ Bf„b-Bf= 0. (5.2)

Equation (5.2) states that the sum of the outward-
pointing B's on the six faces of each elementary
cube vanishes, being the lattice version of the di-
vergence of a curl.

We again rewrite the E fields, following (2.23),
in terms of a Coulomb part plus a transverse
field,

Eb= -(Vy)b+(V x L)b,
2-«b=» ~

Since Eb and hence H does not depend on (V' L)b,
(V' 8)& is a classical time-independent variable

(5.3)

etc. A new feature of the three-dimensionaL lattice
is that for every cube there is one redundant vari-
able defined in this way since it follows from (5.1)
that

and the constraints (5.2) must also be imposed on
our trial wave functions at each lattice cube.
There was no parallel condition for the two-dimen-
sional theory, in which only the background B, or
+58& on the entire lattice, was constrained. Aside
from this restriction we can closely follow the
calculational techniques discussed previously.

Once again for the compact case we have a po-
tential which is periodic,

V= ~ P (1 —cosBf),
faces

(5.4)

e

so that the Hamiltonian is invariant under transla-
tions B-B+2gpg. Hence, for every face, we can
again define a conjugate pair of variables (m&, 8$,
with -g & 8&&m, and

L&=—e&+ m&, (5.5)

The Hamiltonian of the quantum field, (4.8) gen-
eralized to three dimensions, does not change
values of the &&. Our problem is, as before, to
find the ground-state energy of the system with an
E distribution obtained by adding a line of unit flux
joining two charges separated by a distance D,
relative to a configuration with no charges and
with all e&= 0.

The analysis of the strong-coupling limit is not
essentially different from the two-dimensional the-
ory and leads to linear confinement as found in
(4.7)." Turning to the weak-coupling regime of
g2«1, we begin as before by choosing a properly
aperiodic trial wave function,

2, ,~([ee]}=+exP(peery ne en)exP(- g (ee —2ene) nee, (&2, —xene))'' e([v (2 —2en)]e},
(n'. } 5b 5'

(5.6)

where the important new constraint on the local divergence of 8 has been incorporated in the 6 functions.
As a result of these 6-function constraints 4&&, has the tensor form

n ab n ab(p» p»}) ~ &(i ('5-fi'&+

y ~ f, ab&

since the contribution from terms proportional to k'kb automatically vanishes. Again the coefficients y„
are to be determined variationally.
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Evaluating the expectation value of the Hamiltonian using this trial wave function we find, analogously
to (4.16),

= sc,„,+ —,g (6-2cosk„-2cosk, —2cosk, )y&+ ~ g (l. -cos8»), + 4E(&),1 1

k faces

(5.8)

p (f „d8'») exp[-(1/g') g F& Z»& 8»,](1—cos8&) II 6((v 8)»)
(1 —cos8.'), -="'

g(f „d8;)exp[-(1/g') Z 8, Z», .8»,] II5((v 8),)

with p Q 5((v N}»}exp(2' 2 N»' e;) exp[-(m'/g') Z N»' &», N», ]f(& )
{ga}» p $»5'

(f(X-;)=- '
p g5((v N)»)exp(2viZN» ~~) exp[-(v'/g') + N» &»»'N»], '
{&g}

m2

aE(e) —= — . , g (6 —2cosk„-2cosk, —2cosk, ) y.'(N.'„¹)+—,g ([1 -(-1)"»])(cos8»), ,
I

k, a p» c

(5.9)

As before, for small g2, it is clear that the energy
is dominated by the e-independent terms in (5.6)
and hence a good approximation is obtained by
choosing y»„ to minimize these terms. This gives
to leading order

(6 —2 cask„—2 cosk, —2 cosk,)'~' (5.10)

(v N»)=0 (5.11)

requiring zero divergence of ¹&through the faces
of each individual cube of the lattice. Evidently,
this condition implies that the only allowed con-
figurations are those for which the N vectors form
loops. The simplest such configuration is shown
in Fig. 10. It involves four nonvanishing ¹'s.
All such configurations can be equally well de-

Once again, as in (4.20}, we have reduced the
problem to the evaluation of the sums over the N's.
However, in three dimensions this turns out to be
a somewhat more straightforward procedure than
it was in two dimensions. One important differ-
ence in this case is the constraints

N& &&= v x t&
~

a&

P. (Estring Ecoul)
$ ~ (5.13)

Since E&
""is integer valued, as is t, the phase

factor simplifies to

exp 2@i N&' && = exp 2' t g' E~ '"'

Equation (5.9) can now be rewritten in terms of
restricted sums over t&

scribed in terms of integer variables t& associated
with the links of the lattice, with the definition

N&- V'x t&. (5.12)

Equation (5.12) gives N» uniquely for each t»,
though clearly the t& associated with any given N&

are determined only up to an arbitrary gradient.
Using (5.12}we can rewrite the phase factor in
(5.9)

Q'exp(2~iX t E»c'"') exp[-(v'/g') Z (V x t)» 2», (V x t)»]f((V x t)»)
{7~} 4» 5'

(f(fi;)&=—
Z' exp(2viZ t» E»""')exp[ (v'/g') Q (V x t)» 3»», (V x t)»,]

(5.14)

where the restricted sump&-, &
means that each configuration of {(Vxt)»} is included only once." Provided

the summation over t& variables converges we can evaluate this expression as

up~»)=~ rll,—'-. (~ » '...) Iz~(»;- 8,
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where Z(g&c'"')} is the denominator of (5.14}. In the strong-coupling limit, g- ~, the contribution of large
values of t is not suppressed and one should not expect the summation to converge. However, for smaB
g the question of, convergence is quite different. We can rewrite the. weight factors in (5.14) as

exp —~ g&V&&,t&~

g

where

(5.16)

As discussed in Sec. IV the t sums converge for any finite volume provided that the quantity

(5.17)

(5.18)

does not grow more rapidly than V for large V. This requirement of clustering is satisfied here (unlike in
the two-dimensional case discussed in Sec. IV), since from (5.16) we see that, for large separations r
= lp -p' i and y. given by (5.10),

cosmr ~&r;r,
'55'

Having argued that the restricted t sum, and hence the N sum, is convergent we can now examine indi-
vidual terms to see whether there is any way to generate a contribution to (5.8) which grows linearly with
the separation of the charges. The convergence of the N sum means it is dominated by configurations with
widely separated loops of nonvanishing N&. Their contribution to the change in energy between the configu-
ration with no charges and that with charges separated by a distance D is dominated by the term propor-
tional to

X5E= exp — — t,.'P cos 2m t E '"'
2

loops loops loop
surface

(5.19)

where K is some (large} constant and P, is the
perimeter of the ith loop. Now consider what
happens to this quantity as the distance D between
the charges is increased. For any fixed loop the
contribution decreases as 1/D' as the charges re-
cede. Therefore the contribution to the energy
from such configurations also decreases with in-
creasing D at least as fast as 1/D'. In addition
one obtains contributions to the energy which are
independent of D from loops of fixed size which
are close to either individual charge and remain

~ F

FIG. 10. The simplest nonvanishing N~ distribution
which satisfies (V N)y =0.

so as D changes; these are of course nothing but
self-energy contributions and their magnitude is
suppressed by a factor e ~~~ «1. The only way
to obtain an increase in the argument of any of the
cosines in (5.19) which is proportional to D is to
let the area of that loop increase at least linearly
in D as D is increased. However, this can only be
achieved by increasing the perimeter' at least as
fast as D' '. Hence the contribution to the energy
from such a term is exponentially damped with in-
creasing D. It follows that one cannot identify any
class of N-loops whose contribution grows linearly
with D Thus we con. clude that 5E({ej)at most
gives a negligible correction O(e «~' } to the Cou-
lomb energy.

We stress once again that this argument, which
is made by examining the N sum term by term, is
invalid in the strong-coupling limit, where the
summation is not expected to converge. We have
not computed the value of g2 beyond which this ser-
ies diverges, nor have we studied the nature of
the phase transition from unconfined QED for g'
«1 to the confined phase when g2»1.

A more physical, picture of the difference be-
tween two and three spatial dimensions can be ob-
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tained using the strong-coupling limit as a starting
point. We found there that the ground state of the
system consisted of a static coherent cloud of
transverse photons, described by the variables
L&. This cloud serves to cancel the Coulomb field
in all of space except along the line between the
charges; we may describe this phenomenon as a
focusing of the flux. As the coupling decreases
quantum fluctuations in the variables L& become
more important. The periodicity of the potential
means that these fluctuations change the eigen-
values of the L& by integers. Our calculation is
a study of whether or not the fluctuations can ran-
domize the configuration sufficiently to completely
destroy the coherence. In a two-dimensional lat-
tice the vectors L& are constrained to lie perpen-
dicular to the plane of the lattice. They each can
fluctuate in magnitude by integer amounts, but
fluctuations cannot destroy the fact that they are
aligned, nor give a vanishing (L&) for any 0&~ e-~

However, in the ee dimensions fluctuations
can cause the vector L& to rotate as the individual
components change in magnitude by integers. This
new degree of freedom allows the coherence of the
state to be completely eliminated, even though the

(~ L&~ ) are still nonvanishing.

VI. SUMMARY AND CONCLUSIONS

We have developed and applied a Hamiltonian
variational approach to the study of QED, formu-
lated both compactly and noncompactly, on a (spa-
tial) lattice in both 2+1 and 3+1 dimensions. In
the course of obtaining results previously reported
by others, ' we have introduced a different lan-
guage and physical picture of confinement for these
models.

The important features of our method are
(i) explicit separation of classical and quantum

variables,
(ii) imposition of the appropriate periodic bound-

ary conditions on the variational wave function in

the compact formulation for which the potential is
periodic, and

(iii) factorization of the compact problem, in
the weak-coupling limit, into a variational calcu-
lation which is the same as that of the noncompact
case, plus a statistical-mechanics-like calculation
of the corrections from nonperturbative effects—
these are the N sums.

In the compact formulation of the theory step (i)
introduces not only the static external charges
and resultant classical Coulomb field, but an ad-
ditional set of classical variables: the E. The
existence of these is a consequence of the peri-
odicity of the Hamiltonian, which means it is in-
variant under translations of B by multiples of 2g.

In the absence of charges the E& are taken to be
zero corresponding to zero mean electric field
strength. Charges are introduced using the gauge-
invariant operator ge '"g, which creates charges
joined by a line of unit flux. Reinterpreting this
state as a static Coulomb field plus the quantum
excitation of a coherent photon state gives non-
vanishing && over all of space. In the sector of the
Hilbert space defined by these e&, the total flux on
any link is given by the sum of the quantum excita-
tions plus the Coulomb field and is hence an integer
for every eigenstate. In the strong-coupling limit
the coherent state is an eigenstate of the system,
and in the ground state the flux is localized along
the shortest path between the two charges. As the
coupling decreases fluctuations become more and
more important; they depend on the e& and hence
are different in the presence of charges, which
polarize the vacuum, than they are in the charge-
free sector. The dependence of the fluctuations
upon the e& arises entirely in the nonperturbative
effects which correspond to tunnelings between dif-
ferent minima of the potential —these effects are
included in our approach by the introduction of the
properly periodic wave functions in step (ii). In
Euclidean path integral calculations these effects
are included in the nontrivial. classical (or semi-
classical) solutions —the N's of our N sums give
rise to the same effects as the monopoles of Poly-
akov in 2+ 1 dimensions that lead to linear con-
finement in the weak- as well as strong-coupling
limit. In 3+ 1 dimensions they give rise to the
same effects as the loops of monopoles and do not
lead to confinement in the weak-coupling limit.

Much of the physics we have observed in this
calculation was anticipated and qualitatively de-.

scribed by Polyakov, ' with further support from
the work of Banks et al. Our method of calcula-
tion, although quite different, is found to be cap-
able of reproducing the qualitative effects which
arise in path-integral calculations from nontrivial.
classical or semiclassical solutions. It also high-
lights the crucial importance of the photon self-
interactions that are introduced by the compact
formulation. Further, we make quite different
approximations from those made by previous au-
thors and yet arrive at the same conclusions, thus
strengthening our belief that these conclusions are
correct, and not just the consequences of some
simplifying assumption made during the calcula-
tion. We make no attempt here to obtain precise
energies, or to investigate the intermediate cou-
pling range —for example to find the value of the
critical coupling in the (3+ 1)-dimensional theory.
We are interested at this stage only in certain
gross qualitative statements about the theory.
However, the demonstrated power of the recursive
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variational method irivites further study of such
questions by these methods.

Much still remains tobe learned aboutlattice QED
even on a qualitative level. 'The introduction of quan-
tum fermions is an obvious and interesting next step.
We are now optimistic that these methods can also
be extended to examine the confining properties of
non-Abelian gauge theories on a lattice, in all re-
gions of coupling strength.
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~
—2.

Once again the ground state 1s (Q xm}= 0 but V 'm 18
arbitrary. See Ref. 14.
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