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We show to all orders in mean-field perturbation theory that a two-dimensional scalar four-fermion
interaction ()’ has renormalized Green’s functions which are structurally identical to an infinite class of
theories having fundamental Yukawa-type couplings with a scalar field o and additional scalar self-
interactions of the form F(o). For a particular choice of renormalized parameters of the Yukawa-type
theories which occurs as Z % —0 the renormalized Green’s functions are numerically equal to those of the

four-fermion theory.

I. INTRODUCTION

Recently a new systematic method of expanding
field theories around a mean field has been fully
developed.'”* This method is in many (but definite-
1y not all) instances equivalent to the 1/N expan-
sion techniques.® Even in the cases of equivalence,
it is usually possible to identify a small renormal-
ized parameter so that the mean-field method can
be applied for the case of only one field.'** The
current published applications of this mean-field
method are most fully developed for the ¢* scalar
theory,! but the greatest potential interest of the
approach lies in the four-Fermi theories with in-
teractions of the form (Po%y)(@o*p). In these the-
ories the mean-field perturbation theory is con-
veniently obtained by the usual trick of introducing
auxiliary fields x& =9,0%);, where a is a Lorentz
index and 7 and j are internal-symmetry indices,
directly into the action which appears in the path-
integral representation of the vacuum functional.
Modified in this manner, the action contains the
Fermi fields only bilinearly, and hence they can
be integrated out of the path integral. The result-
ing resummed theories bear a topological resem-
blance to theories of fermions interacting via gen-
eralized Yukawa couplings with fundamental fields.
They are only missing the kinetic terms for the
fields xf;. The lack of these kinetic terms is, of
course, entirely nontrivial since this is the mathe-
matical statement of the obvious fact that the Yuk-
awa and pure Fermi theories are canonically en-
tirely different.

Nevertheless, using mean-field expansion tech-
niques in four space-time dimensions it is possible
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to show that the renormalized Green’s functions
of the Nambu-Jona-Lasinio model® are identical to
those of a special ¢ model®:” and that vector-vector
four-Fermi theories yield renormalized Green’s
functions equivalent to gauge-field theories.!'”r®
Since this equivalence is valid when these
theories are expanded in their mean-field ap-
proximation, it is necessary and, remarkably,
possible to demonstrate that within this particular
scheme most four-fermion theories in four dimen-
sions and their related fundamental boson theories
are renormalizable.!' 3'® The ambiguities of the
definition of products of operators at a point which
are responsible for the high degree of divergence
of the normal coupling-constant perturbation ex-
pansion of four-fermion theories are handled in a
specially defined self-consistent manner in mean-
field theories. This makes it easy to level the
criticism that equivalence arguments are nothing
more than the result of defining what a four-fermi-
on theory should be. To some extent it is, of
course, true that any divergent field theory that
can be made usable is defined. However, the con-
tent of the mean-field method is far deeper than
just definition, because the self-consistent nature
of the construction indicates that the Fermi theory
is only equivalent to a ¢ model for special values
of the parameters of the 0 model.*”® The primary
possible advantage of pure fermion models is the
reduction of the number of free parameters rela-
tive to a more conventional model.

The correspondence of sets of models within
mean-field approximations is a common feature
in no way unique to scalar-type four-Fermi inter-
actions in four dimensions or theories which are
not renormalizable or for that matter even diver-
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gent at all. In Ref. 1 it was shown that a ¢* inter-
action corresponds to a cubic interaction involving
two canonical boson fields for a particular limiting
choice of the bare coupling of the cubic model. As
a result, the usual three independent renormalized
parameters of the cubic model were reduced to two
in order to establish a correspondence with the
quartic model in the mean-field approximation.
Similarly, in that paper it was shown that the j*j,
four-fermion interaction corresponds exactly to
ordinary electrodynamics if ¢ is determined by
the Johnson-Baker-Willey eigenvalue condition.

In this paper we develop related arguments which
show the equivalence of the scalar four-Fermi
interaction in two space-time dimensions to a
whole class of Yukawa-type models.

In Sec. II we review the expansion technique
developed in Ref. 1 and apply it to determine the
renormalization parameters of the ()? model in
two dimensions. In Sec. III we show that the low-
est-order renormalization parameters are not
arbitrary but are related through the self-con-
sistency requirements of the model. In Sec. IV
we demonstrate the equivalence of the two-dimen-
sional four-fermion model to a whole class of
models with elementary bosons.

II. MEAN-FIELD EXPANSION OF (J/y/)?

We shall study the two-space-time-dimensional

theory given by the Lagrangian density™®
£r=0Viyop D + 3G2@ ¢t )? (2.1)

in the mean-field approximation. The index ¢ is
summed over from 1 to N and corresponds to the
internal symmetry. Henceforth, explicit reference
to this summation will be suppressed. We have
set the bare Fermi mass m, to zero for the sake
of simplification, but most of this paper’s major
conclusions are valid even when m,# 0. In order
to do mean-field approximations in the integral’
formulation (but not the alternative differential
formulation®) it is necessary to explicitly intro-
duce the auxiliary field ¢ and write the Lagrangian
density in the form

Lr=0(iyd -Goo)p —302+ Jo +RYp+yn .  (2.2)

Here, 7, n, and J are external sources. Variation
of (2.2) leads to the two independent field equa-
tions:

(iy® =Gy0)p+n=0 (2.3)
and
0==GoPh+J. ' (2.4)

Setting the sources to zero and substituting (2.4)
into (2.3) results in

==

(tvd +Goy)$=0, (2.5)

which is the field equation obtained by varying
(2.1). Thus all solutions to (2.2) are also solu-
tions to (2.1).

The vacuum functional of (2.2) is given in terms
of path integrals by

Z(@,n,J)=(|)
=const><f[da][d;‘b][dw]eif%dz* .

Because (2.2) is quadratic in the Fermi fields they
can be integrated out to yield

Z(ﬁ,n,J)=const><f[dc]e‘”‘”g""‘”, (2.6)
where
Fo,an, 0= [ a (—%cz(x)+J(x)a(x)
_ite[ms, ),
- fdzyﬁ(x)so(x,y)n(y)> .

2.7
Here
So M x, y)=[ive, —Gyo(x)]6%(x —v) . (2.8)

Mean-field perturbation theory is defined by in-
troducing by hand a small parameter € and defin-
ing a new function of the external sources

Ze(ﬁ,n,J)Ef[do]e“/e’?""';'""” . (2.9)

When €=1, (2.9) produces the same connected
Green’s functions as (2.7). Our approach is to
expand (2.9) in Euclidean space by Laplace’s meth-
od in a power series in €. The order of the ap-
proximation of W, = —ielnZ . is identified by the
number of powers of €. The theory is renormal-
ized order by order in € and then € is continued
to unity. There is no a priori way to justify this
technique rigorously or to predict the accuracy
of the resulting series. This is also the case for
the usual coupling-constant perturbation theory.
After the calculation is complete we will see that
€ always appears multiplied by parameters which
can be made small so that the product is small
even as € approaches unity. In this model a pos-
sible choice for the small parameter is 1/N if N
is large. There is, however, another possible
choice which works even when N=1 and which
corresponds to a reordering of the renormalized
Green’s function expansion if N is large. This
will be mentioned again later and is used exten-
sively in the four-dimensional version of this



model.?

The expansion of functional integrals of this
type in an asymptotic series in € has been studied
in detail in Ref. 1. We shall just review some of
the essential features here in order to obtain the
graphical expansion of this theory.

In Euclidean space Eq. (2.9) takes the form

Ze(h',n,J)=f[d(r]e"“‘”’€ . (2.10)

If we require that

OF
oo

and that

=0 (2.11)

G =0g

- )
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_ 5%F :
A% 9)= 5o 5o BT o:co>0 (2.12)
and define
N o
B(%,9,2)= 5 55 (51507 o=0p (2.13)
and
- 8‘F
€03, 80)= 5 856) 50(@) 6560) | -0,
(2.14)

then Laplace’s method applied to functional inte-
grals yields

Z€ ~e-F[oo]lEe-(1/2)tr InA {1 —%ffffdxddedw C(x‘,y,z,w)A‘l(x,y)A'l(z,w)

* zi4fffff dxdydzdadbdc B(x,y,z) B(a, b, c)
x[247(x, @) A (v, ) A™(z, ) + 347 (x, y) A"z, a) A", )]

+O(e"‘)} (e=~0%).

This formula is used to expand the vacuum func-
tional w . in a mean-field perturbation series. We
shall show using it that it is possible to identify
the basic vertices of the theory and the corre-
sponding graphical expansion.

Returning to Minkowski space, it follows from
condition (2.11) that the extremum value of ¢ is,
from (2.7),

0o(%) =G, itrsoo(x, %) =Gy Vp(x) V(%) + J(x).  (2.16)
Here we have introduced the fields ‘
b= [ 95, 6,9)n0),
%= [ di0) S, 0,%).
From (2.15) it is evident that A™ plays a central
role in the expansion. Differentiating (2.7) we find
A(x,y) = -5(%' "y) +Gozi tr [sco(x’ y) sao(y’ x)]

=G [Fe0) S, X ¥e(x) +(x==3)] .
(2.18)

J

(2.172)

(2.17b)

B(x’ Y, Z) = _Goa trSoo(x, y) soo(y; Z) S°o(z’ x)

(2.15)

Thus A is a measure of the correlation strength of
pairs of Fermi particles. It is directly confirmed
through the use of stationarity conditions (2.11)
and (2.7) that the “bound-state propagator”
%] 6
— 2.19

defined in lowest order in € as Doo is given by

@ i _
Dao(x,y)—-m— WF(Go,J,",n)

&
= EJ—(x—)'O‘o(v) , (2.20)
which, using (2.16), (2.17), and (2.18), becomes
qu(x,y)':—A-l(x,y) . (2.21)

Thus, (2.12) contains the condition that Do, is not
tachyonic. .

We can, by direct differentiation of (2.7) using
(2.8), calculate any term occurring in the expan-
sion of Z,. For example, we have (in Euclidean
space)

=G [9e(%) S5 (%, 2) S5 (2, %) $.0) +3,(3) So ¥, 2) S (2, W) P (%)
+Pe(%) S5, (%, 9) S5, 005 2) $o(2) +¥e(2) S5 (2, ¥) S5 0, ¥) P(x)
+5u(2) S, (2, ) S, (5,9) 0s0) +T0) S 0, %) S5, 2) (2] - (2.22)
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A > > < <N A

FIG. 1. Graphical representation of B(x,y,z) as given in (2.22).

Each solid line represents a factor of S, (x ¥).

P (x) is represented by a cross at the point x and zpc (x) is represented by a barred cross at the point x. Wlth each co-~

ordinate point we associate a factor G,.

B(x,y, 2) is represented graphically in Fig. 1. It
is straightforward but space consuming to cal-
culate C(x,y,z,w). In general it is easy to cal-
culate and to represent graphically all higher
variational derivatives of F,. To represent the
nth derivative of F we draw all possible z-sided
polygons and all possible (# — 1)-sided open poly-
gonal paths with a cross and a barred cross at the
open ends.

Now using (2.14) we can construct W.. We find
(in Euclidean space)

~—F(oro,ﬁ,n,J)+etrlnD%+ Z €"F, .
n=2
(2.23)

If we represent DOO(x, y) by a wiggly line, we find
that F', is composed of only three distinct types of
vertices as given in Fig. 2. The vacuum graphs
F, of order n consist of all possible graphs made
from the vertices of Fig. 2, so that each graph
has no external legs, and, further, has » inde-
pendent loop integrations involving at least one
bound-state propagator D, . Note that in these
graphs each bound-state propagator D, always
occurs in the combination G,’D,,,, Wwith one G,
coming from each of the space-time points con-
nected by D00 . This is a general property of mean-
field theory regardless of the explicit form of
quartic interaction involved. It essentially guaran-
tees that the bare coupling drops out of the theory
except through its effects on mass normalization.
The contribution of order # to a connected Green’s
function is calculated by differentiating F, Dg,, or
F, with respect to the appropriate combinations of
external sources. In order to do this it is only
necessary to know the derivatives of ,, ¥, .,
Doy, and So, with respect to #, #, and J. These
are messy but extremely straightforward to cal-
culate. All we need to use for the purpose of this
paper is that all of these derivatives are expres-
sible in terms of the three vertices of Fig. 2.
When the external sources are off, only the Yuk-
awa-type vertex of Fig. 2(a) contributes. We thus
conclude that any Green’s function calculated in
nth order in € is made of the weighted sums of all
possible graphs made of vertex (a) of Fig. 2 with
the appropriate number of external legs and # in-
dependent loop integrations involving at least one

bound-state propagator D,,. This, along with the
asymptotic behavior of the propagator, is enough
to study the renormalization properties of this
theory.

From Eq. (2.8) we have with the sources off

1
SOO(P) = m , (2.24)
. so, for large momentum,
1
Sool#), 3L - (2.25)

From (2.21) and (2.18) it follows that with the
sources off

Doo_‘(x,y) IJ:;=n=o
=6(x -y) =G i trS, (%,9) S5, v, %), (2.26)
which can be written in momentum space as
Do Mg*) =1 -Gy’ iZ(q’, m,),
with

E(qz,%)ztrf (tgijsz (,,(p +q)1..m°+i€ )

(r=mimere)
x Yb—-mgy+i€ )’

In these equations we have recognized with the
sources off (or independent of space-time) that
g,(x) is independent of space-time, so that we

can introduce the constant

(2.27)

(2.28)

Mo=8o0op - (2.29)

m, is, of course, further related to the divergent
mean-field self-consistency condition (2.16). Since
this is not directly related to our demonstration of
renormalizability but rather to the relations among
the renormalized parameters, we shall simply

D o D ¥_S D ¥ s
9 Go .~ o S 9, o, ¢ o,
S G G

ag o o]
o
(a) (b) (c)

FIG. 2. The basic vertices that occur in the expan-
sion of W, . When the external Fermi sources are turned
off, only the vertex (a) is nonvanishing.



recognize m, as the lowest-order renormalized
mass of the fermion.!* The exciting aspects of the
theory arising from (2.15) are discussed in Sec.
111,

=(q% m,) as defined by (2.28) is logarithmically
divergent, so it must be evaluated through a sub-

-
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traction procedure. Subtracting at zero momen-
tum, it can be written in the form

Z(qz,mo) =%(0,m,) +subl (g% m,) . (2.30)

=(0,m,), if explicitly evaluated, carries the log-
arithmic divergence, while it is easily shown that

sub? = (q® mo)—l—l\z [l (i”ﬂ;;'—qzylzln(“['qz/“m"z"f;))]]z: ) -1]. | (2.31)

2

From (2.27) it follows that the bound-state propa-
gator is

Doo'l(p2 )=1-G2i[Z(0) +subl(qg?, m,)] . (2.32)

We shall show in the next section that DOO(O) is not
arbitrary but related to the other parameters of
this theory as an expression of the composite na-
ture of D, and condition (2.16).

From Eqs (2.31) and (2.32) we can study D, (pz)
asymptotically for large p? to find

1
Doo(Pz)pz’:’” Tp? (2.33)
Since we know all graphs are made up from ver-
tex (a) of Fig. 2, which is inturn constructed from
(2.24) and (2.32), we can identify the superficially
divergent graphs of the theory. If for the moment
we ignore the inverse logarithmic behavior of

(2.33) and pretend that
Doo(), 5%, (2.34)

we find that W(G), the degree of superficial diver-
gence of a graph, is given as

W(G)=2-n,-%mn,. (2.35)

Here 7, is the number of external ¢ lines and #;
is the number of external fermion lines on the
graph under consideration. Of course, because
of the use of (2.34) instead of (2.33), Eq. (2.35)

overestimates the degree of superficial divergence.

Where necessary we shall take that into account
in the enumeration of the graphs with W(G) =0 il-
lustrated in Fig. 3. This figure does not include
the vacuum graphs, which are divergent but ir-
relevant for our discussion, or the graphs with
one external ¢ line, which are effectively absorbed
into fermion mass renormalization. The graphs
of Fig. 3(a) need one subtraction to make them
superficially finite. This subtraction is identified
with the boson mass renormalization. In addition
it is convenient to subtract this graph once again
and designate the associated superficially finite
parameter as Z,. The graphs of Fig. 3(b) are
slightly more convergent than logarithmic because
of (2.33) but they still need two subtractions. The

1-[-¢*/(4m, -

-
first corresponds to a fermion mass renormaliza-
tion and the second to the fermion wave-function
renormalization Z,. The graphs of Fig. 3(c) are
very slightly divergent because of (2.33) behaving
roughly as In(InA), where A is a cutoff, and hence
they still require one subtraction. Associated with
this subtraction is the renormalization parameter

(a) 2 external o lines [W(G)=0
divergent

lowest order divergent graph

(b) 2 external ¥ lines [W(G)=1
divergent

lowest order divergent graph

(c) 2 external Y lines and one
external o line [W(G)=0
divergent

lowest order divergent graph

(d) 4 external ¢ lines [W(G)=0
finite

lowest order graph

ﬁxé§b$é$

FIG. 3. Classes of graphs which are divergent by
power-counting arguments. Because D, behaves for
large k2 like O(l/lnkz), the class (d) graphs are actually
finite.
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Z,. The graphs of Fig. 3(d), although naively di-
vergent are actually superficially finite. This is
illustrated by the lowest-order graph, which be-
haves like

f cr 1
EInz)> InA

for large cutoff. It is primarily because of this
fact that our expansion is interesting since we do
not generate any divergent structure of the form

of the original interaction in (2.1). Thus, in coun-
terterm language we do not need a counterterm of
the four-fermion form added to Lagrangian (2.2).
This is a feature which survives in the four-dimen-
dional models and makes it possible to renormalize
an interaction that is nonrenormalizable in a cou-
pling-constant expansion.

We conclude that the possible divergences of this
theory are contained in the parameters m (the
fermion mass), #? (the bound-state boson mass),
and Z, and Z,. Becuase of the trilinear vertex
structure, the Z’s only occur in the combination

Z,Zy°
Goz "i'ﬁz— Eng . (2.36)

Z,

This is evident, but will be demonstrated else-
where in our analysis of the Schwinger-Dyson
Green’s function equations. Thus the parameters
of this theory appear to be m, u®, and g;>. We
shall show elsewhere® that to all orders only one
of these is independent. In the next section we
demonstrate to lowest order that %* and g, are
fixed by m. Finally, we note that, despite the

resemblance of (2.2) to a theory with a fundamen-
J

P03 7,(0) =F (005 70N + [ @y [oales 3 7,060)) =06 (343 7))

tal field ¢, the absence of a boson kinetic term
means that this model is not super-renormaliz-
able.

III. THE ZERO-MOMENTUM GREEN’S FUNCTIONS

In the last section we established that (y3)® is
renormalizable when evaluated in the mean-field
approximation in two space-time dimensions and
is parametrized by three parameters u%, m?2, and
gx°- In this section we demonstrate to lowest or-
der that only one of these parameters is indepen-
dent and calculate at zero momentum the lowest-
order connected one-particle irreducible ¢ re-
normalized Green’s functions. These results will
be generalized to all orders elsewhere.

The key to this analysis is the gap equation (2.16)
in the absence of fermion sources!?

04(%) =G @ trS, (¥, %) +J(x) =00 (x; I (x)) . (3.1)

In order to derive equations relating all the lowest-
order meson Green’s functions to Sqy, We differ-
entiate (3.1) with respect to J. It is convenient to
use the chain rule to write

_ 2, 00o(2) 8
—fdz 8J(x) 60(2)

= [ @2p,0,2) -——Mi(z) . (3.2)

Next observe that given F(o,(¥; J(x))) an implicit
function of the source J(x), we may compare this
function for two different source dependences J,(x)
and J,(x) through a Taylor expansion

{GF(%(J‘; J(x))) ]
800 (%;39(%,))

I=4J,

+%fdlefdzxz[ao(xl;‘]b(xl)) =00 (%5 (X )] [06 (%53 T5(%5)) =04 (%3, T 4(%5))]

62
[600(x1 5T (X)) 00, (%, 5 I(x,))

Flo(x; J(x)))]J A (3.3)

=a

If we choose both J, and J, to be independent of coordinate, this equation simplifies considerably to become

Floo,)) =PlooT,) +loothy) oott)] [ @ |

OF (o o(x; J(x))) }
80, (x5 J(x,)) 06 3 J @))=0g(d )

8%F (0 o(x; J(x)))

+%[G°(Jb)—o°(Ja)]2fdlefdzxz [50’0(961;J(x1))50'o(x2,J(X)):]oo(x:J(x))=oo(Ja)+“. ’ (3'4)

Here for space-time constant sources J we have introduced the notation

ao()=0,(0;J(0)) .

Equation (3.4) gives us the relation between functional differentiation and normal differentiation for

space-time independent sources

AF(a o)) _ [ 2. [OF(oy(x; (%))
Tdo ) f .

604 (x,;J(x,)) :]oo(x;J(x))=oo )

(3.5a)
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8%F (0 o(x; I(x)))

PF@I) _ [ 2 ;
doo(J) fdx‘fdxz[Goo(x,;J(xl))éqo(xz;J(xz)) ]00("7"(x))=00(h (3.5b)
or in general
d"F(c AF) _ [ o [ 2y [ OFlO;I@)) _ ‘
°(J) f 4 f e [ HﬁO‘O(xi,J(x‘)) ]co(x: 7 (x))=0y (N ) (3.5¢)

Before we analyze the o Green’s functions in terms
of these constant-source relations, it is of interest
to examine (3.1) for a constant source J. In that
case, using (2.29) we have for the stable solution®®
that

2
g = mo[ﬁ&iﬁi&’&_ﬂ] Gy . (3.6)
Mo
Introducing
2 .
Flmy) = G2 i trSon(¥, %) ’ 3.7)
Mo

(3.6) becomes
mo=mofmg) +GoJ (3.8a)

or

(3.8b)

GoJ
L=flmg) + 2

Explicit evaluation of f(m,) in the context of its
propagator definition is, of course, not meaningful
since we then see

f(mo)_ lNGo f dzp

pE-my +i€

2
= év—wco"’ 1n<—1”:—0%—-> . (3.9a)
Here A is introduced as a symmetric Euclidean
cutoff.’® That (3.92) is divergent should be no
surprise, since as mentioned in the preceding
section and as is apparent there, this divergence
is associated with the fermion mass renormali-
zation. Accordingly, f(m,) is not defined except
through a subtraction procedure. The remaining
finite part of f(m,) which is all that of interest is
then determined by Eq. (3.8). The cutoff form of
(3.9a) is, however, useful in that we can evaluate

0

5

r N
derivatives of f(m,) all of which are finite by dif-
ferentiating the right-hand side. The results that
we obtain are, of course, cutoff independent and
are identical to those obtained by just evaluating
finite integrals involving multiple fermion propa-
gators. Consequently, from (3.9a) and (3.7) we
find the following useful catalog of results:

d;[ngﬂio) =(=1)*(n = 1)! ___1\7_1C:__0_2__ mLo" , (3.9p)

so, for n=2

[—‘-i;‘:(—J)—] nGoi trSoo(x, %)= (‘a%lTy[Go"-lmof(mo)]

NGO

e ()™= ),

(3.10)

while for the épecial case n=1 using (3.8) we have

o (J) Goi trS, (x x) = —d—mof(mo)

N God -

=1- =G - (3.11)

0o

Now we may begin the actual evaluation of the
lowest-order ¢ -field Green’s functions at zero
momentum. We use (3.5¢) to find

dJ =f dzx bJ(x)
doo(Ji L 60 (%;J(xy)

=f dleDao'l(x, %)

=D,,(0),

where it is understood that the last equality is for
the propagator in momentum space. We use (3.12)
and (3.5¢) again to get the general relation

(3.12)

uo”(J aoy=) e [ s, ERCAEICA N

= f dle. o f dzx,,I"'*l(x, X1se .,x,,)=1'"‘”(0, Os e »On)’

Here we have introduced the usual amputated sin-
gle-particle irreducible vertices I'. It is under-
stood that the last term in this relation is written
in momentum space.!* We now generate a whole
string of zero-momentum constant-source iden-

Goo(x,,;J(x,,))

D ao-l(x’ %)

(3.13)

r
tities by differentiating (3.8a) with respect to o(J)
to obtain, using (3.10),

Y0, ...,0.)= Ll)—Nf?r——(n A (3.14)
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for n=2. In the special case n=1, using (3.11),

. NG GoJ
e (3.15)
which, for the case of final interest J=0, becomes
- NG,
D, }(0)= f° ) (3.16)

We thus see that the unrenormalized propagator at
zero momentum is not arbitrary, as might be an-
ticipated from the necessity of bound-state mass
renormalization pointed out in the preceding sec-
tion. Instead, we have found, because of the com-
posite-field nature of ¢ as expressed through the
gap equation (3.1), that the bound-state mass re-
normalization is determined in lowest order through
the mass renormalization of the fundamental Fermi
field ."® Inserting (3.16) into (2.32) and using
(2.31) it follows that '

- 2\ _ GOZN 4m2_q2 1/2
Do, (p%) = 2 ( —oq2 )
1+[-¢?/(4my’ - ¢*)]V?
Xln(l_[_qz/(4m(:)2_q§)]yz>
(3.17a)

In the region 0<¢®<4m/?, this is more familiarly
- G,SN -
Doo 1(pz ) = —OT-(4m02 _pz)[p2(4m02 _pZ)] 1/2

. pz /2

o (gbe)
which demonstrates that Do(p?) develops a bound-
state pole m ;? at threshold m ;2 =4m,2. As pointed
out in Sec. II the relevant quantity in the mean-field
expansion scheme is G,*D,(p*), Which is now seen
from (3.18) to be independent of G, except through
the implicit dependence of the lowest-order re-
normalized Fermi mass m,. From (3.18) we can
directly calculate the bound-state wave-function
renormalization at zero momentum to find

(3.17p)

- dDgo '1(1)2)} Go,°N
15_ =220 2 /7 = 0
z, [ | T Tom (3.18)

It is convenient to use this definition to write yet
another form of the propagator

Do M E?) = —F* +(Go’Z,)[N/m — i subl Z (%, m,)] .
(3.19)
Since to this lowest order the fermion propa-
gator is given by (2.24) it follows that Z,=1. Simi-
larly, the vertex function to this order has no
structure, and hence Z,=1. It follows, using (2.36)

J

n n+l
T Y(p,—p,) = ﬂ)_l"_f_g,_(n - 2)! ~GyisublF.T.
T,

and (3.18), that the lowest-order and dimensional
coupling constant is !

2 121m

gR N (3- 20)

Thus we see that the lowest-order renormalized
bound-state propagator as given by (3.19) depends
only onm,. Note that as anticipated the coupling
decreases as 1/N, so is small as N becomes large.
However, even if N is 1, we can obtain a small
expansion parameter by letting m 2 = fu®, where u
is a fixed massive parameter and £ is a variable
parameter which can be taken to be arbitrarily
small. This identification of parameter suggests
a re-expansion of our renormalized mean-field
results.

The vertex functions at zero momentum can now
be written in terms of renormalized quantities.
Defining in the usual way

r,=z,"’r, #>3), (3.21)
we see that (3.14) with (3.19) and (3.20) yields

= (-1)"N(n - 2)!
12.” (n+1)/2 1"02 R
= (24" - -2
( 2 > lo (L1 N -2)! . (3.22
Note that this formula leads to the relation
r,=-12g.2. (3.23)

Relations of exactly this type hold between the re-
normalized couplings of the four-dimensional an-
alog of this model despite its vastly more compli-
cated renormalization structure. This is because
these relations follow from constant-source iden-
tities.®

We can now easily derive a formula for the ver-
tex functions at arbitrary momentum. The deriv-
ation is similar to the constant-momentum deriv-
ation, but for completeness we provide the details.
First recall that

_ 8"J(x)
T Bay(xy)  boglx,)

so using (3.1) we find that

T Y x, %0 » %,) (3.24)

T, 200 0+ %)
5"
d0y(%y) e+ bo,(x,)

=—G,i trs%(x, x).

(3.25)

Transforming this to momentum space, subtract-
ing once, and using (3.14), it follows that

6’!

go(xy)**+ 8o4x,)

trS, (v, %). (3.26)
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Here, F.T. means Fourier transform. Using (3.21) this may be rewritten in the renormalized form

o (3.27)

grrao d ?mNn_ (2 —2)! - g™ i sub F.T.
V]

IV. EQUIVALENT MODELS WITH ELEMENTARY BOSONS

In this section we will demonstrate that there is
an infinite class of models with elementary bosons
which, with the appropriate choice of parameters,
result in renormalized Green’s functions identical
to those of the (¥4 )® model. This is an every-order
result in the mean-field expansion.

We begin this demonstration by considering the
two-space-time-dimensional Lagrangian density

£,=P(ivd —M —go) h+3 (,0)* +H()
+Jo +mp+Pn. (4.1)

It is understood that, as before, i has N compo-
nents and that H has a power-series expansion of
the form

H©) = i hyo" . " (4.2)

Note that Lagrangian (4.1) differs markedly from
(2.2) in that explicit kinetic terms are present for
the o field, which is consequently a true canonical
- field. It is easy to see that (4.1) is a super-re-
normalizable theory in a conventional coupling-
constant perturbation expansion. This Lagrangian
is also super-renormalizable in our mean-field
expansion.

The vacuum functional, as usual, is given by

Z°(ﬁ,n,J)=constXf [dn][d@][dzp]e‘fsadz".

Performing the integration over Fermi variables
we find

Z°(ﬁ,n,J)=const><f[do]e"Fo“”;"‘"”, (4.3)
where
Foo, im0 = [ d (% [o,0(®]? +H(0 (%)) +7(x) (x)
it S, )], -,
- f dzyﬁ(x),so(x,y)n@)).
(4.4)
The definition
So %, ¥)=[ivoy ~M - go(x)] 6%(x ~y) (4.5)

.has been made.
A mean-field expansion is performed as before

8 G0 %))+ * §Gooolx,)

trSoo(x, x).

r

by studying the expansion of
AE f [do]e(ile)Fo(c,'rf,n,J)

term by term in an asymptotic series in powers of
€, renormalizing, identifying a new small param-
eter, and then letting €e~1. The requirement (2.11)
that the expansion is made about an extremum for
this theory is

8% (%) = i nh,ay" (%)

n=2

=J(x) - gP P +ig tr S, (%, %). (4.6)

Here,

950 = [ @ 5, (% 9)n0) (4.72)
and

vew= [ ai0) S, 0,9 (4.7h)

When the sources are off, it is useful to intro-
duce the notation

Mp=M +go,. (4.8)

From (4.6) with the Fermi sources off, J constant,
and using (3.7), we obtain the gap equation for this
generalized Yukawa model,

-3 nh,,(—ﬁ%_—ﬂi)n-l - —Aglfg(MT). (4.9)
n=2

Here in complete analogy with (3.9a) we have

-_N A®
fg(MT)—-@-ﬂgzln<l+-M—-;2-)

_gitr ¢S, %) ]

i, (4.10)

As emphasized in Sec. III, equations of the form
(4.9) are meaningful only within the framework of
a subtraction procedure, so this equation in no
way sets the cutoff, but only determines the finite
part of f,(M,). We display the equation in this
form because its mass derivatives are finite and
cutoff independent, and serve to determine the
various zero-momentum Green’s functions of the
theory as in the preceding section. In particular,
Egs. (3.9b) and (3.10) are valid here if everywhere
mq, and G, occur we substitute M, and g. The an-
alog of (3.11) is



558 CAMPBELL, COOPER, GURALNIK, AND SNYDERMAN 19

d .
o) & tr,S, (x, x)

d

= d]WTMng(MT)
- z": nh, g (MT-—M)"'I_ g _Ng
& My g My T
(4.11)

Using Eq. (3.12) with (4.9), it follows that if as be--

fore the boson propagator is defined by Eq. (2.19)
then to lowest order we-have

8J Ngz

EANEN—
"~ (4.12)

Similarly, we can calculate the rest of the vertex
functions at zero momentum using (4.9) and (3.13)
to find

Do (0= EL

(=1)" (2 ~2)! Ng"”

Tpos(0,.., 0= =
= m) Mp=M \m""?
- m;lﬂ (m —n-1)! h"‘( g )
(4.13)
for n=2.

Using (2.19) again and proceeding as before, it
follows that the full lowest propagator is

-I(x ) gJ(Z;))

With the Fermi sources off, this is constant

(4.14)

Do, ()= (0% = Loln -1 ") 8 =)
- igz tr [ gsoo(x7 y) gsoo(yy x)] . (4-15)

Note that this equation is structurally nearly iden-
tical to (2.26). As we shall show, the differences
will become irrelevant in the appropriate limit.

In momentum space, (4.15) with J(x) constant is

D, k)= (—kz - i (n)n - l)hnoo"'2>

n=2

-giZ(F,My). (4.16)

(=1)"(r -2 Ng""? &

Here Z(k%, M) is defined by Eq. (2.28) and given
explicitly by (2.30) and (2.31). Using (4.12) it fol-
lows that

D, 8= - kz+z (2—iw——n)h,,(l”_zg_:1_”_)"'2

T

+g [T-isub‘l’z(k",MT] + e

(4.17)
Using
VA -1 _ _[ dD-l(kz)]
and (3.19), we now find for this model that
g £N
s Z3 1+ W . (4- 18)

With this the meson propagator (4.17) may be re-
written as

Doo-l(kz) =gZ3-lgDoo-1(k2) ’ (4-19)
where
N "2y = _32 2 N . 0(7,2
Do ) = B 2y P 2 [ i b )]

(4.20)

and we have introduced the convenient definition
= My-M
ul= n(Z— -n)h (-—T-—) .
}:2 Mz g
(4.21)

Similarly, the meson vertex funétions may be
examined with the sources off using

grn+1(x,x1. o xn)
6"
TN CARRE Goo(x,,)

- E (m i 2)‘ n (Mrg"M >m1

. o"
—8 8a4(xy) -+ - b0 y(x,)

J(x)

trgSUo(x, x), n=2.

(4.22)

In momentum space with one subtraction and using
(4.13) we then find

Ern+i(p1""’pn) M n-1 -

m=2

. 5"
- ig"* 1 subd F.T.

( m!kml)' (MT —M)m'n-l
wm—-n-—-1)

g

0g0,(x,) * + * 8goglx,)

tr gsoo(x, x). (4.23)



Now we are going to demonstrate the fact that to
this lowest order the renormalized Green’s func-
tions of the two dimensional (J)* model and the
generalized Yukawa model are identical for an
appropriate choice of the renormalization param-
eters. The first requirement for this to be so is
that

Ksco-l(x’ y)l J=n=n=0 =S°0'1(x,y)| J=m=n=o0*
From Egs. (4.8) and (2.29) it follows that
(4.24)

fulfills the requirement. This just says that we
choose the undetermined (because of renormali-
zation) lowest-order Fermi masses to be equal.
The requirement that the renormalized boson prop-
agators, as given by (4.20) and (3.19) be equal is
more restrictive. Using (3.20) it results in the
conditions

My =m,

127m

i (4.25)

82Z Gozs g2

and
u?,Z,=0. (4.26)

Using the definitions of , Z, as given by (4.18),
Eq. (4.25) becomes

g _12my?
1+gN/12tmy® N °

It is clear that this condition can hold only in the
limit

(4.27)

S, (4.28)
in which case it also follows'® that
1
:Z3=O (}r)"o. (4.29)

Equation (4.26) is automatically satisfied if (4.25)
is satisfied through (4.28) and if 7, is picked so
that

h,<g". (4.30)

Of course (4.26) can also be satisfied through com-
plicated cancellations among various terms. We
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have now matched the renormalized fermion and
boson propagators in lowest approximation. The
renormalized vertex functions are formed by us-
ing the analog of (3.21) on (4.23). If (4.30) is valid,
then we find that the extra terms in (4.23) do not
contribute and the renormalized vertices in this
Yukawa-type model are identical to those given
for the four-fermion model by Eq. (3.27). It is
straightforward to confirm, moreover, that to this
order all the renormalized Green’s functions are
identical for both models.

This observation is enough to demonstrate that
the Green’s functions to any order expressed in
terms of the lowest-order renormalized Green’s
functions (with the lowest-order renormalization
factors removed from external lines) are identical
in both models. This is because these any-order
Green’s functions are constructed in terms of the
mean-field approximation using the results of Sec.
II of this paper.. We have shown that the basic ver-
tex which occurs for any G, or as g— is only the
trilinear one and in either model it occurs in such
a way that it always has the weight g, as given by
Eq. (3.20).

We emphasize that these Green’s functions in
general need further renormalization according to
the prescriptions of this paper. They have been
renormalized only to lowest order since this is
adequate for the establishment of the identity of the
fully renormalized Green’s functions of the two
theories. Similarly, we have argued that, when
g=, 4230, where ,Z, is the lowest-order wave-
function renormalization. Because of the additive
nature of the contributions to , Z,"%, it should be
clear that in fact , Z; vanishes as g—« in any or-
der. This and related points having to do with the
exact Green’s-function equations of the theory will
be discussed elsewhere.
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_owW (2.4

7y OW W oW
I‘—W(J,n,n)—én n—n % —J(SJ .

11

is given by
= [ d®xd*y¥, () Sey 1 (2,9)0 ¢ (9)

2
—fdzxg % Nt ey x,9)] m;.

Differentiation of this expression generates all of the
vertex functions in the usual manner. The formulation
of the text and the effective-action formulation are
clearly entirely equivalent. We find the formalism
used in.the text somewhat simple for higher-order
analysis.
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elegantly for relating renormalized parameters to all
orders in this theory as well as the more complicated
case of the related theories in four dimensions, as is
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tained in D. Lurie and A. J. Macfarlane, Phys. Rev.
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this mechanism are contained in Ref. 1 and 9. A recent
discussion of Z3=0 in the context of models of the type
we are examining is alsc contained in Ken-ichi
Shizuya, University of Tokyo report (unpublished).

1 care is not taken, it is very easy to fall into an in-
teresting trap by insisting that the renormalized pro-
pagators of both models coincide. To arrange for this
trap we write Eq. (3.17) in the form

Doy H(ph) == GtiA (p).
We may expand this expression about an arbitrary sub-

traction mass #)? with 0< u)?< 4m,? to find

- —— 2 -
Doy~ 1(pY) = 257Dy (pY) = m%{’(ﬁ)

— 1A (u4%) 2., 3
"By +(=p +ug)
i 2

- E}i?) sub%0°A(p2).
Similarly, for the Yukawa-type model it is easy to find

- _ 2 .
Doy 10D =,2% (Do ' (p?)
1 -10,2
= T4g%Buy) P )
u~un2—g2iA (uy?)
1+g°Blug)

+ (=pPugd)

2 .

——f—— sub¥0’4 p?
T+giB(ugy S0P 4 0.
In the above,

Ts
B(uoz)sll:apz AM] ot

It is of course natural to choose the subtraction point
to be at the “bound-state” mass 4my?, in which case
A(4m02)=0, and the condition that the two renormalized
propagators have the same mass “pole” is

uuz—uz

— = 5=0
14+g°B(u*)
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Obviously if u%=u,?, this condition is met. If we exa-
mine a ¢g-type model, where in Eq. (4.1) we insert

H(o)=-5(c? =A%,
the condition z?=u? requires that A=2g2, Thus the
bare Yukawa parameters appear to be related by the
condition that the ¢ propagators have a pole at the
same location as the four-fermion model. However,
this condition is excessively restrictive since in fact
the total equality of the propagators requires that
£ 1
1+g°B(amy?) B{Amg?)’

which can be satisfied only for g*—w or ,Z4{™’—0,

as was equivalently shown in the text with the sub-
traction point at zero. g2—> o automatically guaran-
tees that the “poles” of the renormalized propagators
in the two different models coincide without any fur-
ther restrictions on the bare couplings. The condition
A=2 g2 was originally derived for comparison of the ¢
model to four-fermion interactions evaluated in the
mean-field approximation in four dimensions. In four
dimensions the Z3— 0 type argument given as above is
very heuristic since B(4m?) is divergent, but even in
this case any restriction on bare parameters is incorr-
ect. This will be discussed in detail elsewhere.



