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%'e study the canonical quantization of non-Abelian gauge fields in the temporal gauge. AO ..——.0. We impose
the constraint condition of Gauss s law by performing a point transformation into any of a large class of
noncovariant gauges. The Faddeev and Popov operator arises naturally in this procedure; indeed, we. prove
the equivalence of all gauges in. this class. We discuss the nonexistence of some simple gauges and show how
topological considerations reduce the-theory to quantum mechanics on an infinite-dimensional periodic
hypersurface.

I. INTRODUCTION

The quantum mechanics of gauge fields involves
physically irrelevant variables. Indeed, to local. ly
formulate a gauge theory one must introduce po-
tentials carrying a gauge ambiguity. ' Elimination
of these extra degrees of freedom normally pro-
ceeds in two steps; first some particular gauge
is selected and then the time component of the
gauge field is eliminated as a nonlocal dependent
variable. In such a manner the four-component
vector potential of quantum electrodynamics re-
duces to two independent fields corresponding to
the two polarizations of physical photons.

In recent years path integrals have become the
primary formalism for the discussion of quantum
field theory. This procedure has many advantages,
such as in the derivation of Feynman rules,
proof of Ward-Takahashi identities, and study
of nonperturbative phenomena. In this language,
a gauge-fixing procedure eliminates degrees of
freedom corresponding to the orbits of the field
under gauge transformations. The action is
constant over these orbits; consequently, one
obtains a factor proportional to the volume of the
gauge group at each space-time point. Faddeev
and Popov' have shown how physical amplitudes-
are independent of the particular gauge choice.
Their ansatz is then justified by demonstrating
the equivalence with canonical quantization in
some simple gauge. '

From the viewpoint of canonical quantization,
equivalence of different gauges is more obscure.
Indeed, the Hilbert space structure can depend
on the gauge choice; for example, an indefinite-
metric space is often used with covariant gauges
in quantum el.ectrodynamics. In this paper we
present a systematic canonical treatment of
non-Abelian gauge fields. Our basic starting point
is the temporal gauge, where the time component
of the vector potential is set to zero. 4 This

gauge is clearly peculiar in that eliminating the
time component with the gauge constraint pre-
cludes its elimination again as a dependent vari-
able. In consequence, this gauge choice is in-
complete and leaves unphysical variables assoc-
iated with the remaining gauge freedom. Imposing
Gauss's law as a constraint condition on physical
states serves to eliminate these unwanted degrees
of freedom. In previous. publications we have
discussed the mechanics of this gauge for con-
ventional. quantum el.ectrodynamics' and for the
Higgs mechanism of mass generation. '

This paper treats non-Abelian gauge fields by
eliminating the gauge variables as ignorable
coordinates. We accomplish this by a point
transformation into any of a large class of non-
covariant gauges; indeed, we show that all
gauges in this class are equivalent. This pro-
cedure complements and extends the classic
work of Faddeev' on singular Lagrangians. Using
a similar procedure, Gervais and Bakita' have
emphasized the analogy to the collective coordinate
method of treating the quantum mechanics of
solitons. ' Some of the new variables introduced
are conjugate to the generators of the remaining
gauge symmetry of the Hamiltonian, just as the
collective "position" of a soliton is conjugate to
the generator of translation symmetry.

Using this formalism we discuss certain re.-
cently discovered nonperturbative phenomena.
In particular, the ambiguities of the Coulomb
gauge pointed out by Gribov' are related to cer-
tain technical difficulties with our canonical
transformation. We also discuss gauge-fixing
difficulties related to the well-known tunneling
phenomena associated with pseudoparticle solu-
tions to the classical Euclidean theory. " We
resolve these difficulties by formulating the field
theory on an infinite-dimensional periodic hyper-
surface.

Throughout this paper we work with pure non-
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Abelian gauge fields. The introduction of further
sources should be straightforward. Although we
hope that a thorough understanding of the struc-
ture of these theories will shed some light on the
mechanism of quark confinement, we make no
comments on this phenomenon. We also ignore
ultraviolet difficulties. associated with the def-
inition of a continuum field theory; our assumption
is that the global properties of the theory do not
depend on short-distance effects." In particular
we ignore the necessity of normal ordering of
products of fields at the same space-time point,
even for the free theory.

The plan of this paper is as follows. In Sec. II
we review the basic features of quantization in
the temporal gauge. Section III introduces a
compact notation that simplifies formul. as in
later sections. We introduce in Sec. IV the
change of coordinates that separates out the
ignorable gauge degrees of freedom. In Sec. V
we show the nonexistence of a generalized Coulomb
gauge and a hypothetical "orthogonal" gauge.
The role of topology is discussed in Sec. VI.
Finally in Sec. VII we conclude with some un-
answered questions.

and

(2.7)

This Lagrangian density is invariant under an
arbitrary gauge transformation

(2.8)

where g specifies a mapping of space-time into
the fundamental representation of the group. In
the vector notation, the potential transforms
under the adjoint representation of the group as

(2.9)

g(x, t) =exp[is)'(x, t)A. ],
then the adjoint representation of g is

ft'~(g) =[exp(iuPT')] ~,

where

(2.10)

(2.11)

where C is the quadratic Casimir invariant of the
adjoint representation, C5 ~ f "'f~ "~. If we
parameterize the gauge transformation according
to

pa)lr falp (2.12)

II. REVIEW OF THE TEMPORAL GAUGE

We will assume that the gauge group is some
connected non-Abelian unitary group. The La-
grangian is

(2.1)

The field strength transforms as

in the matrix notation and

(2.13)

(2.14)

where

(2.2)

in the vector notation. As usual, if the field p&

carries a given representation of the group, then
we can define its covariant derivative

The index n is a group index which runs from one
to the dimension of the group [N' —1 for SU(A)], e
is the coupling constant of the theory, and f ~"

are the structure constants,

(2.3)

where the Hermitian matrices A. generate the
fundamental representation of the group, nor-
malized according to

(D„Q)~ =8„$&+ieA„v&&Q&, (2.15)

where v;z generate that representation.
We go to the temporal gauge A., =0 and consider

a fixed, time, so that time dependence is sup-
pressed. The dynamical variables are the space
components of the gauge potential A~, and their
conjugate momenta are the space components
of the electric field,

Tr(h. A, ~) = ~5 ~, (2 4) II)" =E~] =Eg, (2.16)
[For SU(2), f "=e "and X =-,'o'".] It is some-
times useful to work in a matrix notation, so that

A„=2Tr(A„A™),E„„=2Tr(E„„A.).

We can write the Hamiltonian density as
1 N a 1 aiX= gE] E; + gE)~E;~.

We impose canonical equal-time commutation re-
lations

In this notation we have [Eg (x),Aj~(y)]= i5,~5 ~5'(x-y)- (2.18)

E„„=&„Ap- &„A~+i e[A„,A„] (2.6) and obtain the equations of motion by commuting
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the canonical variables with the Hamiltonian,
jd'xX =a,

0 (2.19)

where we have used the definition of the covariant
derivative in the adjoint representation. Note
that since Gauss's law (D&E~) =0 does not involve
time derivatives, it cannot be obtained as one
of Hamilton's equations of motion. It does follow
that

which approach the identity at spatial infinity.
Our only justification for this restriction is that
microscopic physics should not depend on con-
ditions imposed at infinity. . In a previous pub-
lication, "a discussion was given of gauge trans-
formations which do not satisfy this boundary
coridition. The symmetry properties of physical
states under such transformations were related
to the question of confinement. With the above
restriction, however, the gauge transformations
can be divided into a set of equivalence classes
labeled by the integer winding number"

~0(D«~) =0~ (2.20)

so that we are allowed to diagorialize simulta-
neously the Gauss's law operator and the Hamil-
tonian. Thus we would like to impose Gauss's
law as a constraint on the physical states

(Di&~) lk& =o. (2.21)

We are met by the probl. em that the spectrum of
the Gauss's law operator is continuous and hence
its eigenstates are not normalizable. This dif-
ficulty was resolved in the Abel. ian case by taking
an appropriate limit on states where V ~ E is
smeared about zero. '" For the non-Abelian
theory, Goldstone and Jackiw" have managed
to satisfy the Gauss's law constraints, but their
technique obscures any perturbative expansion.
We will impose this constraint in a manner con-
sistent with a perturbative treatment by analyzing
the remaining gauge invariance of the theory.

Imposition of the temporal gauge condition
A., = 0 leaves the residual freedom to perform
time-independent gauge transformations,

A, (x)-A~(x) =g(x)A;(x)g '(x)

~gk" g ~ag 8

In SU(2) gauge theory any winding number can be
reached by taking the appropriate power of the
unit-winding-number transformation

g(x) = exp[ -vi (r x-/(x'+ p')"]. (2.2V)

Discussions of the embedding of SU(2) into larger
groups and the topol. ogy of larger groups have been
given in several papers. "

If the gauge transformation belongs to the class
n =0, so that is can be continuously connected
to the identity, then a partial integration can be
performed in Eq. (2.24) to give

(2.28)

(2.26)

The equivalence relation is one of homotopy:
Two mappings g, (x) and g, (x) are homotopic if
there exists a function g(x, s) continuous in s such
thatg(x, 0) =g, (x) andg(x, 1) =g,(x) and

+ —(sg(x))g '(x). (2.22)

m,.U-' =W', .
It is not difficult to show" that

(2.23)

This transformation is implemented by a unitary
operator U,

Thus the statement that a physical state obeys
Gauss's l.aw is equivalent to saying that the state
is invariant under time-independent gauge trans-
formations of the class n = O. We will return in
Sec. VI to discuss further the nontrivial. winding
numbers.

U=exp —— d'xE~ D&~ (2.24)
III. COMPACT NOTATION

where we have made the formal definition

(2.25)

Here &a& parametrizes g as in Eg. (2.10).
We will assume that we can compactify space

so that the gauge potentials are defined on 8'.
This implies that A; (x) obeys the boundary con-
dition that it falls to zero faster than 1/(x~ as
[x(—~. The class of allowed time-independent
gauge transformations is thus restricted to those

The field A~ (x) is a function of a space index i,
an isospin index e, and a pos ition in space x.
Expl. icitly displaying all these dependences quickly
makes the formulas of the next section unman-
ageable; consequently, we introduce a compact
notation reducing AP(x) to simply A„depending
on a single index i. One may either regard this
index as a shorthand for the full dependence of
AP(x), or one can imagine Aq as a coefficient in
an expansion of A~ (x) in some complete set of
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functions of i, a, and x. Treating the electric
field similarly, we thus begin our formalism with
conjugate Hermitian variables A.~ and E~ satisfy-
1ng

[E) Ai] = i5 (3.1)

g = exp(i A. e ) . (3.2)

Here the index n symbolizes both a group index
and a space position. The gauge group generators

satisfy

P. , ~'] =if""~"

and are normalized

Try. X') =-,'5".

(3.3)

(3.4)

Although these equations look like Eqs. (2.3)
and (2.4), they actually differ in that 6 functions
in the implied space coordinates have been ab-
sorbed in the definitions of f'«" and 5 «. The
structure constants f ~ remain totally antisym-
metric in their indices.

We write the action of a time-independent gauge
transformation as

A.;- (A.'); = R(g)A, +A;(g),
E)- (E')g =R;q(g)&q.

(3.5)

(3.6)

Although one is usually interested in the adjoint
representation, we only require that R&(g) be
some nontrivial real unitary irreducible repre-
sentation of the gauge group; consequently, we
have

R*.~(g)Ri«(g') =R «(gg')

R;q(I) =5;, ,

(3.7)

(3 8)

where I is the identity element. We let 7;; denote
the generators of this representation

A space-dependent group element characterizing
a time-independent gauge transformation is de-
noted simply by

Note that setting g' to the identity 1 gives

A;(I) =0. (3.13)

Although we have not required R&&(g) to be the
adjoint representation, we will have need for the
latter. Thus we define

S'(g) =2Tr(g '~ g~'). (3.14)

This real unitary representation of the gauge
group is generated by the structure constants

S «(exp(iA. ' &u")) =(exp(f'~")$ ~,

(fr~al f~ox

(3.15)

(3.16)

The derivative operator in our compact nota-
tion can be introduced using the inhomogeneous
term A, (g) for infinitesimal group rotations. We
define

A, (1+iX d(u™)= -&,d(o" .e a & e
e (3.17)

Here e is the coupling constant of the theory.
From Eq. (2.8) this can be shown to correspond
to ordinary differentiation. We will also need the
concept of covariant derivative which we intro-
duce through an infinitesimal gauge transformation
on A.]

(A
"'""" ') A, + -Dg" (A)der'. (3.18)

From Eqs. (3.5), (3.9), and (3.17) one can readily
verify

D)"(A. ) = V; +i eTg~r4) . (3.19)

D'(A') =R;g(g5" (g)Dg (&) (3.20)

We also prove in Appendix A an identity that will
be useful later

In conventional notation this corresponds to Eq.
(2.15). ln Appendix A we show the simple be-
havi. or of D& under an arbitrary gauge transforma-
tion

R;;(exp(iX &u ))=(exp(iT co ));&. (3.9)
D( T)) -D; T() -if D)"=0, (3.21)

The antisymmetric, Hermitian matrices T;;
satisfy

[T,T'] =if""T",
(T T ),q=C5, ),

(3.10)

where C is the quadratic Casimir operator of the
representation. The inhomogeneous term A;(g)
in Eq. (3.5) has group combination properties
determined by requiring

II = 2E)E)+V(A). (3.22)

Here the potentiai energy V(A) is invariant under
the gauge transformation in Eq. (3.5).

IV. A POINT TRANSFORMATION

We close this section by writing the Hamiltonian
in this compact notation

[(&')"];= (&' '4 .
This implies

A~(g'g) =R~~(g')A~(g)+A&(g')

(3.11)

(3.12)

We now wish to change from the variables A~ to
a new set of coordinates that explicitly separate
out the gauge degrees of freedom. This respre-
sents a generalization of ordinary polar vari-
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(4.1)

ables for a system with spherical symmetry.
We begin by writing

A*. =(A'). =«g(g)Ag+ Ji{(i)~

The quantities A and g, which represent our new
coordinates, need to be constrained in order to
avoid having too many degrees of freedom. For
now we assume that we have a set of functions
E (A) vanishing once on the orbit of any A~ under
gauge transformations. Later when we discuss
the topology of the gauge group, we will see that
this assumption must be relaxed slightly. We
now fix A& by requiring

dA~ dykey

i

We wil. l show that this determines II~ and l
uniquely if we al.so impose

(4 9)

P &O& =rr&. (4.10)

The operator II& generates shiNs in the field A.
&

while maintaining the constraint E (A) =0, and
'the operator l generates gauge transformations.

To calculate the coefficients in Eq. (4.9) we use
Eqs. (4.1) and (3.18) to relate an infinitesimal
change in A.

&
to the changes in A& andg,

F (A) =0. (4.2) ] IdA, =R,)(i){fAq+ D, (A-)dieu
e (4.1.1)

As there is one such constraint for every genera-
tor of the gauge group, the variables A.

&
and g

now carry the same number of degrees of freedom
as the original fields Aq. As an example, the use
of E"(A) = V(A, in the following formalism re-
lates the temporal gauge to the conventional
Coulomb gauge.

The concepts of "left" differentiation of g and
of a projection operator onto the surface E = 0
will aid the introduction of momentum variables
conjugate to A and i. Under an infinitesimal shift
A&-A;+dA&, the corresponding change in g gives
the left differential d&e with the formula

dA)R(q(i)Ej' = -F)D(S"k(g)d~&ar".
e (4.13)

Defining the Faddeev-Popov matrix

&"' = E~'(A)D~(A) (4.14)

Using Eq. (3.20) this can be rewritten

dAg {{g,{{{=)(dk,+ —s"'{g)D,'{iI)d~~'). {4.12)

We now use the fact that E&, the 'normals to the
gauge-fixing surface, are orthogonal to the change
in A; that is, E, dA, =0. This gives

g- [I x+(d~(a)) A. ]g. (4.3) we obtain

A similarly defined "right" differential would be
related to this by an element of the adjoint repre-
sentation. We now construct a projection operator
from the normals to the surface E =0,

= eR~~(g)S"(g)(& ')'"F~ (4.15)

Finally we use this to eliminate dL, u from Eq.
(4.12) with the result

~N ~O
9g

Using the matrix

(4.4)
dA' =R~k(i)[6k& —Dg (A)(& ')'Fk]

R{k(i)@kj' (4.16}
M =F( Fj, (4 8)

Here Q is a nonsymmetric projection operator
we express the required projection operator as

Q&g =~sg-Dg(A)(& ') 'E~8) =@ k@kg. (4.17)
. Pg) =5;~-Fg"(M i) E~ .

This object has the properties

(4.6) Products of Q with our earlier projection operator
P are particularly simple,

P$j Pgg PfpPy j (4.7) (4.18)

For an infinitesimaI. change dA~ lying in the sur-
face E = 0 we have

P„dA, =dA, . (4.8)

The quantity P~& generalizes the transverse 5
function used in the conventional canonical treat-
ment of the Coulomb gauge.

Motivated by the chain rule for ordinary dif-
ferentiation, we define operators II& conjugate
to A. ~ and l conjugate to g via the equation

Geometrically, Q projects onto planes perpen-
dicular to the gauge orbits, but it makes this
projection along lines perpendicular to the surface
E=0. This action is sketched in Fig. l.

With this bit of tedious al.gebra out of the way,
we can return to Eq. (4.9) which now becomes

F,, =Rg~(g)[g~kllk+ eS'k(g)(fV ')~"E~l"]. (4.19)

Using the fact that Q projects onto planes per-



536 MICHAEL CREUTZ, I. J. MUZINICH, AND THOMAS N. TUDRON 19

mitian. Indeed, from Eq. (4.21) one can readily
verify that

n) —n) —— ip-)),Q), . (4.24)

FIG. 1. The action of the projection operators P and
on the displacement dA from the pointA on the gauge-

fixing surface E(A) = 0 is indicated: a =A +PdA lies on
the surface; b =A+ {1-P)dA; c=A+QdA lies on the
plane normal to the gauge orbit through A; d =A + (1
—Q)dA.

a- n'q'qn+ v(A) . (4.25)

For comparison with more standard treatments, "
we can break Qn into parts "longitudinal" and
"transverse" with respect to I'. Using Eqs.
(4.18) and (4.10) gives

For a flat gauge, which includes most gauges used
in practice, II& wil1. be Hermitian. The Hermitic-
ity of l is readily verified from Eg. (4.20) using
the antisymmetry of the T&& occurring in D&.

We now wish to express the Hamiltonian in
these new variables. Because of the invariance
under gauge transformations, the Hamiltonian
is independent of g. As discussed in Sec. II, we
wish to impose Gauss's law as a constraint on

physical states. This enables us to eliminate l
from H in matrix elements between such states.
Restricting ourselves to the physical subspace,
the Hamiltonian becomes

pendicuI. ar to the orbits, we easily extract l as qn =E'+E',
E'=pqn =n,

(4.26)

(4.27a)
l = -D( (A)E;,e (4.20) E'=(1-p)qn =(q —i)n = p', (x ')"D, rl, .

[n„Aq] =-ip...
[l,gj = A."g,

[l,A)j =[/, n)] =0,

[A),gj =[II„g]=0,

[I ls] =if s"I"

[n' n '] (P'IPjk, I PJIPik. l)nk

where

(4.22a)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

(4.22f)

(4.23)

Note that the nonvanishing of the right-hand side
of Eq. (4.22f) is a measure of the curvature of the
surface I =0. For a flat surface, "such as the
Coulomb gauge, this commutator will vanish.

Being defined in terms of objects that do not
commv'. e, the operator IIq is not in general Her-

showing explicitly that Gauss's law generates
gauge transformations. The projector P can be
used to extract II; from E; this gives

ni =P~g(A)ftgk(g ')E, (4.21)

Using these relations along with the canonical
commutator of Eg. (3.1), one can obtain the full
set of commutation relations among the new
variables

(4.27b)

From Egs. (4.27a) and (4.27b) it is obvious that
E and E are orthogonal components of the mo-
menta. Therefore, the Hamiltonian of Eg. (4.25)
can be rewritten in a more familiar form

a = —,'(E')'E'+ —,'(E')'E'+ V(A),

where

E' =D~(fi-')" P'n

(4.28)

(4.29)

The term (E )~E generalizes the usual instantaneous
interaction familiar from Coulomb gauge where
Q) =V) and A =V]Dg.

To summarize this section, we have reexpressed
H(E;, A;) as a function of our new variables Aq,

g&, l, and II;. Because of gauge invariance and
Gauss's law, we are left with a Hamiltonian only
depending on the conjugate coordinates A.

&
and IIq.

This reproduces the canonical treatment in the
gauge E (A) =0. As a by-product the Faddeev-
Popov operator A emerges in a canonical way
for this large class of noncovariant gauges. Note,
however, that we have not included covariant
gauges. This would be more complicated and
would involve use of an unphysical space with an
indefinite metric; we leave this problem open
for the present time. Throughout this section
we have assumed that an appropriate surface
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F"(A.) = 0 exists; in the remaining sections of
this paper we discuss certain limitations on this
assumption.

D» (A}=M F»+I» F (5 1)

V. NONEXISTENCE OF SOME SIMPLE GAUGES

Since the shape of the orbits in field space is
determined by the structure of the theory, one
might think that it is possible to define a "nat-
ural" gauge by demanding that the orbits inter-
sect the surface F (A) =0 ortho. gonally every-
where. In this case, the gauge structure of the
theory would uniquely define the gauge-fixing
condition. Indeed one can show that this ortho-
gonal set of coordinates cannot be achieved even
in some small neighborhood of the classical vac-
uum field if the gauge group is non-Abelian. As-
sume, to the contrary, that such a choice were
possible. Then in this neighborhood the projec-
tion operators P and»»» of E»ls. (4.6) and (4.17) of
the previous section would be identical. In order
for this to be true there would have to exist a
linear relation between D, (A) and F~»(A),

when full indices are restored. Thus E»l. (5.4}
implies that f ~" =0, i.e., the group is Abelian.
Indeed, in the Abelian gauge theory, the usual
Coulomb condition V A =0 is orthogonal to the
orbits under gauge transformation.

In a non-Abelian theory the Coulomb condition
specifies a flat surface which at 4& = 0 is ortho-
gonal to the orbit through that point. The above
result says that, away from A& =0, gauge orbits
must intersect this surface in a non-orthogonal
manner. Indeed, Gribov has shown that sufficient-
ly far from the classiCal vacuum orbit, there
exist orbits tangent to the Coulomb surface. We
now prove an extensionof this result due to
Singer, "that there are tangent orbits to any
generalized Coulomb surface. By a generalized
Coulomb surface we mean a flat surface through
some point X& and orthogonal. to the gauge orbit
through that point, i.e., orthogonal to D, (X}. A
gauge function giving this surface is F"(A)
=D, (X}(A,-X,). The point X, +Ax», w,here A. is a
real number, will lie in this surface if D» (X)7, = 0
for all u. Since D; @+AY) is a vector in the di-
rection of the orbit through A+~7, what we want
to show is that

(5.2)

where M and L in general depend on A.. Since
this equality holds within a finite region, we can
differentiate this relationship with respect to
A.&, and project onto the surface to obtain

» e(PT P};»= P»», M ~F»,»P»»,

M =D» (A)D(~(71 +Ar).
has a zero eigenvalue for some ~. Using Eq.
(3.19) we expand M

M =D» (A)D»(X) +i eAD» (X)T»»7'» .

(5.6)

(5.V)

where

y 8 8

We now show that M is a Hermitian operator.
Indeed, the anti-Hermitian part of M is

(M -M ) =i,(D, T», q» -D»T»»r») . (5.8)

Now the left-hand side of this equation is anti-
symmetric under i j while the right-hand side
is symmetric. Thus

(PT'P)», =0 (5.3)

ff» j(g)femme(t)S 5JATA»5»m (5.4)

where g is the gauge transformation that takes A.

to A. =0 and the. transverse 5 function is

.for all points on the surface. Consider the point
A

A gauge equival. ent to the classical. vacuum A, =0.
Here E»l. (5.3) implies

Using E»I. (3.21) and D, r» =0, we see that this
vanishes and M ~ is Hermitian. Therefore its
eigenvalues are real. At ~=0, M is positive
definite while for ~ sufficiently far from zero,
it cannot remain so if D& T&&v& does not vanish.
By continuity there must exist an intermediate
X where M ~ has a zero eigenvalue. At this point
the gauge orbit is tangent to the gauge-fixing
plane.

To complete the proof we show in Appendix 8
that there always exists a v& such that D& T]
vanishes while D& T&&7& does not.

~r V~ 1 P~»=~»»-&»
(~ )»&».V~V~)

In E»l. (5.4) we understand that

&» - 6 &»63(x -y)

and

Tfg- 6'(x —y)5'(x —z)6,»f'~",

(5.5) VI. TOPOLOGY AND THE TEMPORAL GAUGE

We now show how the nontrivial topology of the
gauge orbits forces an interesting structure upon
the gauge-fixing surface F"=0. As discussed in
Sec. II we assume boundary conditions restricting
allowed gauge transformations to those going to
the identity at spatial infinity. This discussion
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does not apply to gauge conditions such as the
axial gauge where surface variables are impor-
tant. ' We thus have a set of gauge transforma-
tions that is not connected; they divide into
homotopy classes labeled by integers such as the
winding number in Eq. (2.26). In consequence,
the orbit of any partieul. ar gauge field is actually
made up of a countably infinite number of dis-
connected pieces."

Assume that a surface E = 0 has been chosen
such that A» and g are continuous nonsingular
functions of A&. Since the space of allowed gauge
fields is simply connected, g must always lie in
the same homotopy class which, for simplicity,
we may take to be the trivial class. This im-
mediately implies that the gauge fixing surface
must intersect all the separate disconnected
pieces of every gauge orbit. In particular, for
every A.

& lying on this surface, there must exist
a gauge transformation g„with unit winding
number as defined in Eq. (2.26) that leaves one
on this surface. In equations we have

(6.1)

This topological result, as stressed by Singer, "
implies that no gauge-fixing function E can only
pick a single A on every orbit.

That any gauge surface uniquely determines a
g, for every A is a rather strong requirement.
In particular, it precludes any gauge fixing which
is invariant under ordinary space translation
because no topologically nontrivial g, can be
translationally invariant. ' This is another way
of seeing that difficulties must occur with the
Coulomb gauge.

Although g, is in general a function of A. , by
deformation of the surface it should be possible
to have g, be some fixed unit-winding-number
transformation. In this case we can iterate Eq,
(6.1) to obtain for every A on the surface,

As has been extensively discussed elsewhere, "our
Hilbert space breaks up into sectors labeled by
the parameter 6), while gauge-invariant operators
have vanishing matrix elements between different
sectors.

The potential V(A) in the Hamiltonian of Eq.
(4.25) is minimum wherever the gauge surface
intersects the orbit of fields gauge equivalent
to 4~ =0. This countable infinity of intersections
represents the set of classical. vacuum states.
In a semiclassical picture the quantum system
will tunnel between these classical. vacuums. As
discussed in Ref. 22 the most probable tunneling
path is given by the pseudoparticle solutions of
Ref. 11.

VII. REMAINING QUESTIONS

Working via the temporal gauge A, =0 we have
related a large class of eanonieal gauges. These
gauges are determined by the vanishing of a func-
tion E'(A) which depends only on the space com-
ponents of the gauge field. It would be interesting
to extend this formalism to include gauge con-
ditions depending as well on the time component
of A. defined by

0 = ~egge '

Such a condition involves time derivatives of the
coordinates g and thus the corresponding canon-
ical transformation is not a simple change of
coordinates. The Lorentz gauge ~„A„=0 would
be even more complicated as the gauge condition
involves second time derivatives of the coordi-
nates g.

Gol.dstone and Jaekiw'4 have investigated a
transformation among the momenta by writing

(6.2) +a
Q) -E& (7.2)

»»»II- U»»»IIU =R(g»)I»»II,

UAU ' =R(g, )A+A(g, ),

(6.3)

(6.4)

where U is the operator of Eq. (2.24) with the
appropriate co . This unitary operator ean be
simultaneously diagonalized with the Hamiltonian,
giving eigenvalues which are phases

(6.5)

where g, is taken to an integer power n. Remem-
bering that the Hamiltonian is gauge invariant, we
see that the theory possesses a periodicity on the
surface E =0. The discrete symmetry associated
with this periodicity is

This approach also allows the elimination of
ignorable coordinates corresponding to the gauge
symmetry of the theory. Since the transformation
is on the momentum variables, the complexity
of the problem is shifted to the potential-energy
term in Eq. (3.22). Also the lack of an inhomo-
geneous term in the gauge transformation of the
electric fields makes constraints on E more
complicated to handle.

It would be interesting to have a construction of
a gauge surface with the properties discussed in
Sec. VI. Indeed, without such an expl. ieit example
one might worry that such a surface may not exist
for reas ons that we have missed.
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Df(A~) = V; +i eT„(R)~A~+Aq) . (Al)

APPENDIX A

Here we derive the simple behavior of Dq (A)
under gauge transformations. From Eqs. (3.19)
and (3.5) we have

APPENDIX 8

Theorem: There does not exist an A~ such that
D; (X)7; =0 for all o. implies D& (X)T&&7; =0 for
all o. and P.

Proof: Assuming that the theorem is false, we
iterate to obtain

Properties of the adjoint representation imply
DP(X)ft;g(g ')7g =0 (81)

&~g&ya =«)S (A2)

A;[(I+iA, 5 )g] =A)(g)

+ iT]~A~ g +-Vg 6

=A&(g[1+i5"S (g)& ]]

=«(g)+ ,&~~(—g)~~S "(g)& (A3}

Thus we have
~ I 0 ag PzeTg)A) =-Vg +g]~S

Inserting an infinitesimal g in Eq. (3.12}gives

D; (X')7, =0. (82)

Thus every v orthogonal. to the orbit at X is or-
thogonal to the orbit everywhere. We conclude
that the orbit of A must be straight, i.e., all
gauge fields of the form

A.; =Xi+It Dg (A) (83)

lie on the gauge orbit of X&. However, the in-
variance of D&D& over the orbit implies

for arbitrary g and 7 satisfying D, (X)7, =0. Using
the gauge transformation properties of D;, we
obtain

Inserting Eqs. (A4) and (A2) into (Al) gives the
desired result [Eq. (3.20)]

D,'(A') =&;g(g)S"(g)Dg(A) .
If we now consider infinitesimal g in Eq. (A4)
we obtain

0 = —
~ D",(A)D", (A)

=2e'D; (X)Tf,T~, DI,(A)

=2e CD) (A)Dg~(X), (84)

geTI glTIM iy &Ital' 0

To obtain Eq. (3.21) from this, just add Eq.
(3.10) multiplied by a factor of A.

(A5)
where C is the quadratic Casimir operator of
Eq. (3.10). Since the right-hand side of Eq. (84)
does not vanish, we have proven the theorem by
contradiction.
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