
VOLUME 19, N UMBER 2

Field-strength and dual variable formulations of gauge theory

M. B. Ha, lpern
Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 8 September 1978)

Using completely fixed axial-like gauges, I construct the unique inversion A(F) for the potential A in

terms of the field strength F. A change of variable to. F results in a field-strength formulation of gauge

theory. F is constrained to satisfy the Bianchi "identities" BF —eA(F)F = 0. Dual potentials A may also

be introduced as functional Fourier conjugates to the Bianchi forms. For quantum electrodynamics in four

dimensions, duality (F~F, A ~A) is a perfect symmetry. However, residuals of the symmetry persist in

all theories: E.g. , Gauss's law is an identity; A is canonical to the magnetic fields, and closely related to 't
Hooft's disorder operators.

I. INTRODUCTION

I et A be a, generic potential for a generic gauge
theory, and F(A) its field strength. It is general-
ly believed that the inversion A(F) must be non-
unique: For Abelian theories there is the certain-
ty of gauge ambiguity, and for non-Abelian theor-
ies there is the problem of field-strength copies'
(sets of gauge-inequivalent potentials with the
same field strength).

However, in a recent publication, ' I noted that
fieM-strength copy is not a gauge-invariant con-
cept, and I proved that there are no such copies
in completely fixed axial gauges. ' Such gauge
choice resolves the Abelian ambiguity as weil, of
course, and so in these gauges A(E) i s unique for
a/l gauge

theories.

I recently announced the explicit construction of
the inversion A(E) in a letter, ' along with a brief
discussion of some immediate applications: un-
ambiguous reformulations of gauge theory in
terms of field-strength and/or dual variables.
The development is uniform for any number of di-
mensions and arbitrary gauge group. The purpose
of this paper is to provide further details and dis-
cussion of the reformulations.

The basic idea is as follows: (1) Obtain the
unique inversion A(E), with the constraint on al-
lowed F's, &E-eA(E)F=O (Bianchi "identities" ).
(2) Change variables to F. The result is an un-
ambiguous field strength formulation for any
gauge theory. F is integrated over the Bianchi
identities. (3) Dual potentials A are introduced
as functional Fourier conjugates to the Biapchi
forms. (4) Integrate out the electric fields to
obtain the "dual Hamiltonia, n, " a function of B,
the magnetic fields, and A, canonical to B.

I offer the, following reasons. why field strengths
and dual variables may be the natural language in .
which to study current problems in gauge theory.

(1}In ordinary formulations, with residual
gauge freedom, physical states must be selected

by requiring gauge invariance. In a completely
fixed gauge, no further gauge constraint on the
state is necessary, and the generators of gauge
transformations should vanish identically. With
dual variables, this is realized elegantly as an
aspect of duality: Gauss's law is an identity —just
as the Bianchi identities are identities in the usual
for mulatlon.

(2) In the field formulation, Wilson integrals
can be expressed as area integrals over the field
strength. This may be an aid in seeking area ef-
fects in the confinement problem.

(3}In a Hamiltonian approach to confinement,
one is interested in Vhlson integrals over spaIial
(fixed-time) paths. In the field formulation, these are
area integrals over the magnetic fields B. It may
therefore be advantageous to have 8 as a funda, -
mental variable. Indeed, as I mill discuss below,
it is easy to construct confining states using the
dual var iables.

(4) The dual potentials A, being canonical to B,
generate local disturbances in the magnetic field..4 is therefore closely related to the disorder op-
erarors defined implicitly by 't Hooft. ' Confine-
ment tends to be found in disord'ered states
(spread inB, sharp ink).

(5) The dual potentials enter the non-Abelian the-
ories with Higgs-type couplings, and silhouette the
question of Meissner-type effects in non-Abelian
gauge theory.

(6) In general, the dual variables may be ex-
tremely useful in developing the continuum analog
(especially for the non-Abelian case) of recent
progress in dual-lattice theory. '

(7) Formulation of monopole theories in terms
of dual potentials appears extremely natural. Dual
potentials couple locally to quantum monopoIe cur-
rents, just a.s ordinary potentials couple locally
to ordinary charge.

An outline of the paper is as follows. In Sec. II,
I briefly remind the reader of the field-strength
copy problem, and its solution in fixed axial-like
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II. THE INVERSION A(F)

The simplest case is quantum c'hromodynamics'
in one space and one time dimension (QCD, ). Con-
sider the ordinary axial gauge A,=O, F„(A)=-S,A,
(suppressing obvious color indices). All configura-
tions have field-strength copies of the form

A', (tz)=A, (tz)+t (t),

F„(A')=F„(A),
(2.l)

gauges. I obtain the inversion formulas A(F) for
the various theories, as well as the Bianchi-iden-
tity constraints on allowed F's. In Sec. III, I brief-
ly apply A(F) to express Wilson integrals in terms
of field strengths. In Sec. 97, I make a quantum
variable change from A to I', obtaining the field-
strength formulation. F is integrated over the
Bianchi identities with no further functional mea-
sure. Section V is a brief, and I believe quite
nice, application of the field formulation to
monopole quantization. I introduce dual potentials
.4 in Sec. VL After interpreting A as those fields
which couple locally to monopoles, I discuss sad-
dle-point equations, then a formulation entirely in
terms of dual potentials, and, finally, duality. In
Sec. VII, I eliminate the electric fields to find the
"dual Hamiltonians. "

Section VIII is reserved for remarks, including
the ease of constructing confining states in the dual
formulation. I include also four appendixes deal-
ing with technical matters.

2

A, (xyz)= dz F„(xyz'),
Zp

A, (xyz) = — dz'F„(xyz')+a(xy),
z

a(xoy)= 0.

(2.5a)

(2.5b)

(2.5c)

The function 4 must be determined consistently
from the equation F»(A)=F»..

F»= — dz(s2FS, +s,F23)(xyz')+ s,s.
ZQ

I break this equation into its form at z=~p and the
derivative with respect to z:

(2 8)

F„(xyz,)= S,a(xy),

3 12 2 3X 1 23

(2.7a}

(2.7b}

Equation (2.7a) can be uniquely solved for t), with
the boundary condition (2.5c). The final result is

8

A, )xyz)= j ds)", (xyz'),
0

(2.8a)

A, (xyz)= — dz F»(xyz )

Abelian theory in three dimensions (QED, ). The
problem here is, of course, only ordinary gauge
fixing. I choose the fixed axial gauge

O=A, (xyz)=A, (xyz, )=A, (x,yz, ),
( )

F„(A)=S,A, -S,A„F„(A)=S,A„F„(A)=-S,A, .
Using the forms F»(A), F»(A) and the gauge can-
ditions on A„A.

„

I have immediately

where t),(t) is essentially arbitrary. (The theory is
non-Abelian, so AQ Ap are not in general gauge-
equivalent. ) The inversion A(F) cannot be unique

in the ordinary axial gauge.
There is, however, a residual gauge freedom in

such gauges, which I use here to choose the com-
pletely fixed axial gauge'

A, (tz)=A, (tz, )=0, (2.2)

AB= 0

z

A, (tz)= — dz'F„(tz')
20

(2 2)

is the unique inversion A(F}. In such gauges, all
field copies have become local action copies. '
This inversion, Eq. (2.3), is also correct for the
Abelian theory (QED, ) in this gauge.

The next simplest example is the case of the

where zp is a particular point in z. Now it is trivi-
al to see that

A,=0,

+ dxri~ xgzp q

XQ

(2.8b)

(2.8c)
I

l
tj ~ P ~ P I'P (2.8d)

.z )

A, (xyz)= dz'F„(xyz'),
Zp

(2.9a)

where 6p p
ls completely antisymmetric and ~»,

=+1. Equations (2.8a), (2.8b), and (2.8c) form the
unique inversion A(F). Equation (2.8d) is the neces-
sary and sufficient consistency condition on the
field strengths. It is recognized as the Bianchi
"identities" in three dimensions. In general, for
dimension greater than two, the Bianchi identities
will emerge as consistency conditions on the fiems.

For higher dimensions and/or non-Abelian the-
ories, the algebra is more complicated, but the
idea remains the same. I give the details for QCD~
in Appendix A. Here I will only state the results.

QCD, fA, (xyz)=A, (xyz, )=A, (x,yz, )=0].
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g

Az(xyz)= — dz E»(xyz )
Zp

+ dxE~~ xyzp ~

Xp

&,=0,

S F() e&t)])cAP(F)IP 0a p p

(2.9b)

(2.9c}

(2.9d)

Bianchi identities. (4} The Bianchi identities are
at most quadratic in F.

III. WILSON INTEGRALS AS FIELD-STRENGTH
FUNCTIONALS

By Wilson integrals, I refer to the generic
forms

(2.10a}A. ,= dz E3, txy&,
gp

g

dx'P„(txyx')+ f dx P„(txyx', )(2'.)0e,)
Zp xp

A. 0= — dz E03 txyz — dx Ep j tx yzp
gp 0

—
J dy Eoz(txoy zo),

90
(2.10c)

(2.10d)A.3= 0,

I, (txyz) =s„F„,=0 -(i =0, 1, 2), (2.10e)

(2.iof)I,(tzyz, ) =(a„F„,). , =O.

Here E„„=&~„,~,F~, ep]23 1. Notice that the con-
sistency conditions are not the full set of Bianchi
identities. This happens as well for QCD„and I
will refer to this as the phenomenon of "3.1 Bianchi
identities. " It is trivial to show, however, that the
the 3.1 Bianchi identities imply the other "0.9,"

Here A'„(E}is precisely the form A(E} given in
Eqs. (2.9a), (2.9b), and (2.9c). Note that the form
A(F) continues to be the same for Abelian and non-
Abelian theories (in the same dimension). The
only difference is the complexity of the consistency
conditions (Bianchi identities).

QED4 [A~(txyz)=A, (txyzo)=A~(txoyzo)=AD(txoyozo)= (i.

(y]C]=-exp(-te d dx],
c )

(y((i]= Pryexp] -te]t d dx}c

(3.1)

A E dx= dx. dzE» xyz —= dS ~ F,
0 0 Z X

(]' t((p) d; f"'dy .f'd=* p„(*,") f'f d p p=-.
&& A(F) ~ dx = dxE„(xy'z,)
4Xy 0

+ dz dx E3, xOz -F3, xyz
Z 0

dy F~3 xyz -F23 Oyz
0

in the Abelian and non-Abelian cases, respective-
ly. Here Tr and P are trace and path-ordering.
In our gauges we can express W[C] directly in
terms of the field strengths, simply by replacing
A-A(E). This is well known for the Abelian
case, but new for the non-Abeliari case. I will
mention explicitly two theories which illustrate
the gerieral structure for all gauge theories.

QED,. Consider the three paths shown in Fig.
1. Using A(E) in Eq. (2.8), it is trivial to compute
for the three cases

a,I,= 0. (2.1i) (3.2)

QCD~. I make the same gauge choice as in QED, .
The resulting A(E) is the same as Eqs. (2.10a),
(2.10b), (2.10c), and (2.10d). The consistency
conditions are

To simplify the xy-loop form, integrate the Bianchi
identity over the area in question:

I (txyz) =s„P„;ee'"'Aq(F)P-q, =o (i =0, 1, 2),

(2.12)
I', (txyz, )= f&P '„,-ez„,A-p(F)F'„,], , = 0.

I show in Appendix B that, in analogy to QED„
these 3.1 Bianchi identities imply the last 0.9,

0= dx dy 9VFpxyz.
0 0

This implies immediately that

(3.3)

e,i', =0. (2.i3)

I summarize what has been shown thus far. In
fixed axial gauges (1) the inversion A(F) is unique
for all gauge theories. (2)A(E) is linear inE. Its
form is the same for Abelian and non-Abelian the-
ories. (3) The consistency conditions are the

x)

zi

ZI

v»

FIG. .l. Three Wilson integral paths,

Xi
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r dx[F (xoz)- E,(x'yz)1- f dy [E, (xy'z) F„-(oy'z')1=s,
0 0

and hence that

J[ X()") dx= dy' f dx E„(x'Vzl:—ff a()
XP 0 0 XP

dx dy E,2(x'y z)
0

(3.4)

(3.5)

as expected. The explicit manipulations above will, however, be useful in Sec. V. In general, for Abelian
theories, one finds the expected result (dS„,=-,e„„~,dx~dx )

E '&X=z ~ dS„,E
C $(i )

QCD, . The Wilson integral corresponding to Fig. 2 is

z2 t2
8'=~ Tr Texp ie dt dkE„tk T*exp ie dt CkE» tk

80 z
1

I

(3 5)

(3 'I)

IV. FIELD-STRENGTH FORMULATION OF GAUGE THEORY

I begin with the vacuum gene'rating functional for
a generic gauge theory

) I

~45 CQF exp —— F' A.
1
4

(4.1)

Here 5[CGF] is a product of functional 5 functions
for the complete gauge fixing (CGF). The form of
5[CGF] for QCD~ is given in Appendix C.' The
unique inversion A(F) makes it possible to change
variables to the field strengths themselves. The
crucial identity is, up to multiplicative constants,

eA.5 CCF 5 G-E =O I G,

t2--

(4 2)

i - z
zl z2

FIG. 2. A Wilson path in a non-Abelian theory.

with T, T* time-ordering and time-reversed-order-
ing, and I have used the A(F) given in Eq. (2.3).
An interesting gauge choice for any loop with one
side at k=k, would be to pick k,=k„then

f.t2
S'=& Tr Texp ie, dt dk'F03 tk 3 8

t 8

in close analogy te the Abelian form. The reader
can easily convince. himself that, with appropriate
gauge choice, any loop in any non-Abelian theory
can be put in this "Abelian" form.

I emphasize also that when the path in the Wilson
integral is spatial, then the area integral is over
the magnetic fields (not the electric}. This is im-
mediate on inspection of, say, Eq. (2.10). It is,
of course, just these Wilson integrals that are of
interest in a Hamiltonian formulation.

1= X)G(5 G-F (4.3)

Interchanging integration order and doing the A in-
tegration via Eq. (4.2), I obtain

(
Z= mG& SG exp — G'. (4 4)

The form Eq. (4.4} provides an unambiguous field-
strength formulation" for any gauge theory. The
field strengths are integrated over the Bianchi
identities. There is no further functional measure.
I will continue to use G instead of F when it is a
fundamental variable.

Any function of A. in the or iginal for mulation
translates immediately to that function of A -A(F)
-A(G} in the field-strength formulation. In parti-
cular, the forms of the Wilson integrals discussed
in Secs. III are now appropriate. In general, the
formulation is local in time —except in fixed A.,
gauges.

V. A SIMPLE APPLICATION: MONOPOLE QUANTIZATION

Consider QED, in the field-strength formulation

Z= QBexp —
& d'xB' 5 V ~ 9, (5.1)

which is valid for all gauge theories. Here I(G)
=SG-eA(G)G are the Bianchi forms as a function
of G (which is F}. The proof of Eq. (4.2) is given
in Appendix C for the case of QCD4. The proof is
simpler for other theories. In four dimensions
(QED~ and QCD~), the right-hand side of Eq. (4.2)
actually comes out as b functionals for the 3.1
Bianchi identities only. However, as the last 0.9
are redundant (Appendix H), I have chosen, for
the sake of symmetry, to restore all four Bianchi
identities on the right of Eq. (4.2). [Formally this
is an extra constant factor 5[0].]

The field-strength formulation is now immediate.
Start with Z, and insert unity in the form
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exp —ie A I3 ~ dx
c

exp -ie d8 ~ B (5.2)

Here d4(B) is that A(E) given in E q. (2.8). I will re-
fer to the first form as the "path form, " the second
form as the "surface form. " The proof that the
two forms are equivalent is that given in Sec.
III. Thus, the surface form is surface independent.
In fact, of course, the surface independence of the
surface form can be seen directly [without mention-
ing A(B)] from the Bianchi identity.

I will now introduce a monopole source p„(x)into
the theory by violating the Bianchi identity

Z[p„]-=ee))exp —,'- d'xz*) ()[e S-p„].
(5.3)

I demand that I can still find a "Wilson integral"
such that

(W[C I&,
-=Z 'I p„lfee)S exp(- -,

' fd xz )I'
x 5[7 ~ B —p„]W[C] (5.4)

is ga, uge invariant and a function of C alone. %'hich
of the two forms in Eq. (5.2) is a viable candidate?
I will show that, when p„s)0, (a) the path form is
in general not gauge invariant, while (b) the sur-
face form is in general surface dependent. More-
over, I will show tha, t the following conditions are
all equivalent: (I) The condition that the path form
is gauge invariant. (2) The condition that the sur-
face form is surface independent. (3) The condi-
tion that the path and surface forms are equaL (4)
Magnetic monopoles are quantized in the usual
manner.

Consider first the path form. Repeating the
steps of Sec. III for the three loops considered
there, one finds

A 8 ~ dg= dS ~ 8

for the zx and yz loops (the Bianchi identity is
not involved in these computations). The xy loop
computation does involve the Bianchi identity, how-
ever, and now

o s(s&. d.-= ff.s s
XP xy

where I have renamed G, =B; (B;F-», B,=F», B,
=F»). The expectation value of a Wilson integral is

l"

(W[CI&=Z' ee))exp(- —'fd xs')efe S]W[C]

But z, is a gauge parameter, so the path form is
not in general gauge invariant.

The surface dependence of the surface form is
standard: The difference of two surfaces involves
a closed surface integral

ada 5= fd "x S= fd *p„
according to the (violated) Bianchi identity.

It is immediately clear that the unique cure for
either problem solves them both:

exp) ie -] d'x p„=l~ d'xp„= (5.6.)

where V is an arbitrary volume and n is an inte-
ger. This is the usual monopole qua, ntization, and
it is also the condition that the path and surface
forms are equal again.

Point magnetic charge at u would then be of the
forin p„(x)=gb'(x-u). For u on the boundary of a
volume V, f.hen

g= 4vn/e. (5. t)
This follows because f dxo(x —x )= and is the

Xg 1 2

Schwinger qua, ntization.
The reader will notice that I have not mentioned

Dirac strings in this discussion. Indeed, in the
field-strength formulation, such need not appear,
and do not. Nevertheless, I can excavate the
strings for pedantic purposes: Starting from a
monopole fieM at the origin 8 =gr/r', I evaluate
A(B), Eq. (2.8). The result for A, (B), e.g. , is

)

Near the z axis then

A)(B)-—,[e(z)-e(z(&)]. (5.9)

So A(B) does have the Dirac string: The string is
down if z, &0 and up if z, &0. (One might have anti-
cipated that the strings were all in the z direction
from our "trouble" above with Wilson integrals in
the xy plane. ) Note that if z,=0 then near the z
axis

W, (B)-—~(z). (5.10)

This is Schwinger's double stag. It is not hard
to verify that, in general, monopoles placed at z,
will always carry Schwinger strings, and hence the
the Schwinger quantization.

The development for monopoles in QED, is
parallel. The monopoles are coupled to the theory
via 5[5„G„„]-5[5„G„,—J,]. The final results are

[

(W[C]) = (exp —(e de(G&dx„
c

dz dx dg p~ x ~ 55
'0 0

exp —— dS„„G„, (5.II)
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when
exp -i d'xp„=Z' p„=0 p„ (6.6)

d&„Z„=2n&le.

VI. DUAL POTENTIALS

(5.12)
in general, therefore: Quantized monopole matter
fields couple locally to the dual potentials.

QED». The vacuum functional is

By dual potential, I refer to variables such as
the magnetic scalar potential, familiar in elemen-
tary physics. In QED„dual potentials A „would
be to E„„whatA„is to I'„,:

F„(A)=F„„(A). (6.1)

G„,&Apexp I-» d»xG„,G
)

xexp ,'i d»x —F„,(A)G„, ,

F„,(A)=B„A., -B,A„.
The saxjdle-point equations are

(6.7)

Z= X)GRA exp -& G'
J (6.2}

xexp -i I G

The variables A have the indices of the Bianchi
forms I(G)—so A'„for QCD„)l)' (magnetic scalar
potential) for QCD„and so on —and are identifi-
able as dual potentials. I will discuss various
theor ies individually.

QED, . The vacuum functional is

Such variables may be extremely useful in finding
the continuum analog and non-Abelian extension of
recent studies in dual-lattice theory. ' A is also
closely related to the local disorder operators
't Hooft' defines implicitly.

Having the field-strength formulation, a path to
dual variables is clear. In the vacuum functional,
Eq. (4.4), write

(6.8)&qGq, =0, Gq, =iFq, (A).

Thus, A„—=iA„areprecisely the dual potentials
for QED». Z is invariant under Abelian gauge
transformations on A„.This has crept in because
I chose to ignore multiplicative constants in Eq.
(4.2). A„gauges may be fixed in the usual ways.

A particularly interesting quantity is the gauge-
invar iant dual -8'il son inte gral

w)c I -=exp(- fg k„ax„.c' (6.9)

As in QED„ it is simple to see that (0'[C ]) corre
sponds to a monopole-antimonopole annihilation
around the closed path C. Also, quantized mono-
pole matter fields should couple locally to A„.

Because the Bianchi identities are (even for non-
Abelian theories) at most quadratic in G, I can al-
ways integrate out the field strengths to obtain a
formulation entirely in terms of dual Potentials.
For QED», the resulting a,ction density is particu-
larly elegant,

xexp —g d xV' B. (6.3)

Fq», (A)F„,(A).

Inthis sense, QED» is perfectly dual.
QCD, . The vacuum functional is (G';—=B';}

(6.10)

The saddle-point equations are

8+iV /= 0. (6 4)

Z= QB';@ 'exp —
& d'xB&B';

As expected in Euclidean space, " the saddles are
at imaginary Q. Thus, T)) =- iQ is precisely the
magnetic scalar potential (B = VQ).

Consider summing g emissions at u with
strength g. In a simple line of algebra, it is seen
that

(exp[- ig &/&(u)]) = Z '[p„=0]Z[pcc(x)=g5' '(x —u)] . (6.5)

xexp —i d'x B', 8,

(6.11)
where A;(B) is given in E q. (2.9). The saddle-
point equations are

S Ba e&abcAb(fi)ffc 0
(6.12)

fla+i[S j&a estab Ab(II)cy ]+i)a c0

Such emissions are then precisely equivalent to a
monopole of strength g at u. One might then call
the exponential of the dual potential 4) (u)
=exp[- ig@(u)] a "monopole field. " More precise-

where
co Z

I)', = —iec'" 8(z-z, ) dz'-e(z, -z) dz'
Z Oo

x (@&,' 4)')(zyz'} (6.13)
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for i =1, 2 (e;~ antisymmetric, c»=+I), and

h;=ice"'5(z-zo) 8(x-x,) dx'-8(x, —x) dx'
x oo

«'(B.'4')(x'yz'). (6.14)

A number of remarks are relevant here. (1) P'
= —i{t)' are the color-magnetic scalar potentials.
(2) The nonlocalities are essentially the nonlocal-
ities of the inversion forms A(B). (3) Notice the
singularity in 6, at z=z,. This can be traced im-
mediately to the fact that only F»(xyzo)=B,'(xyzo)
appears in the inversion A(B), Eq. (2.9). The sin-
gularity tells us immediately that, for configura-
tions B;'not singular at z„the corresponding (tt)'

is discontinuous at z=s,. I will mention this again .

in Sec. VII.
Notice also the Higgs-type coupling of the mag-

netic scalar potential. This raises the question of
a Meissner e'ffect for QCD„and focuses attention
on regions where Q' is a constant. In such regions,
the magnetic field is a zero-eigenvalue eigenvector
of the operator M((t)) —= 1+ieji{1)-ejP defined by
recasting the field equations in the form

a

O=tz;tt'+ 1+tefg )y
I i

(6.15)

The operator tW(p) appears again in the pure dual
potential formulation: Integrating out the field-
strengths in Eq. (6.1), I obtain the action density»

2= —-8(t)(1+ieQ) '&{ty (6.16)

with a measure [det(1+ieJ @)] '~'. At large cou-
pling, the zeros of M((I)) approach the real axis and
may be enhanced. This subject deserves further
investigation.

QCD, . The vacuum functional is

4

8 G' - e'e" A'( G)G' =0
(6.16)

where

+ gc g ~ e~abcgb ~ c

(6.1V)

The saddle points are located at

~x

g', =-tell(z-z, ) e(x-x ) ( dx'-e(x -x)J dx dz""(G''z(;){txyz ), , ''
oo OO

00 to+OO OO

g'oo= ie5(z -z)5(ox--x )8o(y-y, ) dy'-8(y, -y) dy' dx' dz'e"(GO, A', )(tx'y'z'),
~ oo 4(a oo ~ OO

lee

g', = te e(z-z ) d-e t(e z)f dz' '-z-'"(C' d*,)(txye'),
Z m oo I

g'„=+ie5(z zo) 8(x--x,)
L

OO x +00

dx -8(x,-x) dx dz e' '(G~A' )(txyz ),
oo w oo

(6.19)

oo pZ

g'„=—ie 8(z-z, ) dz'-8(zo-z) dz' e'"(G~oA;)(txyz'),
Z oo i

g„=+te e{z-z )J dz'-e{z -z) f dz' z" (G, g )(txyz)*''
Z oo

My previous remarks about QCD, are compound-
ed here. Notice in particular that each component
of A.'„hasHiggs-type couplings. The field equa-
tions may be cast inthe form

~ a

1+ie A G =iI(„„"(A),
p ij

(6.20)

g= — g' '(g)(1+te —,. d P' {t()'
with measure [det(I+ ieJA)] ' '.

(6.22)

VII. "DUAL" HAMILTONIAN FORMULATION

which I „"„"(A)=0in some region, and hence to the
zeros of the operator (I+iefA). The pure dual
potential formulation of QCD, has the form

For small coupling then

Gg tg (0)d(A-) (6.21)
In this section, I work in Minkowski space. '4

The generic vacuum functional

as in the Abelian case. In general, however, as
in QCD„attention is drawn to configurations for

Z= QGQA. exp -i —,G'+PI G
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contains time derivatives only in the factor

exp i d'x ~,G' (7.2a)

The disturbance is a string with magnetic f1m g.
The Wilson integrals at fixed time are area inte-
grals over the magnetic field, and hence

in three dimensions, or

exP —i d ~x A. „BQGP" (7.2b)

e (x)W]C]=W]C]i (x) exp, (eg f
s&c)

()(2)(y -x)d'y .

(V.9)

I will briefly discuss each theory in detail, giving
the appropriate E in terms of A and B.

QED, . In the previous sections, I worked in a
manifestly Euclidean form for three dimensions.
If I identify 3-0 (time), I am in a fixed A, gauge,
and there is z-t (time) nonlocality. I do not know
how to achieve a Hamiltonian formulation for these
gauges. I convert trivally to an axial gauge with
the reidentification 1-1, 2-0, 3-2. This is now
a fixed A.,= 0 gauge:

A, = — dy B(xy ),
(V.4)

Ap= dy&2 xy dx&i xyp
XQ

where I have used E; = G„',B=G», G&
= ~ &&,z G",

e»,=1. Notice that the spatial potential g, ) is a
function of B alone; hence fixed-time Wilson inte-
grals are area integrals over the magnetic field.
This persists generically.

The action density is

(V.5)

Integrating G„,I obtain the dual Hamiltonia, n, Eq.
(7.3) with

&&=~24

[B(x),P(y)]= i5"'(x -y).
(7.6)

Notice that Gauss's law V.K=0 is an identity in the
the dual formulation, just as the Bianchi identities
are identities in the usual formulation. This also
persists generically. .

Consider the local operator

4'(x) =-exp[- i'd (x)]. (7.7)

Since Q and B are canonical, 4) generates local
disturbances in the magnetic field,

C (x)B(y)C '(x)=B(y)-g5"'(y —x). (7.8)

in four dimensions. Thus in general A is canonic-
ally conjugate to the magnetic fields. I can pa, ss
simply to the canonical form then by integrating
out the electric fields G„=E;,leaving only A. and

B, the magnetic fields. The resulting "dual" Ham-
iltonian system has the generic form

&=2 B2+E,B, B,A =i. 7.3

If I choose & Dirac unit of magnetic flux,
P

C, q, (x)= exp —i -P(x), (7.10)

then 4), ~,(x) commutes with W[C] when x is outside
C, and anticommutes when x is inside C. Evident-
ly, 4), ~, (x) is the Abelian analog of the [SU(2) in
three dimensions] disorder operator defined im-
plicitly by 't Hooft. '

@ED~. In four dimensions, my notation is El =1, L a=G.;, B; =-.c;,'O', C'P. =B~P,P.G, c.„,=+1. The
inversion E(1. (2.10) is then

A~= dz B2 xpz
Zp

Z x
A.2=- dzB~ xyz + dxB3 xyzp,

Z p Xp

Z X

dz E3 xyz — dx E~ x yzp
Z

Q XQ

tie E2(x()y z()).

Again the spatial components of A„arefunctions
of 8 alone, and hence fixed-time Wilson integrals
are area integrals over B. The action density is

(7.11)

g = —,'-G„„G~'-X,~„G~". (7.12)

But the momentum conjugate to Ap is zero. I
choose therefore not to introduce A„leaving
5[8„Q]"]=5[vB]=5[I,(G)] as a constraint. Inte-
grating out G„,I obtain the dual Hamiltonian Eq.-
(V.3) wl th

E=g xA,
(7.13)

[B;(x),A.,(y)]= i5;,5")(x —y).

This Hamiltonian must be taken with the con-
straint I,= V' 8= 0. Note that I,= V' ~ B is the gener-
ator of A.; gauge transformations, so duality

B E, A A, V' ~ E V ~ B (7.14)

W(C']=exp(-ig A dx).c'
(7.15)

The fixed-time Wilson integrals are area integrals

is quite perfect. Gauss's law V ~ E=O is again an
identity. -

Consider the dual Wilson integral as an operator,
with C a fixed-time path:



FIELD-STRENGTH AND DUAL UARIABLK FORMULATIONS OF ~ . .
I

over the magnetic fieMs, and so

W[C ]W[C]=W[C]W[C ]exp(ieger),
(V.16)

5[A,(ixyz)-A ', (ixy)5(z-z, }], (7.17}
that is, gauging away the z dependence of A„ex-
cept at z,. The most direct way to use this gauge
is to solve the Bianchi identity

C(xyx) a(,xyx ) =fdx (x,yy-xx C )(xy,x); (y.)8)
zo

keeping only Agxy), B,(xyzo) as canonical variables.
QCDS. I use the same fixed A,= 0 gauge as for

QED, . The inversion is still Eq. (7.4), and the ac-
tion density is

2 =- a O'„„G,"'+g'[&„G," ee"'A-'„(G)G,"]. (7.19)

Integrating O'„, I obtain the Hamiltonian with

&;= 8~4' -e5(y-y. )
OO ps +o

x 8(x-x,) dx -8(xo-x) I
dx' dy'4'(xy ),

x m oo J oO

Ba [5 ya abcAb(B)@c]

oo

-«(y-y. ) Oty'-8(yo-y) dy' 8'(xy'),
W OO

[B'(x), $'(y)]= i5"5"'(x -y).

(V.20)

dS(x) dx5"'(x -x ).
&src] C'

iV is the number of directed crossings of C through
C. . With Dirac unit of flux, W[C ] is the Abelian
analog of the disorder operator [SU(2) in four di-
mensions] 't Hooft' defines implicitly.

There is a final comment that I wish to make
here about A gauge fixing. At the level of QEDa,
the remark is essentially pedantic- —but it will be
helpful in our discussion of QCD, .

The A gauge may be fixed in the usual Faddeev-
Popov fashion, but a certain bizarre gauge choice
ha.s particular significance. Remember that in
four dimensions I chose to complete the identity
Eq. (4.2) to all four Bianchi identities. If I had
left only the 3.1 Bianchi identities, I could have
exponentiated the third Bianchi identity with an
A, (txy} only. I leave it as an exercise for the read-
er to show tha, t, in our more symmetric formula-
tion, this corresponds to the bizarre A. gauge
choice

la+ OO +00

Q'= dx dy 8'(x y )J OO m OO

(7.21)

is a constant of the motion. Q' generates a global
gauge transformation, and this freedom reflects
the fact that my gauges are not fixed up to such a
tr ivial transformation. Physical states can easily
be chosen to satisfy Q'=0.

From the definition of E';, it is easy to compute
that

V E' e~'"-A', (B)Z', = -e 5(y- y, ) 5( x- x,)q',

(7.22)

so on physical states (Q' = 0), Gauss's law will be
an identity.

I also repeat that Wilson integrals over spatial
paths are functionals of B only [because A, =A, (B)].
Having 8 as a fundamental variable may then be
advantageous in studying the confinement problem.

I have not yet found the exact expression of
't Hooft's operators for QCD, . Although operators
such as exp(-ig(())'}, Tr exp(-igQ' ', r, ) have the-cor-
rect effect on the magnetic field, they generate
nonlocalized changes in E. This deserves further
investigation.

QCD, . The inversion is given, as for QED„ in
Eq. (7.11). The action density is

2=-aG'G,"'-A'„[&„G,""-e' 'Aq(G)G,""]. (7.23)

However, as in QEDa, I choose to leave 5(I;(B))
as a constraint, keeping only A. ';. Integrating G'„.,
I obtain the dual Hamiltonian Eq. (7.2) with

E'=8'+J'

6'(= &;gb[syAb «-'"A y(B}A-bl

(7.24)

Here A, (B) is given in Eq. (7.4) and g = e' B'P' is
a rotation operator for (t)' and B'. Observe the per-
sistence of the Higgs coupling of the dual potential.
The singular term 5(y-y, ), seen in the equations
of motion, also persists. "

Note that

00 X +oo

& = -e5(z-z()) 8(x-x,) dx'-8(x, -x) t dx' dz'g'(x'yz'),
~x ~i~ OO J ~ 00

00 +Oo +Oo

~:= -e5(z-z, )5(x-x,) 8(y-y, ) dy'-8(y, -y} dy dx dz".J'(x'y'z'),
~ 00

oo Z

Jb = -e 8(z-zo) dz'-8(zo-z} dz' ga(xyz'),
)xx Z ~00

[Bl(x),A&(y)]= i5"5„5"'(x-y) g'=- ~'"B',A;.

(7.25)
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This Hamiltonian must be taken with the constraint

Ia S Ba s~abcAb(B)Bc 0 (7.28)

As with QCD„note the persistence of the Higgs-
type couplings of the dual potentials. Q'—=Jd'xg'
is a constant of the motion, and can be set equal
to zero on physical states. Wilson integrals with
spatial contours are all functions of J3;. Forms
such as

TrP exp —ig A'; —,'7, dx;

are candidates for 't Hooft operators.
I wish to discuss in some detail the structure of

this constrained Hamiltonian system and its parall-
els with QED„. In QEDa 1 the constraint I;VB-

generates Abelian gauge transformations on A. ;
and a symmetry of the Hamiltonian. In Appendix
D, I show a similar property for the QCD, con-
straints I', (B): Modulo ordering problems

I', =em"' E,' dz I',(xyz )+A,'I', . (7.27)
0

Thus, if one starts with a state at time tp with Io
=0, it will stay zero. Put another way, I',(B) gen-
erates a change in the Hamiltonian which vanishes
in the presence of the constraint. Therefore, if
desired, gauges may be fixed in the manner of
Faddeev and Popov.

What are the transformations generated by I' (oB)?
They are A.belian, and act only on A. ;, just as in
QED, . A simple computation results in

[I',(xyz), A', (x'y'z')]= i5".e,5"'(x-x )+ tee'"'[5;, A', (B)+5;,A;(B)]5"'(x-x )

+ice"'6(x x')6(y -y')e(zz-'z, )(o;,B;-5;+',)- ice'"5;,6(y-y')5(z, z')e(xx-'xo)B;(xyz), (7.28}

where

e(zz'z, ) = e(z-z') e(z' z,)-e(z-,-z')e(z'-z)

= e(z'-z, )-e(z'-z).

The feature of note in Eq. (7.28) is that

(7.29)

[I',(xyz), A,'(x'y'z')], ,;i8"S,6"'(x-x ).— (7.30)

Thus, as long as one stays away from the (gauge)
plaint a= z„the gauge transformation on 4,' is the
usual Abelian form. As a result, the gauge choice
Eq. (7.17) can be made here for QCD„with con-
stant measure.

This brings us full circle for QCDa; as explained
in QED„this is the form I would have obtained if
I had not completed all four Bjanchi identities in
Eq. (4.2). The Abelian invariance in QCDa is a
direct result of completing the Bianchi identities.
As in QED„ the most direct way to use this gauge
is to solve I,= 0:

B,'(xy z)= B,'(xy z,)
z

+ dz[-&,B;-S+;+ez"A';(B)B';](xyz ),

(7.31}

thus eliminating B; in favor of B;(xyzo), which is
canonical to A; (xy).

Finally, I remark on Gauss's law. It is straight-
forward to compute that

s,E', se "A,'(B)Z-';= sn(x x,)&(—y y, )-~(z z,)-Q'-
+ „abc[Bb Fb (A(B))]Ac (7 32)

When the solution (7.31) is used, Fb»(A(B)) =B,', so,
on states with Q' =0, Gauss's law is again an iden-
tity.

VIII. REMARKS

There are a number of remarks that properly
belong with this piece of work. Perhaps the most
important is what I promised in the Introduction:
Confining states axe easy to constngct in the dual
formulation, Just as an example, consider the
states

ln, &f&o) = ]'31B ex-p d'x(-;o.B'+iB &po} lB)
I

(8.1)

in QED, . Here lB) is an eigenstate of B; Po is the
center of the Gaussian in Q, eigenvalues of the
dual potential. Because the Wilson integral is an
area integral of J3, one trivially computes

(8.2)

where A is the area of the Wilson loop. Note that
confinement is stronger for small n. This is the
"disordered" state, characterized by a broad
spread in B (or &7j peaked fairly sharply at Po).
Similar states can be constructed in the non-Abe-
lian case as well. The problem, of course, is
finding a meaningful minimum of the Hamiltonian
in such confining states.

My second remark concerns the manifestation
of the old field-strength copies, now in the field-
strength formulation. As discussed in Ref. 2, the
field copies from every gauge have become local-
action copies in the fixed gauges. In the field-
strength description, local-action copies are sets
of field strengths, all satisfying I(G)= 0, related to
each other by local rotations. I will call such ro-
tations pseudogauge transformations, as they are
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not related to ordinary gauge transformations.
(My gauges are fixed, and the local action copies
are not gauge equivalent. }

In QCD3, for example,

Z= '„exp—~ d'x Go,G'„, (8.S)
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APPENDIX A: A(F) AND 3.1 BIANCHI IDENTITIES
FOR QCD4

I work in the fixed axial gauge O=A, (txyz)=
=A, (txyzo)=A, (tx~zo)=A, (tx~,z, ), and I list for
reference in this gauge

and evenly configuration is a member of a continu-
ous family of local-action copies. In higher dimen-
sion, the sets of local-action copies can be char-
acterized as little "pockets" of pseudogauge equi-
valence. This is, of course, the possible "en-.
hancement" I discussed in Ref. 2, and deserves
further investigation.

My third remark is on the possibility of "other"
dual potentials besides my choice. In particular,
it would be interesting to find an A.'„for QCD4 that
transforms as a gauge field (my A'„essentially
only rotates). Such an A'„might be one satisfying

E„'.(A)= E„'„(A). (8.4)

Unfortunately, it is easy to show that this A can-
not exist for all A: The form E„',(A) implies the
Bianchi identity aF(A) eAE(A-)=0, and hence, us-
ing Eq. (8.4), SF(A) edt(F(A)=-0. This is to be com-
pared with the sa,ddle-point equations SF(A) eAE(A)-
=0. For configurations with detE(A)x0, "one easi-
ly shows that A=A and hence, from Eq. (8.4) again,
that I' is self-dual. This is a contradiction for con-
figurations such as the anti-instanton.

I mention two other candidates for A'„whose
merit is existence for all A. (1)A defined by
BF(A) eAE(A)=0-. A is dual to A in the sense that
its defining equation is dual to the Bianchi identity.
For detEWO, "A=e 'I" 'BF. At saddle points with
detF 0, A=A. . This object was discussed in Ref.
12. (2) In the main development of the text, I com-
puted A(E). One can define A =A(E). The uti—lity of
either of these two definitions remains to be stud-.
ied.

I remark finally that the path-dependent forma-
lism" may be quite useful in studying general fea-
tures of my reformulations.

(Al)

E;,(A)=-s, A;, E;,(A)=a, A;, E;,(A)=-s,A'„
F' (A)=& A'-& A'-ee"'A A'

From the form E»(A) and the boundary condition
on A„I have immediately

A, (y) fdz'=tt„(txyz') (A2)
Zp

From the form E»(A)and , the boundary condition
on A„I have

Z

A~= — dz F2,(txyz )
p

+n.,(txy), t).,(tx~)= 0. (AS)

Substituting A, (F) and this form for A, into the
form F»(A) at z=z„I obtain

E„(txyz,)= s,t, (txy )
X

dx F„(txyzo)
Xp (A4)

Z X

~A, (E)= — dz'F„(txyz') + dx'F „(tx'yz,).
Zp X

0

F»(tx~z, )= -&,t),,(ty)

o= dy +o2 tXoy~o

(A'1 )
A(y) fdz y,„(tx=y-z ) f dx y'„(txyz—,')''

Zp X
p

dy E,m(txoy zo).

I must next explore the consistency conditions
E(A(E}$=F; we systematically substitute each A(F }
into the form E(A) and require it to be E. There
is no difficulty verifying F»(A(F)) = ,F„»F(A( )E)

=F», E»(A(F))=F». Already for F», however,
we obtain the restriction on the allowed field
strengths,

A,(F) is the most difficult. From F„(A)and the
boundary condition on A„I have

Z

A,= — dz'Foa(txyz'}+r, (txy}, td.,(tx~,)= 0.
Zp

(A5)

Using this and A, (F) in Fo, (A) at z= z, results in

F„(txyz,)= -s,t, (txy)

tx,(lxy)=-f dxy„(txyz,)+tt, (ty); tx, (ty, ) 0=
Xp

(A6)
This result and A, (E) substituted into the form
E»(4}at z=zo, x=x, allows the completion of A(E),
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Z

F;,-F;,(txyz, )=- dz'[B,F;,(txyz')+B, F;,(txyz'))
0

g Z X

+em'"' dz Fs,(txyz) dz Fms(txyz")-ez'" dzF»(txyz) dxF'„(txyz,). (A8)
Zp gp ZO Xp

This equation is manifestly true at z=z, [I required it at that point in the derivation of A(F)], so I lose no
information by differentiating with respect to z. With simple algebra, the differentiated form may be writ-
ten

(A9)

which is recognized as the temporal Bianchi identity. Here A'„(F)is just our inversion A(E) [and A, (F)= 0].
I continue to use the notation I', (E)=B„P„',-ee"'A-„F„',for the Bianchi forms.

Turning now to E„,one obtains a similar condition manifestly true at z=~p Differentiating with respect
to z results this time in the second Bianchi identity

I', (F)=0.

Finally, substituting into 5'03, I obtain

Z X

F =
J

dz'[-B, F;,(txyz')+B+' (txyz')]+ dx[B,F;,(tx'yz )+B F', (tx'yz, )]+F',(txoyz )
Zp XQ

(Alo)

+em'" ChI"0, txyz + &xI'o& txyzp + &y I'o2 txpy zp
gp XQ

rg QX

x —
I dz F23(txyz")+ I dx F'»(tx yzo) .

~ZQ Xp

As above, the derivative with respect to z of Eq. (All) results in another Bianchi identity,

I',(F)=0.

(All�

)

(A12)

However, Eq. (All) is not manifestly true at z=z, . I must therefore require it explicitly. Substituting the
restriction Eq. (A12) into Eq. (All) at z= z„and doing some simple algebra (all terms involving z integra-
tions cancel) results in

0=X' (tx yz ) F', (txya (+j dx(-8P;(tdyz (+It F', (tx'yz')]
XQ

X X

+em'" dxF,', (txyz, )+ dy E,', (tx,yz, ) Jl dxF»(txyz, ).
X

p Yp 0
(A13)

This is manifestly true at x=x„soI can differenti-
ate with respect to x. This results in the last 0.1
Bianchi identity

I,'(txyz, )= O. (A14)

I have demonstrated that the form A(E) [Eq. (2.10)
in the text] together with the 3.1 Bianchi identities
(as restrictions on allowed field strengths) con-
stitute the completely unique inversion for QCD4.

APPENDIX B: REDUNDANCY OF LAST 0.9 BIANCHI
IDENTITY FOR QCD4

In four space-ti. me dimensions, the consistency
conditions on the field strengths are only 3.1
Bianchi identities —the Bianchi identity in the
gauge direction p. ~ (for our case t(o=3) being re-
quired only at one point in the t(, o direction (for our
case z=z,). In this appendix, I want to demonstrate

that these 3.1 Bianchi identities imply the foll set
of four. The result is gauge independent, so for
notational simplicity I will worg as if I had per-
formed the inversion in the A,= 0 (temporal gauge).

I begin with A(F) in the temporal gauge, and the
3.1 Bianchi identities I";=0 (i = 1, 2, 3), I;(t,xyz)=0.
I will not need the explicit form of A(F)—two prop-
erties will suffice: (1)A, (F)=0 and (2) F[A(F)}=E
(because of the 3.1 Bianchi identities). I want to
show that then 8, I,'=0 follows.

Consider BOIO = B0[B&Ef0- ee'"A~((F)F,'0] where i
is summed from 1 to 3. Noting that BOA,'(E) =F~~
and using If =0 (i = 1, 2, 3) to eliminate all other
time derivatives, I compute

+~abcpb Pc + +2~abc~cde~b~dpe (Bl)
Of course B;B,F(;=0 (this would complete the proof
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trivially for the Abelian ease). Because I";/A(F))
=I';„the other terms are easily rearranged to

Ia & ~~abcgb pc ~~abash ~ (B2

This completes the proof that the last 0.9 Bianchi
identity is redundant in four space-time dimen-
sions o

APPENDIX C: THE CRUCIAL IDENTITY IN THE QUANTUM VARIABLE CHANGE A ~F

I will sketch thh computation for QCD~. I begin with (I suppress products il, over color indices)

M[c] -=fs&xs[ccs]s[c-s(tt)1

QA. ;QA2QA05 A.'» tXyZp 5 A~ tXpyZp 5 A. p tX~pZ0 5Gps+9~A, ~ 5G3»-8

x 5[6»+ ap;]5[6»-(a,A; -a,A;-ee'"AtA', )]5[C'„-(a,A;-a, A;-ee'"AtA', ]

x5[6;2-(a,A'-a A'-ee' 'A A')] (cl)
The integration strategy is a slavish imitation of the steps I followed during the inversion (see Appendix A).

The A, integration is easily done, using the gauge-fixing A, 5 functional and 5[G3,-a, A;1. The value of A,
selected is

e

4, z), (C)=f Sz'C;, (txyz')
«0

Ignoring. multiplicative constants one can read M[6] as the rest of the integrand with A, -A, (G).
To do the A, integration, first change variables to h', via the shift

A.;= —] dz'6»(txyz')+o. 2(txyz).
sstep

In terms of the new integration variables, I have

M[C]= fsttzzttw;s[s;(tx ttz, )]s[tt:(txzx.z,)]S[a.,zs, tt;]

x5[a,horn]5[cc, -[acA, (6)-a,Ac-ee' 'AcA;(G)]]5[cc2+ ~ ~ ]
e « 1

X5 G»p+ dZ &»G~s+&~G3» txyz &»62+~6 "
A» G dZ G23 t&pZ +&"; ~

ep "0
Spht the last 5 at z= z, (into the constraint at z, times the z-derivative constraint):

5[6;.' "1=5[(6;.' ").]5[a.(6;.+. ~ ~ )1

= 5[6'„(txyz,)-a,t ', (txyz, )]

xt , ,',sC, zs+Cs C,+zz'"C', - ttzG' (txttz)zs ,)'
Je

0

(C2)

(csa)

(csb)

M[c]=5[I',(G)]J/uA ~5[A;(tx yp )]5[6',+a A']5[G'„+ ~ ]5[G' + ~ ],

-ee'", I dz 6'„(txyz)G»
ep

The ~', integrations can now be done, using the first and fourth 5 functional in E(I. (C2) and the first factor
of Eq. (CSb). The value selected is s' gzdxc»(txyzc). Thus

0

where I;(6) is the temporal Bianchi form.
To do the A'0 integrations, the most economical

shift is

Ap 4Z Gp3 tXJZ dX Gp» tXQZ
Zp Xp

r&
dy'6', , (tx~'z, )+tt.'„

gyp

I

with ~'0 the new variables of integration. One must
split 5[G»+ ~ ] at z„and 5[6'„+~ ] at z,. Then
resplit 5[$6(e+ ~ },,] at x,. I leave the algebra as
an exercise for the interested reader. The value
of Ap se lected is ~'0 = 0, and the final result is

M [61=5[I'(G)15[I '(6)15[I (6)15[(I'(6)) 1

-=5["s.l"] (C5)
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with no further functional measure. As might be
anticipated from previous discussions, only 3.1
Bianchi identities emerge in four dimensions.
(The same is true for QED4. ) By Appendix B, how-
ever, the last 0.9 Bianchi'identity is redundant, so

I shall ignore ordering problems here, though this
may need further investigation. I begin by noting
that the other three Bianchi identities follow from
the Ham iltonian:

5[I(G)]==ITS[I'„(G)]=5[ "3.1"]5[3,I']

= S["3.l"]a[0]. (c6)
9'Eb &&bbcAb(B)Ec]+86abcAb(E)Bc

r

s)A 5[CGF]5[G-F(A)]=~[I(G)] (CV)

Up to multiplicative constants then, I have shown
that

(D2)

I can use these to do the time derivatives of B'; in

Eq. (Dl). After some algebra, l arrive at

as stated in the text. The form Eq. (CV) is uniform
for all gauge theories in any number of dimensions.

APPENDIX D TIME DEPENDENCE OF Jo (8)

I need to compute

a ave a—Ib =em'"'[F', 2[A(B)] BJ-Eb+ec' 'Ab(E)I('). (D3)

Without the fourth Bianchi identity, I must evalu-
ate F»[A(B)] directly from A(B), Eq. (V. ll). The
final result is

=—[s B'-ee'b'A'(B)B'].i f i (Dl)

—I' =ee' ' E' dz I'(xyz )+A (E)I,'
1 gP

as quoted in the text

(D4)
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