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We consider the finite local field equation —Q+ m')$( x)= limt 0[(l/6)gZ(t'):~[i(x
—4)i[i(x)i[i(x + ():—&(t )i[i(x)+ tr(( )(t' ~ s„) i[i(x)], which rigorously describes g$4 scalar field theory,
and the operator-product expansion $(t')$(0) ~0F(t')N[di'], where N[t[i'] denotes a normal product. For
g & 0, this theory is asymptotically free. We use the asymptotic freedom to calcitlate explicitly, via the
renormalization group, the coeAicients Z(( ), b,(('), cr(('), and E(( }.%'e perform the R transformation
di(x)-+i[i(x) + r on the finite field equation and obtain the operator part of the change to be proportional to
limt 0Z(t')F(g')N[t[i'] which vanishes by our knowledge of the functions Z(t') and F(('). We have
therefore verified rigorously the partial R invariance of —

~gaddi theory. We discuss and solve the
technical problem of finding the solution for renormalization-group equations with a matrix y function where
the lowest-order expansions of the various elements do not begin with the same powers of g.

I. INTRODUCTION

Ultraviolet divergences have plagued quantum
field theory ever since its inception. The usual
method of removing divergences in perturbation
theory by renormalization is perfectly adequate
for obtaining unambiguous answers for physical
quantities. ' The esthetic imperfection of this
scheme remains, however, and it was felt that
quantum field theory should be phrased in terms
of only finite objects, without recourse to inter-
mediary divergent quantities.

Such a quest has already been answered for

some time now, in the conception of ftnite local
field equations written solely in terms of finite
field (elementary and composite) operators. The
existence of these equations has been rigorously
shown to all orders in perturbation theory, and it
was conjectured that they exist also for the exact
solution of the theory.

These finite field equations involve finite com-
posite operators, which can be written explicitly
as the short-distance limits of essentially the pro-
duct of singular Wilson coefficients and point-sep-
arated operator products. ' Thus for the theory of
a scalar fieid t]i(x) with a'gi]is interaction, the finite
field equation takes the form

—(Cl+ ttt')i]i(x) = —.,' g.'lim E .$(x+ ()i[i(x)gati(x —f):— '
gati(x) — ' (n 8„)stti(x) — ' El ~ti(x), (l. 1)

0 1 1 1 1

where n' = $'/(t's)'ts, and E„E„E„E,are the
singular e-number coefficients. They are funda-
mental quantities intrinsic to the physical content
for the particular theory.

We show in this paper how to calculate these
coefficients exactly via the renormalization group, '
whenever the underlying theory is asymptotically
free. ' Asymptotic freedom gives us information
on the exact short-distance behavior for any physi-
cal quantity in the theory, and since only the short-
distance limit is relevant in the finite field equa-
tion, that information suffices.

Our interest in calculating these Wilson coeffi-

cients stems initially from the need to investigate
symmetries which are not present in the classical
(unquantized) field equations, but which arise from
infinite renormalization. ' ' Such symmetries were
shown to be instrumental in throwing light on the
inf rared content of a quantum field theory. Pre-
vious investigations relied on an assumed struc-
ture in the field equations as follows from an ultra;
violet cutoff. With the finite equation in point-
separated form with known coefficients, it be-
comes possible to verify directly the existence
of the symmetry in question. The investigation
of renormalization-induced symmetries can now
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be undertaken with considerably enhanced rigor.
The calculation of these coefficients is compli-

cated by the technical problem of operator mix-
ing. ' We shall solve the mixing problem by a
method which is generally applicable. The prob-
lem becomes quite horrendous for multi-indicial
fields like non-Abelian gauge fields, and in this
first paper of a series we solve the problem for
gp» theory, for which the coupling constant g is
negative. "

This theory is asymptotically free, ' and its
presumed nonexistence" on energy grounds has
been questioned as premature. " In any case, we
shall use the theory as a warming-up exercise.
We tackle the case of non-Abelian gauge field
theory in subsequent publications of this series.

It was hoped that the possible existence of asymp-
totically free purely scalar field theory with nega-
tive g would considerably enlarge the class of
theories which are candidates for the theory of
strong interactions via combination with non-
Abelian gauge fields, with the scalar fields acting
as Higgs particles. Preliminary investigations
indicate" that the simpler cases of theories com-
bining non-Abelian gauge fields and scalar fields
with a negative coupling constant into one La-
grangian are actually not asymptotically free, even
though the two kinds of fields are each asymptoti-
cally free by themselves.

In solving the renormalization-group equations
for asymptotically free scalar field theory, we
face the problem of evaluating the T-ordered ex-
ponential

r exp dt'y( g(t', g))
0

where y is a matrix, whose individual elements
have expansions in g that start with different pow-
ers of g, e.g. ,

Ag 0y=
Bg Cg'

We solve this coupled problem by a method appb-
cable for a y of arbitrary complexity. In the pres-
ent Q» case, we check the validity of the method
by a tedious, direct integration of each element of
the T-ordered matrix exponential. This assures
us that the problem is correctly solved in the
complicated Yang-Mills case, where this. .dix'ect
element-by-element evaluation is not available.

This paper is organized as follows: In Sec. II
we give a brief review of the properties of —~g~ Q
theory where it concerns operator-product expan-
sions, finite local field equations, and the renor-
malization group. We calculate in Sec. III the
Wilson coefficients to lowest order in perturbation
theory, and obtain in Sec. IV their exact behavior

H. ASYMPTOTICALLY FREE SCALAR FIELD THEORY

The asymptotically scalar field theory we con-
sider is specified by the Lagrangian density

2( gAB) 2mD 4B 4 t goAB t

with the coupling constant g, &0. The theory is
asymptotically free, and the P function to lowest
order is

(2. 1)

8
P(g)= u, g-—

go

2 3
~og P ~0 $6 2

The finite field equation takes the form

(2.2)

-(a+ m') y(x) = fgN[y'(x)],

where N[P'] is defined via the short-distance op-
erator-product expansion (::indicates subtrac-
tion of the vacuum expectation value)

(2.3)

:y(x + ~)y(x)y(x ~):

;,E.(&)y(x) +E,(t)N[y'(x)]

+E,(g)(n S„)'@(x)+E,(~)ay(x). (2.4)

Thus it is crucial to analyze the Wilson expansion
of the product of the three operators $Qp.

We enumerate all the operators that can contri-
bute to the expansion for a given scale dimension.
Operators like $8,$ which are even in P are ex-
cluded by the P- —P invariance of the theory
Thus there can only be N[Q'] and B„B„Q To make.
a scalar out of the latter we can contract with g.„
or $„g„/g', and still conserve dimension. So we
can use the operators fN[P'], (("t' "/g')B„B„&P,CI Q)
as a set that is closed under renormalization, and
we can define the multiplicative renormalization
matirx to be

in the short-distance limit via the renormalization
' group. In doing so we discuss and solve the tech-
nical problem of finding the solution for a renor-
malization-group equation with a matrix y function
where the lowest-order expansions of the various
elements do not begin with the same powers of g.
In Sec. V we demonstrate explicitly the correct-
ness of the solution by direct integration of the
matrix renormalization-group equation element
by element. In Sec. VI we use the knowledge of
the Wilson coefficients to demonstrate that the
i'inite local field equation for —

~g~ p' is partially
invariant under the R transformation P(x) —Q(x)
+ ~. Finally we make some remarks on the pos-
sible summability properties of the perturbation
series for g +0 and their bearing on the existence
of -~g] Q' as a genuine quantum field theory
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B.', (' S)'e.,o~J = [~[~'I,(' S)'e, os]Z,
(2. 5)

with n" = g" /($')' ', and where the subscript 8 denotes
bare quantities. Ne define the y function for the
(t)(t)(t) expansion in the usual manner:

&(y=Z& p g(a Zap o

g r~xea0

(2.6}
FIG. 1. Lowest-order diagrammatic contribution to

the singular function E~($).

where

(2. 7)g g -3/Rg

Z is the quantity which satisfies the renormalima-
tion-group equation. ' As it turns out, Z, is finite
in the - ~g~ $' theory, and so the distinction is
minor.

Equivalently (2. 5} can be written as the Wilson
expansion Eq. (2.4), so that the behaviors of the
E's as g-0 are the same as those of Z =ZZ, ' '
(see Ref. 9}as A- ~:

III. PERTURSATIVE CALCULATION OF THE SINGULAR

COEFFICIENTS

The lowest-order calculation of the %ilson coef-
ficients in the PQP operator-product expansion
follows standard procedure. ' The lowest-order
contribution to I:, is given by the Feynman dia-
gram of Fig. 1 (plus permutations), and we have

E&"(])= g In)~3
1 32

1 110

E2 21 S

3 81&

(2.8}

~, ln —,3 A
&6m'

(S.1)

where the superscript indicates the order in g, or
equivalently, by (2. S}, that to first order,

and so we shall use them interchangeably.
For obvious reasons w'e refer to the (n (t)'(t)

term in the expansion as the direction-dependent
contribution. These direction-dependent terms
were missed in the formal field equations written
in terms of renormahzed fields and renormaliza-
tion constants S, and Z, . The inclusion of these
terms in our renormalization-group calculations
therefore puts our resulting finite field equation
on a footing more rigorous than heretofore.

The renormalization matrix S satisfies the re-
normalization-group equation

3g Ag„=1 —
16

ln —,
7T P

(S.2)

N[P']- Z, gp', (S.S)

since there is no first-order contribution to Z3.
S„is to this order identical to 8, ', the inverse
of the coupling-constant renormalization. This
means that the formal field equation with explicit
renormalization constants, where one writes the
interaction terms as

PIo» oo—„+o(o)o— +r»(g)I E((, o)=o.8

(2. 10}

In the following, we shall always identify the g- 0
and A ~ limits.

The (t)($)(t)(0) operator product has a similar ex-
pansion,

~(~)e(0};&(~»[e'], (2. iS)

whose structure is very simple since N [(t)'] is
the only operator that can contribute.

I Io oo—„.+P(o)o— +r»(o) z„—„,(l=o,

(2.9}

which is the same equation satisfied by the singu-
lar functions F~(g, p):

retains its validity to this order.
The contribution to E,(() and $,($} is given by

the matrix element of P(t)P between the vacuum

~0} and the one-Q-state ~p}, as illustrated in Fig.
2. It is convenient to hold the limiting separation
] finite and use it as cutoff parameter. The rele-
vant contribution is obtained by differentiating the
diagram of Fig. 2 twice with respect to P, and then

FIG. 2. Lowest-order diagrammatic contribution
to the singuLar functions E2($) and E3(().
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FIG. 3. Lowest-order diagrammatic contribution to
the singular function E(g).

1
4 t

1
C=2"3 4 '

1D= 4 ~

(4. 3)

g A-+ 4ln —,24g' p,
' (3.5)

setting p = 0. Thus we obtain

E(1)ga!g8+2E(l} a8
2 3 g

d'p d'q 8(p+ q) (p+q)'
(2)) )' (2v)' - (p + q)'p'q'

~if '(c+2p)
(p+q)'p'q' '

(3.4)

Segregating the terms proportional to g ~ and to
n n, weget

S,(~) = — g, in~'

We see immediately that this matrix equation has
the characteristic that the lowest-order contribu-
tions in y are of different powers in g. This fea-
ture is not of critical importance in the present
theory, where g(t) -, „-(b,t) ', with t= in(A/p},
and

1
g'(t) ~ (4.4)

0
1

With this rapid falloff in t in the effective coupling
constant g, it turns out to be justifiable to neglect
the O(g') contribution. We have, however, de-
veloped a general method for solving this mixing
problem, which, when applied in this case, gives
extra information. This general method will be
seen to be indispensible in the case of non-Abelian
gauge theories, when

E3(g) =+ 4 in)2 1
g N A (3h t}). / 2 (4. 5)

g A
4ln —.96g4 p,

' (3.6)

E(g) = 1+ 16, ln)'

The Wilson coefficient for the (t)(t) operator-pro-
duct expansion is simply given by Fig. 3, and we
have

2 1
~A 2b NA

(4.6)

and where the O(g') terms cannot be dropped. "
Formally the solution to the renormalization-

group equation (4. 1) is as usual:

- 1-,ln —.g A
8n' p.

(3.7) g (~ g) —p Texg f gt y(g(l g))'',
j 0

IV. RENORMALIZATION-GROUP CALCULATIONS

x g, ,(1,g(t, g)}. (4. 7)

The renormalization matrix S for PQ(t) thus
satisfies the renormalization-group equation

8 8 A
6,.q p, —+ p —+y, , Z„., —=0, (4. 1)

with

The difficulty with the mixing problem lies in the
evaluation of the T-ordered exponential of the y
matrix needed for the solution. We show below
the more generally applicable method; in Sec. V
we shall present the alternative way of direct
evaluation of the matrix exponential.

We write the component equations of (4. 1), in
an obvious notation, as

0

Dg 0 Cg'

(4.2}

y, ll g ll t

D„Z2, ——Bgdl, + Cg Z2l&

Dt Z3l —DgZll + Cg Z31 P

22 — g 22 3

D„Z33= Cg'Z33.

(4.Sa)

(4. sb)

(4. Sc)

(4. sd)

(4. Se)
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Equations (4.8a), (4.8d), and (4.8e) can be solved
independently, giving the results

which eliminates the arbitrariness in (4.13) to
give

Z„,Z„=finite (4. 8) B, B,
B,=O. (4. 18)

ll 1 (4. 11)

to aQ orders according to the renormalization-
group calculations. The only effect of the intro-
duction of operator mixing is to add extra additive
direction-dependent terms to the finite field equa-
tion. The coefficient multiplying the QPP singu-
larity remains the same as the formal fieM equa-
tion in terms of Z, and Z3.

For Z2 y we consider the quantity

D.(gZo» =@og'+ ~g'}Zoi+ &g'Z»

= &,g(gZ. ,)+&g(gZ„),
keeping only lowest-order terms. We have used
the definition D, g= P(g). We see here that the
Cg' term is ignorable for the renormalization-
group calculation.

We write an ambit~a~ decomposition

Zyy exp dg' ——= bot " o = ~ . 4. 10
0

Thus the renormalization-group equation for Z»
can be solved by itself, and there is no effect from
operator mixing. Since Z» —Z, ' to lowest non-
trivial order, this means. that

by

B - - B
gZ2) gZ» gZ2((1)g) FZ»(lag} g

«J

= finite,

and so we have, using (4.10),

Z — —oQ

t~

Note that we have also obtained the ~atio

Z„B 1
Z„A 3p' '

(4.20)

(4.21}

(4.22)

Similarly, we can solve the other pair (4.8a) and
(4.8c) to get

Z3 g ~

t ~oo
(4.23)

and obtain the ratio

Z, D 131Z„A 12m' ' (4.24)

Thus we can solve the diagonalized equation

D. gZ2i- —gZ» =&og gZ2i- —gZ» (4 19}
B - - B

B=Bi+B2

and get, using (4. 8a),

D„(gZ2)) = f)og(gZ2)}+ ' gD, Z

+ &2g( gZ. i)

Similarly,

D.(gZ }= &og(gZ»)+g(D. Z»»
and so

~B
gZo~ —~ gZ~

i

B~bo= bog gZ2i+
b

B2 ~ g'Z» ~

0

(4. 13)

(4. 14)

(4. 16)

In the language of Wilson coefficients, the above
results are stated as

E,.(g) e,.[boln((')'~']"~'o, i=1,2, 3, (4.25)

where the constants e„e„and e3 obey

(4.26)

(4.2V)

The Eqs. (4.25)-(4.27) form the main result of
this paper.

The mass-shift term E, in the P(()) Q expansion
was evaluated in Ref. 12, and we have

This equation can now be diagonalized by requiring
that

B, 1 Bb 't—= —a—A'=b. A')

Eo(]) ~~2(ln)') '+ smaller terms.
~-o ]' (4.28)

The results of our calculation, Eqs. (4.25)—
(4.28), thus give explicitly all the c-number coef-
ficients in our finite field equation (2. 3) and (2.4):

-( + yg')(I)(x) = —', glim e, '[b,ln($')'~'] "~'o:Q(x —$)Q(x)p(x+ $):
fwo

1 e, in)' 1, 1

( ) ~ ~I y(x) («'8) A(r) )~ n((x)I (4.28}
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V. INTEGRATION OF THE T-ORDERED EXPONENTIAL given by the T-ordered exponential

For our -~g~ (t)' theory, the mixing problem is
of manageable proportions, as we saw in Sec. IV.
Indeed, for the simple 2& 2 y matrix, the renor-
malization-group equation can be directly inte-
grated by evaluating the, T-ordered exponential of
y's. This we shall do in the following; we doubt
very much that this direct evaluation, complicated
as it is in the 2 & 2 case, can be generalized for
use in the mixing problem of Yang-Mills theories
involving y matrices of very large dimension.

We shall solve the equation pair (4.8a) and
(4.Sb) by direct integration. The solution is

Z, ,= Texp dt'y t', g
X= 1 nn fj

with

x Z, ,(l, g(t, g)),

Ag 0

Bg. Cg'

(5. 1)

(5.2)

Let q be the T product in Eq. (5.1). It is easy
to see that the q» and q» elements are elementary
to evaluate:

q» ~ — dt, ''' dt„t, 't„=Texp — dt t =t ~ 0
'n 1-

1
(&O

(5.3)

q22 ——finite,

both being for t- ~.
The only difficulty is the q» element:

(e n-1

0, Q(-1)f &(&, f'" '&(& nL"n' 'c' "(&-'"-"(-( )-«"." (
-* (& -')(&-'

& ').
t~~

n=O L" 1

Vfe first evaluate the n -l+ 1 integrations involving t„.. . , t„:

(5.4)

(5.5)

q„=g(-1)" dt,
n=0

n-1
1B~ Alngl-1 52(l-1)( 5 )-(n-l+1) (t -2. . .t -2) (lnt )n-1+1l-1 ~ 0 . 0 1 11

( tel)l l 1
)"1

To perform the remaining integrations, we use repeatedly the formula

(5.6)

f nl nt
~ y en

dxx"(lnx) = „—g] I, (lnx)",+i, , &n+i)
(5.7)

and we get

n-1 (
q —BV ( 1)nY An-lg(-1$ -2(l-1)( f) )-«-1+» ~

21 ~ ~ 0 0 (I 1)l
n =0 )=1

(5.8)

It is clear now that the largest contribution comes from the coefficient of l = 1; all other contributions are
smaller by integral powers of t as t-~. Thus we have

q„~ Bp(-1)nA~'( t1 ) "—(lnt)"=Bt"-t'0
g ~00 n!

n=O

(5.9)

In terms of E, and E„ the solution of Eq. (5. 1) is then

tA/bO1 0 & const& t" ~bo

(5. 10)
E Bt" '0 (finite) g const x t" 20

in complete agreement with our previous results (4.24) and (4.25).
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VI. R INVARIANCE

By an R transformation' on a field theory, we
mean a constant shift in a particular (not neces-
sarily all} field

ft: C,.(~)-e,(x)+ r„ (6. 1)

with i enumerating all the quantum numbers of the
fieM. The theory is said to be R invariant if the
(renormalized) finite field equation is invariant
under the R transformation.

Classically, the invariance holds in massless
derivative -coupled theories. Many more theories
become R invariant, however, when renormaliza-
tion is taken into account to all orders Th. e (re-
normalized) finite field equation is R invariant
even though the classical field equation is not.

This renormalization-induced aspect of R in-
variance is thus particularly useful in illuminating
problems which cause confusion either classically
or order by order in perturbation theory. A rig-
orous consequence" of R invariance is the validity
of low-energy theorems. Typically, the theorem
states that the n-point one-particle irreducible
vertices of the field 4,. vanish in the limit when

any m (&n) of the particle momenta approach zero.
For non-Abelian gauge theories where a conserved
color current exists, this has been shown to lead
to an infinite effective coupling in the infrared
limit, ' which furnishes a plausible mechanism for
color confinement. For our -~g~ Q' theory, the
low-energy information has been used to cast
doubt" on the statement, valid on a semiclassical
level, that —~g~ @' does not have a well-defined
quantized theory, as the energy of the system is
not bounded from below. "

Al/ of these assertions connected with R invari-
ance presuppose the existence of finite local field
equations for the relevant theory. Now that we
have the finite field equation for —(g~ Q' with
known Wilson coefficients, we can verify directly
its transformation properties under R.

Thus we make the R transformation

larities in the P@ operator-product expansion in
order to decide on the magnitude of (6.3}. The
lowest-order calculation, (3.7), yields, via the
renormalization group, the result

y(g} ~ [(]R)l/2] 1/Bt bb
$~0

(6.4}

So we finally see that

(4}l(l[y2] ~ [(g2)1/R]1/18t b&~[y2]
&,(g) c-0

(6.5)

showing that the —Ig~ @4 theory is indeed partially
8 invariant.

VII. REMARKS

Asymptotic freedom has enabled us to obtain a
finite field equation in point-separated form for
—~gI (p theory. The real question is whether the
quantum theory exists. We have already men-
tioned the difficulty with the ground state. A

further difficulty arises in another quarter, from
the estimation of the large-order behavior of its
perturbation series. By exploiting the existence
of an instanton solution for g &0, the usual +g(f(~
theory was shown to have a Borel-summable per-
turbation series, wherea's the series for —

~g~ (p4,

having terms all of the same sign, seems to be
not even Borel summable. " If the perturbation
series were not even summable, it would throw
grave doubts upon the consequences of its asymp-
totic freedom, which is after all predicted on the
series being at least an asymptotic expansion for
small g of the true solution. The same danger is
therefore present also for asymptotically free
non-Abelian gauge theories.

However, there may be a glimmer of hope:
instead of considering the usual Borel transform
a, (p),

ft: y(x)- y(~)+r
B,(P) = . d~

—
~e W(g),

2w2 ( ig/
(7.1)

in our field equation (4. 28), and the only terms
that do not obviously vanish are the following: (1)
the (infinite) mass-shift term; this does not
change" the low-energy theorems which follow
from R invariance because it is a e number and
can therefore be neglected"; when R invariance
is violated by a mass term a,s in here, we refer
to the existence of a partial R invariance; (2) the
terms proportional to

B,(v)= . ' dze'"W(g=~ ').
2mi .-;- (7.2)-

The difficulty with the first Sorel transform lies
in the fact that the instanton yields a singularity
of the form"

for the generating functional W(g) say, one might
consider the second Borel transform'

lim Z, (~)-'y(x+ ~) y(x) = iim N[y'] . (6.3)
&(~)

0 105

We therefore require the knowledge of the singu-

on the integration path of the Laplace integral

w(g)= f dpe ~~'B,(((),
0

(7.4)
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B,(v) ~e' (7. 5)

as v- ~, which does not prevent the existence of
the integral even beyond the cut at ~argg~ = 180'.

inverting B,(P) to give W(g). In the second Borel
transform, the instanton gives an exponential
damping

Apparently there is an extra imaginary part of the
form

(V. 6)

which does not imperil the predictions of asymp-
totic freedom. Nothing really goes wrong on the
ray

~
argg~ = 180', which merely corresponds to a

Stokes's ray" of the asymptotic expansion.
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