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Moment recnrsions and the Schrodinger problem
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We present new techniques for attacking the Schrodinger eigenvalue problem. They are based on
asymptotic solutions to an exact set of recursion relations satisfied by moments of the coordinate operator.
We apply these techniques to the generalized anharmonic oscillator 0 = P'+ X' and show how to
compute the energy levels, all of the moments (X"), and the value of the wave function and its
derivatives at the origin. %'e specialize to the case I = 2 to obtain accurate numerical results for the low-

lying energy levels as well as (all) the moments. We also discuss the case V(x) = dx '+ x '. Transition
moments are then treated in the same manner.

I. INTRODUCTION

In this paper we present a general yet practical
(and simple) method for the 'computation of energy
eigenvalues and physically interesting observables
with equivalent accuracy. Because of the recent
interest in the anharmonic oscillator from both a
mathematical 6 and a computational~ 9 point of
view, the moment method will be applied to poly-
nominal potentials in this paper in order to iQus-
trate its use. Power-behaved potentials, such as
the Coulomb interaction, can be included in this
class.

Elegant and simple evaluations of certain per-
turbation expansions using recursive methods have
been discussed by Swenson @nd Danforth' and Kil-
lingbeck. " The evaluation of high moments and
the coordinate operation in terms of its lowest mo-
ments has been described by Banerjee. In this
paper these recursive methods are generalized
and are shown to determine thy energy eigenval-
ues as well as the coordinate moments.

II. RECURSION RELATIONS

The derivation of generalized virial theorems
has been well discussed. Here we shall discuss
a restricted class of relations that are of immedi-
ate interest to the problem at hand. Consider a
one-dimensional Schrodinger problem and the
double commutator

[a,[a,g(x)]],
where

H= ~ +v(x).dxZ

Taking the matrix elements of (1}between eigen-
states of H, and symmetrizing, one finds

(E, -E„)'(llgl m) + 2(E, +E „)(fig I m)

=(l
(
2g'v'+ 4g"v

(
m) -(f Ig""(m), (2}

(any coefficient can be scaled to unity), and, with

+S42g"= N. 2 (4)

that Eq. (2) becomes

4E(N+ 1)Q"=4(N+M+ l)Q '

-(N+ 1)N(N- l)Q"

where

qN (f I
+N

I f)

The discussion for /4m will be given in Sec. VI.
Equation (5) and its obvious generalizations form

the basis of this method. The familiar virial the-
orem is achieved by choosing N=O,

E =(M+ l)Q

As Banerjee has discussed, knowledge of the even
moments from X=0 to K=2M allows one to com-
pute all of the higher even moments by repeated
applications of Eq. {5).

Let us define the odd moments by

q" =(fl iI "IQ

-which also obey the relation (5) for N& 3. For
smaller N, a simple integration by parts for N
&1 yields the relation

where the prime denotes differentiation with re-
spect to the argument x. This is exactly the re-
lation derived and discussed by Banerjee. '

The matrix elements of (2) take on the particular-
ly useful form if the potential is a polynomial. Al-
though. other cases can be treated, we will restrict
ourselves to polynomial potentials here. For ex-
ample, by setting l =m (and dropping explicitly the
label / from now on), one finds for the case of a
pure power

v(~) =~" (3)
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Thus

lim (N —1)Q" 2=252(0),
&- i+

and one finds

0'(0) =(~+2)Q '-2ZQ'.
Proceeding one step further

d .0'(~) =2MQ ' —4Z4'(0) .

(N-l)Q" =2 Jt Ck(N-1)z" 2$ (x)
0

(8)

asymptotically as V-X, fall at large distances as

t(~)-expl ~+, ).gM+1 ) '

Since the moments are controlled at large N by the
large-x behavior of g(x), one finds that

or

It is convenient to rewrite the last equation using
'V(0) =0,

d
—.0'(&) =2tl'(0)]' —2Zl&(0)]'

in the form

Since the states have a given parity, only one term
on the left-hand side of Eq. (9) can contribute at a
time. Incidentally, note that the value of Eq. (8},
i.e. , q&'(0), indicates whether or not one is deal-
ing with an even or an odd state. %e see that the
value of the wave function and its derivatives at
the origin can be determined from a knowledge of
the odd positive moments. Note also that for a
symmetric state, Eqs. (8) and (9) imply a relation
betweenZ, Q', Q~ ', and Q+'

Higher derivatives of the wave function at the
origin g~ ~(0) can be computed by continuing the
moment recursion relations to more negative N
values. Alternatively, one may use the differential
equation with the initial condition given by Eq. (9),

"(0)= 5 " '(0}-Zg "'(0}. (10)
(k -2M}i

This relation will be applied to the quartic oscil-
lator in Sec. IV.

III. ASYMPTOTIC BEHAVIOR AND EIGENVALUE

CONDITION

In the preceding section, a knowledge of E and
the low moments was shown to be sufficient for de-
termining all higher moments recursively. Actu-
ally a study of the behavior of (5) for large Ã will
lead us to a convenient method for determining E
and the lower moments as well.

That the large-N behavior of Q" is connected to
the eigenvalue condition should come as no sur-
prise. Imagine solving the Schr'odinger equation
in coordinate space. The wave function ~ust be
finite at the origin and, for a potential that behaves

for large ¹
More accurate estimates will be

given shortly for the asymptotic behavior of Q".
The important point is the following. U a se-

quence of I+ 1 even moments of Q» are known at
some (large} value of N, say N, the recursion re-
lation (5) with an arbitrary Z can be used to com-
pute the Q" down to N = 0. The demand that Eq.
(5) for N =0 (the virial condition) is consistent
then determines E. Actually one does not need to
know a,ll I+ 1 moments but only M ratios since
their overall normalization is fixed by requiring
that Q0=1.

Our procedure in practice is as follows, Derive
an asymptotic expansion for Q" at large ¹

Then
choose a sufficiently large value of X„so that the
fractional errors in Q" are acceptable. Then use
these approximate values to start off the recursion
relations. Since the recursion relations are lin-
ear, one finds that the fractional errors propagate
approximately linearly. Hence the fractional er-
rors in Q2, . . . ,Q (and Z) are roughly the same
as those in Q" (and these can be made arbitrarily
small by choosing N„ to be sufficiently large).
Once the even moments have been used to deter-
mine Z, the odd moments can be properly normal-
ized and $'(0), etc. , can be computed.

This procedure is simpler than its description,
so let us turn to an example which clarifies it.
Numerical results and examples wiQ be given.

IV, ANHARMONIC OSCILLATOR

For this case the recursion relation can be wnt-
ten as

N+M+1 Q»" N(N-1) Q"
N+1 Q 4 Q"

From Eq. (11)we know that

~)N / &&+&)

3 j
and hence the Z term is nonleading in Eq. (12).
Define q" to be the solution of Eq. (12) when Z =0.
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One finds that

q" =(M+ 1)"

2j/I+2j 2M+2 2M+2
N+M+3)

2M+ 2

Introducing F(N) through the relation

Q" =q" exp[-F(N)],

then F(N) is determined by the relation
F &»)» (»+2») E &» ) E (» 2) .

(N)e -e

(13)

(14)

(15)

Note: The above series is accurate at fixed 8
for N large. In dealing with higher excited states
it is convenient to rearrange the ratios of Eq. (15)
in the form (c=4 and -2)

eZ ~N ) -Z &ar+C )

=W (E) ~~ 1+ —W((E) — -~ +0 ~
(18)

where E -=E(2/N)4~~ and W~=dWO/dE. Substituting
into Eq. (15), one finds that Wo and W, satisfy

S"03 -g 8'0 ——1

and

where

R(N) =(M+1)
N+M+1 ~ + 't

~ X+3

N+2M 1
i

N+ 2M+BI +M+3i
2M+2 & 2M+2 / 2M+2 )

For large N, R(N) can be expanded in an asymp-
totic series and R(N) -(2/N)", r =2M/(M + 1}. F(N)
can then be determined by matching coefficients.
To be more specific, let us consider the case M
=2 or V(x) =x~. To low order

482
w, = w, [(s+2Ew, )(sw, ' -E)]-'.

A

This expansion should be good when E is fixed and
N becomes large.

A simple procedure to solve the quartic oscilla-
tor eigenvalue problem is as follows. To deter-
mine both the even and odd moments we need six
input moments Q ", Q""'', . . . ,Q""'S,where N
is even. Since the normalization does not-matter,
define the five -dimensional vector

V(N) Q»+) Q»+2 ' Q»~8

Q»
'

Q»
' ' ' '

Q»

= V' N, V' N, . . . , V5 N

)'N~ -'~' E' /N') -'I'
F(N)-E]—

/

——
]
—

/
+0(N '~').

E2 ) 30 (2)
It is straightforward to carry this procedure out

to higher orders. Defining

E(N) =-

Q E,(
—')

the first few values of E, are found to be

F) E, F5 E/3—0, F—
q

-——- 55E/252, FB E'/18, —

(17}
Fgg ——293E /(44&&3~), and F)2 ——-2E /3 .
The omitted E,'s are zero.

One may compute V(N„—2) by using the recur-
sion relations Eq. (12) and by assuming a trial val-
ue of E. This procedure is repeated until V(0) is
reached. The virial theorem then must be satis-
fied at the proper E [this is equivalent to the or-
dinary boundary condition at the origin, or in this
language that the term N(N —1)(N+ 1)Q" 2 is zero
as N-0+]. This sequence is repeated until the E
satisfying the virial condition is found. Once E is
fixed, Q', . . . , Qs are then directly known since
Q0=1. There are in general a large number of
values of E satisfying the virial condition (depend-
ing on N„and the starting values of 7}. These are
the energy eigenvalues.

TABLE I. Convergence of method.

)y(o)) '= 2Q'/&

16 ~

64
256
1024
4096
M384

1.051533050
1.060 734 005
1.060 356 106
1.060 361528
1.060 362 084
1.060 362 090
1.060 362 090

0.367 921250
0.362 508 956
0.362 034 406
0.362 022473
0,362 022 647
0.362 022 648
0.362 022 648

0.642 837408
0.629 372 638
0.628 762 340
0.628 751219
0.628 751368
0.628 751369
0,.628 751369
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TABLE H. Moments for first three leve1s of II=P2

+X4.

Ground First Second

1.060 362 090 5
0.487 577 026 7
0.362 022 648 8
0.333352 058 2
0.353454 030 2
0.415 691940 0

3.799 673 03
0.883 01025
0.901605 90
1.024 585 33
1.266 557 68
1.677 575 12

7.455 698
0.974 638
1.244 714
1.716 708
2.485233
3.748 430

UJ

~ 0
I

LLI

humer ca/ Results. Let us numerically examine
the convergence properties of this method. Fixing
&'=5, the values of E and Q for selected values
of N are given in Table I. ' For completeness, in
Table II the values of Q" for small N are given for
the first three levels.

The computation of E and the Q" is extremely
rapid. For a fixed trial value of 8, the five initial
values of the vector V(N„) must be computed and
then N„recursive steps are performed to calculate
down to N =0. This is repeated for several values
of E until the appropriate root of the equation F.

, -3@4(E)=0 is determined. A sample graph of
this equation is given in Fig. 1.

One amusing feature of the numerical results is
that the values of E oscillate as a function of N
with a wavelength of 6 (see Fig. 2}. Two of the
outputE values for N„, N„+2, and N„+4 are
found to be larger than the exact F. value, while
the third one is roughly bvice as far below. The
average of these three Z values is actually several
significant figures closer to the exact value than
any single one. %e do not completely understand

IO

FIG. 1. A graph of the virial function E —3Q4(E) vrhose
zeros determine the energy eigenvalues.

this feature but it clearly depends on the detailed
structure of the potential, the recursion relations,
and the asymptotic estimates.

To compute the Taylor expansion of the wave
function for the quartic oscillator, one may use
Eqs. (9) and (10). For even or odd eigenstates,
one knows from Eq. (9) that

4.(0) = (2Q')'".
This is sufficient information to completely deter-
mine the wave function from Eq. (10). The first
few terms of the Taylor expansion are

EX E'X' 120 E'X, -E' —960EX,
31 5l Vl 91

(20)

For large N, it is easy to see that the first hvo
terms on the right-hand sige are dominant, and
the d term is larger than the constant E. Follow-
ing the preceding section, define

-z&z)-a&z) (22}

where q" and F(N) are given by Eqs. (13) and (17).

V. THEPOTENTIAL V=h4+Ch2

The moment relations for this potential has form

N+3 q"4 N(N-1) q" ' d(N+2) g""
N+1 Q" 4 Q (N+1) Q

(21)

Then D(N) is found to be

D(N) =dl 2 +QDrl NE2, l i lEN

where

D( ——$d, D2= ed, De=0 ~

D4=$d, D5=6d -PgEd —4X94d,
1 2 ~ 4

(23)

(24)

One can also scale the series analogous to Eq. (18)
and the approximate scaling variable is d(2/N)
=d ~

A simplified form for Q" that is correct in the
limit of large N is
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The behavior of the solution

f dZ=d e, introduce
ng. De-

@If dN /4qF (26)

and the moment rment recursion relation 2ment r ' a xon (21) becomes

N(N-1) P"
N+1 P 4 P"

(N+3) P"+4

(N+1) P d

as d he solution for P"
(27

o a simple harmonic oscillator.

r((N+ 1)/2}
1'(1/2) 28( )

and 8=1.
The ne 1gleet of the right-han

fied provided that

N«N, =2d"4- .-3.
Thus onl t ory he moments for N «N

(29

potential; the anh
n rois the B»N 0

o - ed' term on the a soe

tio
wav

ence the wave f ' sma l xunction for small x ' esma l x rises and the

E (1)=
have

p
——1.392 35,

ve energies
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E2(1)=8.655 06.
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(1/2) =1.23335 q'( /1 2) =0.33103,

E(0)=1.06036 Q (0)=0.362 02,

E(-1/2) =0.87002

The first thr

-1/2) =0.4.40089.

ree states for d =1
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T"=2 dx, x, x

and the choice
~8+2

g'"'= N+2

allows Eq. (2) to be written in form

N+M+1 T"' N(N-1) T"
X+ S T" 4

(80)
-2{M+ l)T+ 2ETO+ e~T2 =Jr(0),

where $,(0) and P,'(0) are evaluated by using Eq.
(8).

Finally, for the O-O transition, T" is written as

T" =. 2 dxx""pr(x) .
0

The limit as Ã--1 of Eq. (82} yields the condition
' -e'T' =pr {0)=)I)~(0))1),'(0}. (40)

~2 TH+2

(N+2)(N+1) T" (32)

82 3 5/3
G(N)= ——. + ~ ~ ~ .20' N (84)

Starting at large N, the 7" at successively lower
values of N can be computed fro2m (82). Thus they
are completely determined at this stage of the cal-
culation except for one overall normalization con-
stant.

The absolute norma, lization of T" can now be-
fixed by considering sufficiently low values of ¹

%e must, however, discuss separately the even=
even, even-odd, and odd-odd transitions. In the
first case, E-E, we have

2"=2f F2"2,(x)2,(2)=2f 222~(2);

where Pr(0)22 0. An integration by Parts yields the
result

lim(N —l)T" ' =2pr(0) =2&)(0)(1)q(0}, (86)
8~2

where the relative phase between (1), and )1)~ is of
course arbitrary. Letting N-1 in Eq. (82) pr' o-
duces the condition

(m+ 2)T~' -2ET'- —,'e'T' =p&0) (3V)

which allows the T"s to be normalized in this case,
since tP, (0) and $&(0} are given by Eq. (9}.

For the E-Otransition, T" is written as(

2' 2f 2m 2"2,(x)2,=(x) = 2 f 2~2"2i (*),
(38}

where a factor of x has been extracted from the
odd wave function and hence I)r(0)22 0. It follows
that

»mNT" '=2Pr(o) =-+l(0)4$(0),

and thus

where 2E =8&+8& and 2e=E, -E,-.
As before, the asymptotic behavior of T" must

be determined, One easily finds that

T"=t,Q"g}e ' "', (88

and for the special case M =2,

Thus it is possible to absolutely normalize the
transition moments in terms of the normalization
of the individu3, 1 wave function at the origin.

Applying this method to lowest E-O transition,
w)e find for the quartic oscillator M =2 that

(01X1 1) =0.600806. (41)

Using Eq. (32), one finds (N=-1)

(Ol x'1 1}=-' (01XI 1)e' .
Higher moments are determined" by successive
ap2plication of Eq. (82}.

VII. CONCI.USION

The moment method described here seems to
possess many practical advantages. Among these
are the simphcity of the numerical analysis hand

the fact that one deals directly with quantities of
physi'cal interest, the diagonal and transition mo-
ments (rather than a point-by-point description
of the wave function which must then be integrated}.
The moments are computed with essentially the
same fractions, l accuracy as the energy eigenvalue.
This is in contrast to, for egample, variational
methods which coxnpute the energy quite efficiently
but have a much larger (square root of the fraction-
al energy error) uncertainty in the moments. In
addition, there is no explicit diagonalization of
large matrices required in our method.

An alternative use of the Inoment approach is in
discussion of perturbation theory. For example,
the divergence3'4 of the power-series expansion of
a quartic perturbation of a harmonic oscillation is
easily seen by examing the asymptotic moments.
Similarly, if a quartic oscillation is perturbed by
a quadratic term, the fractional first-order change
in the moments is easily seen to grow as N'
This immediately suggests several possible altern-
atives to perturbation theory in which the exact
recursion relations are used together with pertur-
bation theory to increase the radius of convergence
of the expansion.

In summary, the moment approach is simple yet
efficient for numerical analysis of power-law po-
tentials, and may provide an interesting basis for
the discussion of more general mathematical prop-
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erties. In addition, it treats the Schrodinger
problem in terms of moments. This is in direct
analogy with the treatment of field theory in terms
of %ightman functions.
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