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Kinks anii the Heisenberg nncertainty principle
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The Lieb form of the Heisenberg relations is applied to the kinks of a nonlinear Dirac field. It is found
that these relations are violated for large enough values of the self-coupling constant. A close relation
between this violation and the norm of the kinks is established.

I. INTRODUCTION

The important development of nonlinear classical
theories of extended particles poses a very in-
teresting problem: their compatibility with the
Heisenberg uncertainty principle. In fact the velo-
city and the position of the center of a kink, soli-
ton, or solitary wave can be known with arbitrary
precision. Even if the width of the kink is taken
as the value of the uncertainty of the position, the
Heisenberg relations appear violated. In this
paper we will show that, in two simple models,
such a violation does occur when the self-coupling
constant corresponds to a small value of the norm
of the kink. From this we will conclude that the
violation takes place when the norm of the kink
is smaller than a quantity of the order of S, a
situation which deserves the qualification of "ultra-
quantum»

H. THF LIES FORM OF THE HEISENBERG RELATIONS

In order to understand better the problem let us
stress that the Heisenberg relations can be con-
sidered from two different points of view:

(a) as a mathematical statement which expres-
ses a property of the Fourier transformation,

(b) as a physical statement which prevents the
simultaneous determination of the momentum and
the position of a particle.

%bile the first statement is always correct,
provided that the Fourier transformation can be
defined, the physical one is true only if the use
of the operator (5/i)V as a representation of the
momentum is adequate. As we will see, this is
no longer the case vghen the norm of the kink is
small enough.

In order to study the Heisenberg relations in a
nonlinear classical theory it is very convenient
to use the form proposed by Lieb, '

9
(X')I,TI, ~ 4

where TI, is the mean value of ~p/2m, the non-
relativistic kinetic energy, and (x')I, is the mean

square radius. In a classical field theory the
left-hand sidy can 4e calculated from the energy-
zpomentum tensor, independently of N. Equation
(1) thus gives a condition on the parameters of
the model in order that the Heisenberg relations
be verified.

III. NONLINEAR DIRAC FIELDS

Ne mill consider two cases:
(a) The classical nonlinear Dirac field described

by the Lagrangian" 4 density
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Soier' used Eq. (3) to construct a model of an
elementary fermion and calculated numerically
the functions E,G which depend on 0 but not on

He found a family of solutions which depend
continuously of the frequency Q. It turns out that
thy energy has a minimum for 0 =0.936, which
is taken as the frequency of the ground state. The
energy aM norm of the kink are

with A, & 0. Using a system in which e =1, the di-
mensions are the following:

[tl =M "'L ' [~]=L '

[~]=M 'r„[n]-=ML.

The field equation is

iy"8&g —p, g +2K(gg)g = 0.
This equation admits stable, localized solutions
of the form
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(E2 +G2)p2dp

+-' E2-G p dp

2m "
2N= ' (E'+G')p'dp. (6)

where

As we see the coupling constant X is a scale pa-
rameter, inversely proportional to the norm of
the solution, which can be interpreted either as
a wave function or as a classical field. With the
second interpretation the left-hand side of (1) can
be calculated as

~2

r, =-,'

in Ref. 3, N =8 and the Heisenberg relations no

longer apply. In other words, a particle described
by the Soler kink with N =h does not have quantum
behavior.

(b) Nonlinear model of the hydrogen atom': If
the nonlinear Dirac field is submitted to a Coulomb

potential we have a model of the hydrogen atom.
It was solved numerically with the result that
every level is represented by a solitary wave or
kink. The energy difference with the usual quan-
tum mechanics model is not observable if A.m, 2

&10 %, where m, is the electron mass. A family
of solutions depending on the frequency is found.
There is no minimum of the energy, but the solu-
tion tends to zero when 0-Q„where 0, is an

eigenvalue of the linear problem. The reader is
referred to Ref. 5 for more details.

Proceeding as in the Soler model we find

goo ~p (TOl F03 F03)

and T"' is the symmetric energy-momentum ten-
sor

A.rn2 ~ 1.87x 10-'5 Q-Q
Q

0.03%.

(12a)

(12b)

(s « y)y-'y +~"e"q] g""~-.

A bit of algebra leads to

2w 1 "
(QG +E/2p)2E2

3 yp g(G2 +E~) +I (G~ E~)2 P P 1

(9)
1 JO (E +G )p dp

fo"(E'+G. ')p'dp

In the ground state (Q = 0.936) one has

0 53V
( 2)

10 62 22 98
Qp g~ P $p ~2 7 g~2
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From (1) we get

5.07

In order to compare the classical and quantum
theories we express p, in units of mass by the
change g =m/g which simplifies the relation (10)
without affecting the results of this work. Thus

(1) can be written in two forms,

gm2 ~ 5.0N,
N ~ 4.53k.

(lla)

(lib)

These inequalities give the condition for the as-
sociation p = (h/i)V, which gives physical meaning
to the Heisenberg relations, to be adequate. As
we see it, this happens if the theory is near the
linear limit (small X) or, equivalently, if N is big
with respect to@. However, if we use this model
to represent an elementary particle, as was done

As we see (12b) is a much weaker condition than

(lib), corresponding to the fact that as the elec-
tron is very extended in the atom the nonlinear-
ities become less important. The frequency must

adjust itself in such a way that N=@, from which

we conclude that the Heisenberg relations are
verified. In other words, the classical model of
the hydrogen atom has a quantum behavior.

IV. CONCLUSIONS
I

We have seen that the physical statement implied
in the Heisenberg relations applies to the kinks
of some nonlinear classical equations if the self-
coupling constant is small enough or if the norm
is large as compared with k.

The first condition is easily interpreted: if X

is small we are near the weak-field limit, where
the Heisenberg relations apply.

The second condition suggests an attractive pos-
sibility. As is well known, classical mechanics
is the limit of quantum mechanics when 0- 0,
which means when 8 is small with respect to the
actions or norms of the problem. If the condi-
'tions (10b) or (lib) do not hold, I is larger than
a quantity of the order of the norm of the kink.
It can be even much larger, a situation which we
could term as "ultraquantum" and which is char-
acterized by the violation of the Heisenberg rela-
tions. In this context there are three kinds of
physical systems:

(a) The classical systems in which the Heisenberg
relations are verified in a trivial way because the
bounds that they impose are smaller than the ex-
perimental errors.
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(h) The quantum systems in which the-Heisen-
berg relations hold in a nontrivial way.

(c) The "ultraquantum" systems in which the
Heisenberg relations are violated in the above ex-
plained sense.

Vfhen the "ultraquantum" theory admits the lin-
ear approximation we obtain the quantum one,

which in some cases can be approximated by the
classical theory. It is paradoxical that in the study
of the "ultraquantum" world the classical consid-
eration of the problem seems to be an essential

I

step.
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