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A detailed analysis of Einstein’s version of the double-slit experiment, in which one tries to observe both
wave and particle properties of light, is performed. Quantum nonseparability appears in the derivation of the
interference pattern, which proves to be surprisingly sharp even when the trajectories of the photons have
been determined with fairly high accuracy. An information-theoretic approach to this problem leads to a
quantitative formulation of Bohr’s complementarity principle for the case of the double-slit experiment. A
practically realizable version of this experiment, to which the above analysis applies, is proposed.

I. INTRODUCTION

In Einstein’s version of the double-slit exper-
iment,'’? one can retain a surprisingly strong
interference pattern by not insisting on a 100%
reliable determination of the slit through which
each photon passes. The analysis leading us to
this conclusion involves the following considera-
tions. The plate which receives the kick from
each photon can either be stopped and its position
measured, or released and its momentum mea-
sured. These two options give us two ways of
subdividing the original ensemble of photons:

(1) according to the measured position of the
plate, and (2) according to the measured mo-
mentum of the plate. In case (1) each subensemble
produces a perfect but differently shifted inter-
ference pattern. In case (2) each subensemble
produces a smeared out pattern, but also gives
us some information about the photons’ paths.
We will thus be led to study the following ques-
tions. Does our choice of what to measure affect
the total interference pattern? Do we not violate
the complementarity principle by measuring both
the fringes and the kick? Can this kind of ex-
periment be performed in practice?

A monochromatic wave passing through the
familiar apparatus shown in Fig. 1 will produce
a perfect interference pattern on plate 3. This
kind of experiment was used by Young to demon-
strate the wave nature of light, and by Davisson
and Germer to demonstrate the wave nature of
electrons. How does one reconcile this result
with the fact that these same photons or élec-
trons also have distinctly particlelike features,
such as being individually detectable? For if
they are indeed particles, then each one should go
through a definite slit, and we should see a sum

of single-slit diffraction patterns, rather than the
observed interference pattern. This apparent

contradiction has served as an archetypal example
of the wave-particle duality encountered in the
microworld. As stated by Feynman, the double-
slit experiment is a phenomenon “which has in it
the heart of quantum mechanics; in reality it
contains the only mystery” of the theory.?

The traditional resolution of this problem, con-
sistent with the rest of quantum mechanics, states
that unless we actually measure the path of each
photon (for definiteness let us restrict our atten-
tion to photons; similar arguments apply to any
other particle), we have no right to maintain that
any given photon actually follows a definite path.
Indeed, according to this view, if we were to
succeed in measuring the path of each photon, then
the interference pattern would be destroyed.

Thus, we can observe either the wave properties
or the particle properties of light, but not both
simultaneously.

At the Fifth Solvay Congress at Brussels,
Einstein devised a modification of the double-slit
experiment by which he hoped to show the in-
consistency of quantum mechanics.'*? He con-
sidered an experiment in which the first screen
(Fig. 1) is free to move up or down. Photons de-
flected toward a given slit always impart a char-
acteristic momentum to screen 1. Thus, Einstein
hoped that by measuring the momentum imparted
one could determine the path of each photon with-
out disturbing the interference pattern. If that
were the case, then the complementarity principle
would be proven false.

Bohr, in his defense of the consistency of quan-
tum mechanics, pointed out that in order to deduce
the slit through which the photon will pass from a
knowledge of the final momentum of screen 1, one
would also have to know the initial momentum of
screen 1 to within an uncertainty 4p =(s /L)p
=(r/\) X (s/L) (x is the wavelength of the light),
since this is the difference between the momenta
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FIG. 1. Path determination in the double-slit experi-
ment, as proposed by Einstein (Ref. 2).

transferred by photons following the two possible
paths to the final screen. But then the Heisenberg
uncertainty principle requires that the initial
position of screen 1 be uncertain by at least
Ax~h/Ap =xs/L. This is exactly what is needed
to wash out the interference pattern, since this
Ax is the spacing between fringes. In this way
Bohr succeeded in defending the consistency of
quantum mechanics.!

The purpose of this paper is to examine Bohr’s
idea in detail; that is, we will find out exactly
what interference pattern is produced when we
attempt to determine the slit through which each
photon passes. To do this, we shall represent the
plate as a quantum-mechanical harmonic oscil-
lator. The photon and the plate, having once inter-
acted, become nonseparable parts of a single
quantum-mechanical system. This forces us to
consider the effect of our measurement of the
plate on the photon wave function, and, conse-
quently, on the interference pattern produced by
these photons.

In the next section we shall derive the inter-
ference pattern attenuated as a result of our
measurements on the position of the plate. There
we shall also obtain the distribution of momentum
of plate 1 associated with the relevant photons,
that is, those which contribute to the image on the
photographic plate.

In Sec. III we shall find what partial interference
patterns correspond to ensembles of photons cor-
related to definite final momenta of the first plate.
We shall also show that although these partial
interference patterns depend on the measure-
ments performed on the first plate, the total
interference pattern (the sum of the partial inter-
ference patterns) is always the same.

In Sec. IV we shall find an analogy between this
situation and the celebrated Einstein-Rosen-
Podolsky paradox.

Section V discusses in terms of Shannon’s theory

the information one can obtain about the slit
through which the photon passed. The comple-
mentarity principle is stated in terms of an in-
equality, which sets the limit on the amount of
retrievable information about the photons’ paths
(photon-particle) for an assumed sharpness of the
interference pattern (photon-wave). A practically
realizable version of Einstein’s double-slit ex-
periment is discussed in Appendix A. Appendix B
gives details of the proof of the inequality derived
in Sec. V. )

II. APPROXIMATE PATH-DETERMINATION

Let us now analyze in more detail the experi-
ment described in Sec. I. Assuming that the
Heisenberg uncertainty principle holds, let us
ask exactly to what extent the interference pattern
is smeared out if we insist on determining the
path of each photon with a given accuracy. In
the spirit of Bohr’s rebuttal, we will represent
screen 1 by a quantum-mechanical wave function.

The harmonic-oscillator wave function is a
natural choice, since it satisfies (in its lowest-
energy state) the equality

AxAp =7/2,

thus minimizing the cost (disturbance of photon’s
phase due to Ax) of obtaining information about
the photon’s momentum with an error Ap.!'* Both
in the position (x) and wave-vector (k) represen-
tation it is given by a Gaussian:

Y(x) =102 exp(=x2/20%), Ax?=a?/2,

o (k) =1~ Y4g"2 exp(-a?k?/2), AR?=1/(2a%),

(1

where k =p /I is the x component of the wave vec-
tor of plate 1. [One sees that (Ax)(Ak) =3, the
minimal irreducible demand of the uncertainty
principle. ]

The object of this section is to calculate the
interference pattern one obtains when plate 1 has
this wave function. But first we need to state the
assumptions we will be making regarding the
photon wave function in a single slit experiment.
Let us consider for example the wave function
at plate 3 of photons which have passed through
slit A, slit B being closed for the time being.
This wave function is

1a(8)=1(8) exp{i(2a/M[L2 + (& —s /222,

where f is a slowly varying envelope function
whose presence is due to the fact that the slit

is not infinitesimally narrow, For an ordinary
slit, f would be the usual diffraction pattern.
Moreover, one could also consider a slit con-
taining one or another type of lens, and this would
lead to a different envelope function. For ex-



ample, the process of apodization can be used to
smooth out the diffraction pattern.!? In any case,
all we ask is that there be a region || <&, in
which f(§) is essentially constant. We will then
restrict our attention to a section of plate 3 where
|&] <&, and || < L. There the wave function can be
approximated by

ra(8) =£(0)e! ¥(8) girot ,

where a(§)=(2n/L)[L?+(s?/8) + (£2/2)] and &,
=(ms)/(L1). Similarly, the wave function for
photons coming only from slit B is

Ka(£) =f(0) &P ket ,

When we superimpose these two wave functions,
the common factor ¢'**) does not contribute to
the interference pattern. We will therefore omit
this factor throughout the rest of this paper.
Finally, coming back to the double-slit experi-
ment, since we have abandoned the usual normal-
ization in considering only a part of plate 3, our
convention will be to let the average of the inter-
ference pattern over one period be 1. '

Just after each photon passes, we can measure
exactly either the position or momentum of plate
1. Let us assume for now that we measure the
position, and let us calculate the resulting inter-
ference pattern. In this case we know exactly
where each photon starts its journey to plate 3.
All photons starting at the same place x form a
subensemble whose contribution 7.(§) to the total
interference pattern is perfect, but shifted by an
amount A§ =-x:

I(§)=1+cos2ky(£+x),

where k,=ns/(L\), and s and L are defined in

Fig. 1. The number of photons in the subensemble
characterized by the position x is proportional

to |§(x)|2. Therefore, the total interference pat-
tern F(£) is just the sum of all the contributions
from the various subensembles, weighted by

[o(x)|%:
F(£)e f dx|p(x)|2L(£) =1+ €770 cos2k, £ . (2)

This is our smeared-out interference pattern.
Now how much can we determine about the paths
of the photons using the same experimental ar-
rangement, if we choose to measure the mo-
mentum of screen 1 rather than its position?
Clearly the only photons which concern us are

those which succeed in arriving at the final screen.

Therefore, we will record only the momenta im-
parted by these photons. From the geometry of
the apparatus we see that for these photons there
are only two possible values of the wave vector
imparted to screen 1, namely, us/(LA)=+k,.
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(We have assumed here that a <s < L, and that
all photons arrive at screen 1 with no initial mo-
mentum in the x direction.) The measured mo-
mentum of screen 1, however, will not be con-
fined to these two values, even if our measure-
ments are exact. As before, the uncertainty
comes from the fact that the initial momentum of
the plate is not definite, but rather has a distribu-
tion given by |¢(k)|2. If the plate has initial wave
vector'k, then its final wave vector (after the
plate has collided with one of the photons under
consideration) can have either of the two values
K=k+k, The total recorded distribution D(x) of
wave numbers of the plate will be the sum of all
the partial distributions D,(x), weighted by
[o®)[2:

Dy (k)= 3{0(k =k +ky) +0(k =k —k,)],

D(K) = j dk| k)P0, (x) @)

= [a/(2n'/2)] {exp[~a®(k + £ )]
+exp[-a?(k - k,)*]} .

It is convenient to define a dimensionless
“smudging parameter” « =ak,. From Eq. (2) it is
clear that this is the parameter characterizing
the suppression of the interference pattern. It is
also a measure of the uncertainty of our deter-
mination of the path of each photon. To clarify
these points, let us choose a particular value of
u, namely, % =0.4769. If we use this value of u
to calculate the interference pattern according
to Eq. (2), and the distribution of measured mo-
menta according to Eq. (3), then the results are
those shown in Fig. 2.

If the measured momentum is positive, then
we will guess that the photon passed through slit
A; if it is negative, then we will guess that the
photon passed through slit B. Clearly some of
our guesses will be wrong—there are photons
that have positive values of measured momentum
even though their actual momentum was negative
and they went through slit B. The fraction of
photons which misbehave in this way equals the
fraction F(x) of our guesses which are wrong.
This fraction is just the ratio of the area under
the “tails” of the Gaussians (that is, the parts
lying on the wrong side of «=0) to the total area
under D(k):

F(u) =(a/m'?) fo exp[—a®(k —k,)?]dk

=(1/m%/2) f” e~"dn

=31 - erf(x)].
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FIG. 2. Results of the approximate momentum mea«
surement in the double-slit experiment, for the smudg-
ing parameter «=0.4796. (a) Distributions of measured
momenta. (b) The corresponding total interference pat-
terns.

Our particular value of # was chosen so that
F(u)=0.25. That is, out of four guesses, one is
usually wrong. Thus, we have done a fairly
good (but not perfect) job of determining the path
of each photon, and therefore we might expect
an almost completely obliterated interference
pattern. But in fact this is not true.. Figure 2(b)
shows that we still get an almost perfect inter-
ference pattern; the crest-to-valley ratio R(x)
of intensities is R(x) =1 + exp(-u?)]/[1 - exp(-u?)]
=8.8 for our value of #., Have we not then suc-
ceeded in observing both particlelike and wave-
like properties of the same photons ?

One will no doubt object: The interference pat-
tern F(&) was calculated for an experiment in
which the position of screen 1 was measured. The
path determination depended on the wave vector
k of the photon inferred from the measured mo-
mentum of the screen 1. But these two measure-
ments cannot both be performed for the same
photons, and so Figs. 2(a) and 2(b) do not refer
to the same experiment. Hence, in accord with
the Copenhagen interpretation of quantum mechan-
ics, there is no paradox. The complementarity
principle does not prevent photons from behaving
once as waves and once as particles. It only
states that the same photon should not reveal this
“split personality” in the same experiment.

The above objection is certainly valid. How-
ever, we shall see in the next section that even
when we perform the momentum measurements
on screen 1, obtaining information about the slit
each photon chooses, the same total interference
pattern F(¢) forms on the photosensitive screen 3.
That is, Figs. 2(a) and 2(b) describe the outcome
of the same hypothetical experiment.

III. CORRELATION BETWEEN THE MEASURED
MOMENTUM AND THE CORRESPONDING
INTERFERENCE PATTERN

In this section we will analyze the experiment
in which the momentum of screen 1 is measured
rather than the position. From each momentum
measurement we will infer the relative probabili-
ties of the photon’s passing through one slit or the
other. In practice, we cannot actually perform
this momentum measurement with the necessary
accuracy. However, as is shown in Appendix A,
one can perform an experiment which will give
the desired probabilities. The analysis in this
section is sufficiently general to be applicable to
the experiment considered in Appendix A.

In our experiment (Fig. 1), photons entering
the apparatus change the momentum of screen 1.
Then some of them pass through the slits in plate
2, as announced by a flash of light emitted by a
scintillator on plate 3. We wait for these scintil-
lations, and immediately record the momentum
of plate 1 and the position of the scintillation.
That is, our record contains for each photon two
numbers: the measured position on plate 3 and
the measured momentum. Of course, we can
obtain from this record both the interference pat-
tern F(£) and the distribution D(k) of measured
photon momenta. Indeed, these two distributions
could have been obtained directly, without keeping
a photon-by-photon record. The fact that each
scintillation is actually associated with a definite
kick to plate 1 can have no effect on the shapes of
F(£) and D(£). Given that we do have a photon-
by-photon record, we find F(£) simply by counting
all the photons that landed in the interval {- £ +d&.
D(k) is clearly constructed in an analogous man-
ner.

But a new question which we have not considered
so far comes to our attention. We can look for
the distribution of scintillations arising only from
those photons which have been associated with a
definite measured momentum « of the plate 1.
What kind of interference pattern will fzese
photons produce? The first thing to notice is that
these partial interference patterns Z,(£) cannot
be independent of k; that is, they cannot all have
the shape of the total interference pattern. For
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if we consider only the photons with a high-enough
Kk, we could improve indefinitely our chances of a
correct determination of their paths; that is, by
increasing k we would be able to tell with as small
a margin of error as we wish through which of the
two slits the photon has passed. In this way we
would be able to get around Bohr’s resolution of
the double-slit paradox.

Therefore, a correlation between k—the mea-
sured value of the plate’s momentum—and
i,(E)—the partial interference pattern—seems
inescapable. To find out the shape of (&), let
us consider the fraction of error f(«) defined as
the ratio of the probability of the photon’s passing
through slit A to the probability of passing through
slit B,

) =p4/bs
=exp[—a® (K +k, )] /exp[-a® (k = k)*]. (4)

Here p, and py are defined by this formula to-
gether with the relation p, +pg =1. This ratio

f(k) clearly represents the uncertainty in our .

knowledge about the two possibilities from which
the photon can choose.

The same situation and identical error ratio
appear when we consider a double-slit experi-
ment in which the two slits have different areas.
The uncertainty ratio f will in this case be ex-
pressed by the ratio of the two areas. In this sit-
uation the interference pattern can be immediately
written:

ip(K) =1+2p,"2p 32 cos2k, £ . (5)

It is natural to expect that if our correlation mea-
surement is characterized by the same value of

f as this unequal-double-slit experiment, then it
should yield the same interference pattern.
Therefore,

i4(£) =1+2p ,“2(K)p 52(k) OS2k o . (6)

These formulas (5) and (6) are certainly compat-
ible with quantum mechanics and with the uncer-
tainty and complementarity principles. What do
they predict for a definite value of f? For in-
stance, let us take f =¥; that is, out of 100 pho-
tons we expect 99 of them to pass through the
more likely slit. An accuracy of 99% is certainly
high, and one would expect that such a measure-
ment should destroy the interference pattern. But
a straightforward calculation shows that the
crest-to-valley ratio R given by R =(1+2p,%p %)/
1-2 Al/zpal/z) equals approximately 3. Despite
the fact that we know with 99% certainty the paths
of the photons, they still have strong wavelike
properties. . In a sense we have localized the
cause of what appeared to be a violation of the

x +

’I\ P, (K)xOx)

!
! pglr) %O (x)

FIG. 3. Partial-interference patterns 7,(¢) correspond-
ing to the different measured momenta « and the result-
ing total interference pattern F(¢), according to formula
7).

complementarity principle.

To make sure that our present reasoning is
consistent and that our apparent paradox survives
the objection raised at the end of Sec. I, let us add
up all the partial interference patterns, all the
differently smudged-out contributions. According
to Egs. (3) and (5), each of them can be written as

2 exp[-a®(k® +ko*))
exp[—a®(k - k)] + exp[—a®(k + k)]

X cos2kyE .

(&) =1+

Weighting them by D(k) and adding them together,
as represented in Fig. 3, we obtain

F(5)= [ D))k

=1+e %% cos2k.t . )]

This is exactly what we obtained previously

[Eq. (1)] by adding perfect, but shifted, inter-
ference patterns. This way of obtaining the total
interference pattern is illustrated symbolically
in Fig. 3.

IV. EINSTEIN-ROSEN-PODOLSKY “PARADOX” IN
THE DOUBLE-SLIT EXPERIMENT

Let us recall the two possible measurements one
can perform using the experimental set-up of
Fig. 1: (1) Measure the position of screen 1—
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get perfect but shifted partial interference pat-
terns. (2) Measure the momentum of screen 1—
get smeared out but centeved partial interference
patterns.

Notice that in both cases the measurement on
screen 1 is performed affer the photon has inter-
acted with it. How does the photon know in which
partial interference pattern to fall? How can it
know what we decided to measure when it is
already separated from the plate by a large dis-
tance?

There is no doubt that our choice affects the
wave function of the photon: (1) If we measure
plate 1 to have position x, the photon arrives at
plate 3 in the state

I—Lx(g)oc eik0(€+x)+e-ik0(t+x). (83.)

(2) If we measure plate 1 to have momentum k,
the photon arrives at plate 3 in the state

V(E) & p 42 (k) e + p 12 (k) @™ ot (8b)

This effect of our measurement on the photon’s
wave function can be understood in the following
way. After the photon has interacted with plate 1,
it no longer has an individual wave function;

here is only the state ¥ of the combined system

slate 1+photon). This combined state can be
expanded in terms of any complete set of ortho-
gonal states of plate 1. For example, if 0, is the
cigenstate of position of plate 1 corresponding to
the eigenvalue x, we can always write the com-
bined state as

¥ = fdxcx,u.,®a,,, : (9a)

where the photon states u, are all normalized but
not necessarily orthogonal, and |c,|? is the prob-
ability distribution of the plate’s position x. Al-
ternatively, we can use the set of eigenstates of
momentum of plate 1, {‘r,‘}, as our basis, in
which case ¥ is written as

¥ = fdl(d,‘ Ve® Ty (9b)

Thus, each plate eigenstate (0, or 7,) has its
corresponding photon state. When we measure
the plate’s position and obtain the value x, the
photon is forced into the state u,, and similarly
for momentum. In this way our choice affects
the wave function of the photon.

Our object now is to identify the various quanti-
ties which appear in Egs. (9), and thus to check
that this idea of the combined state is consistent
with the analysis of the previous sections. For
definiteness we willwrite ¥ as a function of the
positions of plate 1 and the photon, to which we

66,9

assign the symbols “z” and “£” respectively (“x”

is reserved as a lable for eigenfunctions; hence
the necessity of introducing “z”). According to
our previous analysis, u, and v, should be given
by Egs. (8), and the other quantities in Egs. (9)
should be interpreted as follows:

1 -X
Cx:¢(x)=m-7§e e [see Eq. 1],

0,(2) =b(z = %),
d,=D"(k) [see Eq. 3)],
Tu(2) =€
Inserting these identifications into Egs. (9), we
obtain the following expressions for W:
According to Eq. (9a),

1 - i
U= ST AT fdx e x2/2a2[eik0(€+x)+e zko(EH:)]

X6(z =x); (10a)
according to Eq. (9b),"

¥ = 5—37; fdxﬂ)l/z(x)[pdllz(fc) et 1 p o 12 (k) 7ot

xee, (10b)

where the constant factors have been chosen so
that ¥ conforms to our normalization convention;
i.e., f dz|¥|? is a function of £ whose average
value is 1. One can verify that these two expres-
sions for the combined wave function are indeed
equal. This is in fact the real justification for
our identification of v, [Eq. (8b)] as the wave
function of photons corresponding to plate mo-
mentum K, and hence also for our expression (6)
for the partial interference pattern.

In Secs. II and III we found that although our
choice of what to measure (about plate 1) does
affect the photon’s wave function, it does not
affect the fotal interference pattern. From the
point of view of the present section, this result
is seen quite easily. The total interference pat-
tern is

A&)= [ azlet, o)k,

which is independent of any measurements made
on plate 1.

The situation described here and the analysis
outlined above are essentially the same as in the
Einstein-Podolsky-Rosen “paradox.”*'5'® There
too what we choose to measure on one system
affects the wave-function of another system far
away. But ihe final distribution of measuredl
values of the far away system is again independent
of our choice. Thus in discussing Einstein’s
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double-slit experiment we have encountered the
classic nonseparability feature of quantum
mechanics.”

To make sure that the analogy is complete, one
may consider a situation where the photon is
first localized on screen 3, and the position (or

momentum) of screen 1 is measured only after-
wards. In that case the wave function of the photon
is simply 8(£ - £,). It is readily seen that the

total wave function ¥(z, £) can be decomposed into
a wave function of a photon localized at £, and a
wave function describing plate 1:

¥z, 8)= f ago{0(8 - £o)} ®{(2a)™ 7™ exp(—2*/(2a%)) [expliky(£, +2)) + explikq(£, +2))]} -

From this expression a wave function, and, con-
sequently, a corresponding probability distribu-
tion correlated to an ensemble of photons landing
at the given coordinate value §, can be obtained.

That is, the measurement can be first per-
formed either on the plate 1 or on the photon, and
the obtained information will allow us to deter-
mine what is the probability distribution of the
other, yet unmeasured part of an unseparable
system.

V. INFORMATION AND THE COMPLEMENTARITY
PRINCIPLE

In the preceding sections we have presented a
a result which, although not paradoxical, was
nevertheless surprising (that is, that one can
make a fairly precise determination of the slit
through which each photon comes with only a
slight disturbance of the interference pattern).

It is worthwhile to notice that the two limiting
cases of Einstein’s version of the double-slit
experiment do not surprise us at all. These are
the cases in which the smudging parameter «
takes the values zero (no determination is made
of the path of the photon) and infinity (each pho-
ton’s path is determined completely). As we can
see from Eq. (1), in the former case the inter-
ference pattern is perfect, while in the latter
case it is completely washed out. This result has
been known for so long that we have learned how
to talk about it, and it is therefore no longer
surprising. '

The apparent paradox of our present example
clearly arises from the fact that we are con-
sidering an intermediate situation in which one
obtains some information about the photons’
paths, and still retains an interference pattern
having some degree of clarity. The problem is
that we lack a good way of talking about such a
situation, and we have no simple rule which tells
us what to expect. The aim of this section is to
fill this gap. We will find that information theory

provides a good language for dealing with an
imprecise path determination, and this will lead
us naturally to a rule which defines the extent
to which the two complementary aspects of light
(wave and particle) may be manifested simul-
taneously.

Intuitively, one expects that if the interference
pattern has a certain sharpness of definition,
then there must be some limit on the amount of
information which could have been obtained re-
garding through which slit each photon passed.
What we wish to do here is simply to make this
statement more precise. For this we need a way
to quantify “information.” We will use the mea-
sure of information discovered by Shannon,® which
has all the mathematical properties one usually
requires of information, and which has been fruit-
fully applied to a wide variety of problems,® in-
cluding quantum mechanics itself.'® Its most
general definition is the following: If a system
can be in one of N possible states, but if we know
only the probabilities p; of its being in each state
iz, then the amount of information we lack about
the system is the positive number

N
H==)" pilnp;.

i=1
In our experiment we can consider each photon
as a system with two possible states (in the
above sense): passing through slit A and passing
through slit B. If we determine the probabilities
of these two paths to be p, and pg (where p, +p5g
=1), then the information we lack about the path
of that photon is

H==(py Inp,+pglnpp). (11)

As an example, we note that if we know nothing
about the path of a photon, that is, if each slit
is equally likely, then the amount of information
we lack is

H,==(3In3+31ln3)=1n2.

Now we are ready to formulate the problem.
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Suppose we are interested in obtaining an inter-
ference pattern with a certain crest-to-valley
ratio of intensities, say, 8.8 as in the above
example. Notice that there are many ways to
make such a pattern. We list a few of them here:

(1) Perform the experiment described in Sec.
1I, in which the measured momentum of plate 1
is used to judge the path of each photon. In this
case we have seen that the paths of some photons
will be better determined than the paths of others,
depending on the value k of the measured mo-
mentum,

(2) Keep all the plates fixed, but let one of the
slits be bigger than the other. We have seen in
Sec. III that the resulting pattern will again be
partially smeared out, and that the same pattern
arises from a subensemble of photons all having
the same value of k.. The crucial thing about
these experiments is that we cannot differentiate
further among the photons. There, is only one
subensemble (the whole ensemble); each photon
gives us the same amount of information; the
photons are in a pure state,

(3) Allow some of the photons to pass through
one slit only (the other being blocked), making
a completely smeared out pattern; then open the
other slit, allowing the rest of the photons to
interfere perfectly. The sum of the two patterns
can be arranged to have the desired crest-to-
valley ratio.

(4) Make no measurement of the photons’ paths,
but let the slit in plate 1 be of a size comparable
to the spacing between fringes, so that the result-
ing pattern is smudged.

The point is that the amount of information one
obtains about the photons’ paths varies from one
case to another, even though the “summed-up
interference pattern” is the same in each case.
For example, in case 4 one loses some of the
sharpness of the pattern without gaining any
information at all.

The question naturally arises: Of all possible
methods of generating this particular interference
pattern, which one gives us the most information
regarding the photons’ paths ? If we can find this
method, then we will have found the limit on the
amount of information which can be obtained,
given that we insist on a certain sharpness of -
definition of the pattern. We will then have to
admit that no amount of cleverness can produce
an experiment in which the information gained
exceeds this limit,

We will find that this question is indeed answer-
able, and that the best method turns out to be ex-
periment (2) above, in which the photons are in a
pure state. To see this, we first need to write
down a general expression for information which

applies to all the experiments we are considering.

A typical experiment can be described as fol-
lows. As in Sec. III, all the photons can be di-
vided into different subensembles, such that the
photons of a given subensemble all have the same
probability of passing through slit A. In Sec. III
we labeled the subensembles by the measured
quantity «, and we called the probabilities of the
two paths p,(k) and pp(k). In the general case
which we are considering now, it will be more
convenient simply to label each subensemble by
its values of p, and pz. To simplify the notation
let us define y =p 4, from which it follows that
ps=1~y. For our purpose, each experiment is
completely characterized once we specify the
fraction of the photons in each subensemble.
Therefore, let p(y)dy be the fraction of the pho-
tons whose probabilities of going through slit A
are between y and y +dy.

According to Eq. (7) the information we lack
about the path of each photon of the subensemble
Y is

Hy)=~[y 1oy +(1=7)In(1 =y)].

The total information we lack is the sum of H(y)
over all photons. To obtain the average informa-
tion A we lack per photon, we divide this sum by
the total number. of photons, arriving at the
formula

b= [ avot e

(]

== fldyp(y)[v Iny +(1=7)In(1 -v)]. (12)

Now we would also like to write an expression
for the interference pattern F(£) in terms of the
function p(y). As in Sec. III [Eq. (6)], we again
associate with each subensemble y a partial
interference pattern ¢,(£), given by

iy (E) o 1+29Y2(1 = y)Y2 cos2k & .

Notice that we have assumed the best possible
i,(£). One could always be sloppy (as in experi-
ment 4) and obtain a more smudged pattern.
Furthermore, we have assumed that all of the
contributions ¢, from the various subensembles
are not shifted relative to each other; that is,
they all have their maxima at the same places.
For our purpose here, these assumptions entail
no loss of generality; we are trying to get as
good a pattern as we can in order to investigate
the theoretical limit on the amount of information
which can be obtained. We now generalize Eq. (7),
and find that the total interference pattern is

F(2)= [ dyp(e)i,(5)=1+5 cos2et, (13)
0
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where
1
s=2 [ dypo) 1y, (1)
, .

From Eq. (13) it is clear that the quantity S is
a measure of the sharpness of definition of the
interference pattern. In terms of S, the main
problem of this section can now be stated very
simply: For a given value of S, what distribution
p minimizes H, and what is this minimum value
of H?

Our answer, whose proof is outlined in Appen-
dix B, is that the best p is-

P(¥)=0(r =7,), (15)

where v, is determined by the chosen sharpness

of the interference pattern. In fact, according to

Egs. (13)-(15),
S =27, (1 - o),
or, if we solve this for y,,
Vo= 3[1% (1 =52)¥2], - (18)

What Eq. (15) says is that if we wish to get as
much information as we can about the photons’
paths, the best experiment we can do is of the kind
exemplified by experiment 2, where all photons
have the same probability v, of passing through
slit A, and are thus in a pure state. (Actually, as
is shown in Appendix B, there is a one-parameter
family of distributions which are as good as p;
they differ from p, only in that some of the photons
have their probabilities p, and pg reversed.) We
have thus answered the first part of our question.

For an interference pattern of given Sharpness
S, the amount of information H(S) one gives up
when he uses this “best” method can be found
from Egs. (12) and (15) (and this answers the
second part of our question):

HS)==[y,Iny,+ (1 =v,) In(1 =y,)], ($%))]

where v, is given by Eq. (16). The main result
of this section is that one must forfeit at least
this much information about the photons’ paths
in order to obtain an interference pattern of
sharpness S. That is,

H=H(S). (18)

Let us now apply this result to our original
experiment (experiment 1), with the smudging
parameter # having the same value as before.
The interference pattern is [Eq. (2)] '

F(£)=1+e " cos2k,E
=1+(0.796) cos2k,& . (19)
That is, S =0.796. The value of H(S), given by

Eqs. (17) and (16), is then H(S)=0.497. This num-

. ber becomes more meaningful if we compare it to

the total amount of information H,=1In2 available
about each photon:

H(S)/H,=0.717.

Thus, according to our result, in order to obtain
the interference pattern (19), we must sacrifice
at least 71.7% of the available information re-
garding the photons’ paths.

This is the minimum amount of information we
must sacrifice. How much information do we in
fact give up when we perform Einstein’s experi-
ment? The easiest way to answer this is to re-
turn to the « notation. According to Eq. (4), the
probability p,(k) that a photon in the subensemble
k will pass through slit A is

exp[—a?(k +k,)?]
exp[-a?(k+&,)?] + exp[—a®(k - k]’

Palk)=

. and pg(k)=1-=p,(k). The average information we

lack per photon is

#= [ akD00p400 1094 W) +55(K) 105 (K],

where the distribution D of measured momentum
K is given by Eq. (3). Upon evaluating this integral
numerically, we find that

H/H,=0.728.

This is only slightly greater than the minimum
value H(S)/H,=0.717, associated with this inter-
ference pattern. Thus, Einstein’s experiment
gives almost as much information as one could
possibly get [which, by the way, is not very much
in this case—only 28.3% (i.e., 1-71.7%) of the
available information; this is perhaps in better
agreement with what we might expect for this
interference pattern, as compared to the expres-
sion “75% accuracy” which we used earlier]. But
the point is that the amount of information one
can get is limited by H(S).

Let us conclude this section with a clear state-
ment of the complementarity principle in the
language of information theory, as it applies to
the double-slit experiment. The sharpness of the
interference pattern can be regarded as a mea-
sure of how wavelike the light is, and the amount
of information we have obtained about the photons’
trajectories can be regarded as a measure of
how particlelike it is. Equation (14) can be ex-
pressed in words as follows: (Information lost
about the photons’ paths) = (information H(S) lost
in pure-state experiment giving the same inter-

- ference pattern). H(S) [given by Egs. (17) and

(16)] increases monotonically as the sharpness
increases. The above inequality is thus a pre-
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cise statement of the following fact: The more
clearly we wish to observe the wave nature of
light, the more information we must give up about
its particle properties.
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APPENDIX A: MULTIPLATE DOUBLE-SLIT EXPERIMENT

As we have discussed in the introduction,
Einstein proposed to modify the double-slit ex-
periment in such a way that in principle one
should be able to determine through which slit
the photon passed. In this appendix we shall pro-
pose an arrangement where one would be able to
carry out an equivalent experiment iz practice

The major difficulty encountered in an attempt
to realize Einstein’s proposal is the error in
the determination of the lateral kick. This mea-
surement may be performed by releasing any of
the three screens involved (we do not consider any
causality effects in this appendix), and measuring
the momentum of the screen after its interaction
with the photon. But regardless of the particular
screen, the square average momentum of the
random, noiselike Brownian motion is larger than
the value of the kick we want to determine. For
the case where the photographic plate is released
Wheeler'? recently calculated that the resulting
fluctuations in the value of the momentum are
12 orders of magnitude larger than the signal
itself. We are consequently forced to look for
some alternative indicator of the particle path
that would replace the momentum kick.

The direction was all that the kick could have
told us. Can we determine the direction of the
photon in a straightforward manner? To do it we
propose the experimental arrangement envisaged
in Fig. 4. There, the usual photographic plate
is replaced by the set of nontransparent, thin
“photoplates” covered with the photographic
emulsion on both sides. In such a “multiplate
double-slit” experiment, when the photon blackens
a grain of sliver bromide on the top (bottom) of
one of the photoplates, we expect that it came from
the top (bottom) slit. The analysis of the experi-
ment is simplest when the photoplates are oc-
cupying the region A{ s, that is, when they lie
close to the optical axis of the double-slit appa-
ratus. We shall assume that this is true in the

MULTIPLATE
PHOTO DETECTOR

SCREEN 2

woen]

R Y|
R )

’ A PHOTOGRAPHIC EMULSION >

FIG. 4. Multiplate double-slit experiment.

rest of this section unless otherwise stated.

Let us now consider only those plates in the
positions where previously, with the help of the
normal photographic plate, maxima and minima
of the perfect interference pattern

F(£) <1 +cos2k,E

were observed. Will the plates placed at & =2n7/
2k, become dark while the ones at £ =[(2rn + 1)n]/2k,
remain untouched by the radiation? Shall we re-
cover the perfect interference pattern? If so,
quantum mechanics would prove inconsistent: The
same photon goes through two slits producing an
interference pattern and yet it comes from the

top (bottom) slit.

What other outcomes of the experiment are con-
ceivable? Let us examine more carefully the
possible fate of photons landing on the photoplates
to establish if: (1) The interference pattern may
disappear—and all the plates will be “grey.”

(2) The fact that the photon lands on the top (bot-
tom) of the photoplate does not yet allow us to
be sure from which slit it came.

While the experiment remains to be done, one
really expects (1) to occur. The reason for it in
a carefully performed multiplate double-slit ex-
periment is clear enough: The photons coming

- from two different slits never meet on the same

side of the photoplate—they can never interfere.
We can conclude this already from the wave optics
interpretation, unless the wave representing the



electrical field of the photon can get in-some
fashion from the bottom slit to the top side of
the photoplate.

If this “landing on the wrong side” does occur,
then we have the situation described by (2).
Physical reasons for that effect can be found in
the reflections that direct the ray coming from
the top slit to the bottom side of the photoplate
[see Fig. 5(a)]. Consequently, the probability
of detecting a photon from a certain slit changes
accordingly. We can use p,(x) as in Sec. IMI, to
denote the probability that a photon from the top
slit will arrive at the position x, where x is de-
fined in Fig. 5(a). As before, we assume p,(x)
+pp(x)=1. We can also assume that the phases of
the photons arriving at the given % are not ran-
domized through the undergone reflection
processes. i

With this in mind one does not encounter any
difficulties in carrying out an analysis similar
to the one performed in Sec. III. The only impor-
tant change is the different shape of p,(x) and
ps(x), which is qualitatively shown in Fig. 5(b).
What we shall measure here can be described
in terms of the partial interference pattern and
total interference pattern. For when we record
the intensity at a certain position x on each plate,
we sample at a set of discrete points {£;} (which
are the positions of the photoplates) the partial
interference pattern i (£). As in Sec. I, from
the knowledge of p,(x) and pg(x), we have

(a)
COORDINATE x

INTERFERENCE FRINGES
DUE TO THE REFLECTIONS

(b)

Pg (x) x o (x) ] Py (x) x Dix)

-

.

X

FIG. 5. Origin of the residual interference pattern in
the multiplate double-slit experiment. (a) The paths of
the photons and the resulting interference pattern. (b)
Probabilities of arrival from one of the slits as a func-
tion of x.
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i (E) =145, 2 (x)p 2 (x) cOS2k,f .

This formula is true since all the photons landing
at a certain xhave the identical probabilities p,(x)
and pg(x), and for that reason constitute one
“subensemble” in the sense of Sec. III. Thus, we
have succeeded in designing a measurement that
gives directly the partial-interference pattern.

To obtain the total interference pattern, F(£),
we use formula (6):

50)= [ dxp(eli). (A1)

That is, the total number of grains blackened on
the photoplate at a position £ gives the value of
the total interference pattern F(£). The p(x) used
in Eq. (A1) is the weight function proportional
to the total number of photons that land at a certain
x and plays the same role as®d(k) in formula (6).
To show that the discussed proposal is practical
and realizable, let us go through the calculations
in an example. The separation of photoplates 6
should not be larger than the distance between
the maximum and minimum expected in the inter-
ference pattern—in fact it is advantageous to
sample the pattern only at these points: This
yields for 6:

o=u/k,. :

We have assumed previously that 8/s <1. This
assumption is not crucial. We have used it solely
to ascertain that in the set of photoplates one side

" of the photoplate can see only one slit. However,

even if 6~s, we can still make sure that this last
statement is true by orienting the photoplates so
that the plane in which each one of them lies
always intercepts the double-slit screen half-way
between the two slits. Still, it is easier to do
with s bigger than 6. .

Taking A =10 um (there aré lasers which have
wavelength of this order), we get for L =100 cm
and s =5 mm the photoplate separation 6 =0.85 mm.
This is well within reach of experimental pos-
sibilities.

We have seen here an experiment that attempts
to determine, the slit through which each photon
passed while trying to retain the interference
pattern—the same purpose for which the ex-
periment described in the introduction was de-
signed. However, no data clarifying the Einstein-
Podolsky~-Rosen paradox as discussed in Sec. IV
can be obtained here, since both the path deter-
mination and contribution to the interference pat-
tern follow from a single event—photoinduced
transition in a silver-bromide grain. Still, our
proposal is the only practical version of Ein-
stein’s double-slit experiment we are aware of.
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APPENDIX B: OUTLINE OF A PROOF THAT THE PURE
STATE MINIMIZES THE LOSS OF INFORMATION

For a given value of S, what distribution p min-
imizes A? This question can be simplified by
the following definitions:

s@)=y2(1-y)#,
hr)==[yIny +(1-y)In(1=7)],
b)) =p()+p(1-7),

restricted to the interval 0Sy< }. Then

V2
s= " oo, e

12
a= [ avpw). (B2)

What we wish to show is that the distribution
Po(¥)=06(y =v,) minimizes A for a given value of S.
This will imply in particular that the pure state
Po=0(y = ¥,) minimizes H. [So does any other p
which gives the same p. These other p’s are all
of the form

p(Y) = aa(y _Yo)+(1 - a)a(y- (1 _Yo))’
0<asl.]

Step 1. One can prove thats and % are monoton-
ically increasing in the interval 0sy < 3, and
that s’’/s’<h’’/k’ in this interval. (A prime de-
notes differentiation with respect to v.)

Step 2. Let us compare the distribution 3,(y)
=6(y —v,) with the trial distribution p,(y)
=n,6(y =7,)+1,0(y =7,), in which n, +n,=1, and
the parameters are assumed to be adjusted so
that both distributions give the same value of S;

that is [Eq. (B1)],
S(o)=ms(y,) +m,8(7s) . (B3)

We will show that p, gives a smaller value of H
than p, does; that is [Eq. (B2)],

h(ye) < nyh(y,) +m5h(y,) . . (B4)
To prove this, it is helpful to define 7(y) by

[s ) =s @ IR@) +s w(y,) =s (v, ()
hv)= h(y,) =h(v,)

The following things are true about %:'

(i) R(y,)=s(y,) and k(y,) =s(r,).

(iij) By (i) and Eq. (B3), s(y,)=mkr,) +nh(y,).

(iv) To prove Eq. (B4), it is sufficient to prove
that

R(vy) < mhlyy) + R (v,) .

From (iii) and (iv) it is clear that what we have
to prove is that &(y,) <s(y,). In fact it is not hard
to show from properties (i) and (ii) that Z(y) s s(y)
for all y between y, and 7,, and thus for y, in
particular.

Step 3. We have seen in Step 2 that the distribu-
tion B,=08(y - v,) is better at minimizing H than
any sum of two 6 functions. This result can be
extended by induction to any sum of » 6 functions.

Step 4. For the purpose of calculating S and H,
any distribution can be approximated arbitrarily
closely by a sum of # 6 functions. Therefore, the
distribution p,=5(y —v,) minimizes H with respect
to all possible distributions.
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