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The spin connection is studied for the Kerr-Schild metric. Our choice of tetrad leads to particularly simple

results. The associated complex SU(2) gauge fields for many important particular cases, including the axially

symmetric stationary Kerr metric, are thus presented in a unified fashion. Static spherically symmetric cases

are studied in detail, including a cosmological term. A Lprentz gauge transformation is introduced for this

class such that after a further (inverse Finkelstein) coordinate transformation a very simple form is obtained

in the diagonal static metric. Using this, we study the passage to the Euclidean section, leading to real (anti)
self-dual SU(2) gauge fields for the uncharged case. The role of the cosmological constant concerning the

Pontryagin indices is elucidated. Finally a class of solutions of the zero-mass Dirac equation is studied in an

appendix. The relation of such solutions possessing stringlike singularities, to similar ones in flat space, in

the presence of non-Abelian monopoles and instantons is pointed out.

I. INTRODUCTION

In the following sections we will study the spin
connections for metrics belonging to the Kerr-
Schild (KS) class. The remarkable properties of
the Kerr-Schild metric (see Appendix A) permit a
simple unified treatment of important particular
cases.

In Sec. II we start by introducing a tetrad and the
related representation of the y matrices in curved
space which turn out to be particularly convenient.
This leads to a simple form of the spin connection
in the KS metric. This can then be used to solve
the Dirac equation. In Appendix 8 we discuss a
class of solutions, with stringlike singularities,
for the zero-mass case. These solutions were al-
ready obtained in Ref. 1. We present a simpler
and more general construction and point out-that
similar solutions also arise in flat space in the
presence of monopoles and instantons.

Our main object, however, is the study of the
spin connection as an SO(3, 1) gauge field in curved
spacetime and its Euclidean SO(4} continuation.
Spin connections in general relativity have been
discussed extensively by a number of authors. ' In
Sec. II we study associated complex SU(2) gauge
fields. Various properties are analyzed including
the effect of a cosmological term. A Lorentz gauge
transformation is introduced for the static spher-
ically symmetric case. A further coordinate trans-
formation to the diagonal metric (g,0 =0) gives then
directly simple forms for the gauge fields. This is
used in Sec. III to study, for static spherical sym-
metry, the passage to the Euclidean section. Re-
cently Charap and Duff, ' following an idea of
Wilczek, 4 studied the spin connection for the
Schwarzschild metric, continued to the Euclidean
regime. They used a continuation pointed out by

II. SPIN CONNECTION IN KERR-SCHILD GEOMETRY

AND ASSOCIATED GAUGE FIELDS

The Dirac equation in curved space is (see Refs.
1, 2, and sources quoted therein)

y "(s„—B„)p = im y,
where

(y„,y.j =2g„.

and the spin connection B„satisfies

(2.1)

(2.2)

(2.3}

(We will not consider more general definitions of
8„.') Given a representation of y„, Eq. (2.3) de-
termines B„except for a term proportional to the
unit matrix 1 which should be a solution of source-
less Mmmrell equations. For our purposes we will
consider only the traceless part of B„ fixed by
(2.3). Moreover, we will restrict ourselves to the
Kerr-Schild metric. ' In Appendix A we have
summarized many useful results concerning this
class of metrics. The key property is, of course,
that in

(2.4)

Hawking' and obtained SU(2) instantons in curved
space with Pontryagin indices a1. This becomes
possible because the domains of integration of r
and (Euclidean} t are definedto be those corres-
ponding to real (continued) Kruskal coordinates.
Thus g becomes periodic and r ~ 2M, where M is
the mass. We will analyze a more general case,
including a cosmological term which still leads to
(anti) self-dual gauge fields. Topological features
will be discussed and the iwo limits (Schwarzschild
and de Sitter} will be compared.
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L is a null vector both with respect to q„„(the
Minkowski metric) and g&„, i.e.,

where

+uv ~uv + 2~lu lv

(2.4')

(2.5)

terms. One should also note both the analogies and
differences of (Z.23) as comPared to a aueLL kn-ogun

cfass of solutions forinstantons in flat spacetime
[e.g. Eq. (3.52) of Ref. 10 and the corresponding
anti-self-dual case]. We will consider only sta-
t&ona&y cases, where one can define the scalars g
and B such that (see Appendix A)

The index of the l vector can be raised or lowered
by both the g and the g matrix. This permits us to
introduce the tetrad

and (2.14)
L' =g' -ll l'

which satisfies
a bIuI, g, b

=gu„

(2.6)

(2.7)

l"Bul, =-Al, .
This leads to, from (2,10) and (2.13),

PB„=—,'M(A+B)~. (2.15)
and

La Lb g uv ~ab
u u (2.8)

ru =Luy.
=y„-M(y, P)L„-=y„M7'L„.- (2.9}

This tetrad is particularly suitable for our purpose
(though complex null tetrads are often used for
Kerr-Newman metrics) and leads to the following
canonical realization of y„.

In terms of the flat-space Dirac matrices y„we
define

Also, evidently,

O'B„=0.
The Dirac equation (2.1) becomes

(y"s„- im) y = M~[l"s„---,'(A+B)]y

=-M[L~s„+ —,'(A —B)]~p.

(2.16}

(2.17)

This should be compared with Eq. (V.21) of Ref. 1.
In Appendix 8 we make some remarks on a class of
solutions of (2.1V) for m=0. Here we briefly note
the following relations. For

This gives yu =yu+cplu+ic y5lu ~ (2.18)

and

(y„,y„j =2(gq, —2MLqL„)

y" =yu+Mrlu.

(2.10)

(2.2) and (2.4) impose

(c2)'- 2ci =2M.

%'ith

(2.19)

In particular, we will choose [with (+---) for q„„]

(2.11)

S = exp(--,'i c~y,r),
one obtains for (2.18)

Syu $ =y„-MTl„,
with a corresponding transformation

(2.20)

(2.21)

and y

yu =yu +i&2My, lu . (2.12)

which will lead to a B„ in block-diagonal form.
In Ref. 1 one finds a realization which in our

notation is

(2.22)Bu Sgu S. —$8u S

This gives the precise relation between our rep-
resentation and that of Ref. 1. We have made a
systematic study of possible representations of y„
and their properties. The representation (2.9)
seems to be the most convenient one. Let us also
note that one can write (2.13) as

This looks very simple but leads, as will be seen,
to a less simple form for B„. Using (2.3), (2.9),
and (A5) one can verify that

Bu =-g iZ, bBu,
where

(2.23)

B„=(=,'M) iZ ~a„(LsL„),

where

(2.13)

The corresponding result of (1) involves additional

B'„=M[@"s„(LL„)—g "8„(L'L„)]. (2.24)

A formula such as (11) of Ref. 3 holds, of course,
also for Lorentz signature and one obtains from it
(2.24) on using (2.6). In our approach the formula
is already in block-diagonal form; the Dirac equa-
tion is also obtained simultaneously.
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In this section we continue to study the properties
of the 80(3, 1) field tensors corresponding to our
B„. From (2.13) we obtain

E„„=s„a„-s„a„-[a„,a„]
=(--,'M) ig 's [s„(/,l„)-s„(l,/„)]

+ [g"',g~ ]s„(l,l„)s,(/. /„). (2.25)

ggp p Rgae~

where

(2.36)

(2.3Va)

(2.37b)

.,„.=~ ~[ /y5],
~Cf 876

and [aPys] is the usual completely antisymmetric
tensor in flat space. In our case

The results (2.13}and (2.25} hold for the general
KS metric, including even possible time depen-
dence. But the continuation to the Eucl|dean sec-
tion' to be used does not lead to a real metric even
for the stationary Kerr case. For this reason we
now restrict ourselves to the static spherically
symmetric metrics [(AV)-(A14)]. The upper and
lower blocks of Z"2 (corresponding respectively to
positive and negative helicities of the zero-mass
Dirac spinor) will now be exhibited in terms of the
2 &2 matrix

g=-1 and 4: 21'" = —[apys].
Thus for

E„„=(E,H),
*E"'= (H E}

and hence from (2.34) and (2.35)

+p V ~i g~p v +gplJ

where

J""-=M {lo')"- ' (+Cr , i4r").v ' 2 II p

r

(2.38)

(2.39)

(2.40)

(2.41)
e.r4 = (2.26}

Now from (A8) and (A13), we have for

where r"=7.=( sin gc os', singsiny, cosg). One ob-
tains [with (d/dr)l, ' -=(l,')', B = (B„B„B-,)]

a, =+M(~2) 4, (2.27)

B =M{+/,'vC - /, '[4, vc ]+ (/, '}'4r} . (2.28)

2M Q +P' AN= 1- + 2 ——rr' 3

2l ' 2(Q2+P2)
Mr4

(2.42}

(2.43)

(2.29)

(2.30)

where

A2=(-i)M(1+M/0 )(/0 )', A, =a M(1- M/0)(/2 )',

The properties of such forms have been discussed
in detail elsewhere. " One may use those results
here, taking care of the changes of convention in-
troduced. Defining E = (EO„EO2, E22—) and H

-=(E», E», F»), we obtain

H ~ AV4' B+„[4,VC'] +C„4r",

E =A,v4+B,[4, v4]+C,er",

Thus for Q =O=P, i.e., for

(2.44)

E""=~i*Epv (2.45)

The factor i arises because we now have SO(3, 1}
as the gauge group. After continuation (2.45) will
correspond to self-dual and anti-self-dual fields,
respectively. Let us note here a particularly
simple feature of the KS metric. Covariant deriv-
ation gives

B„=+M2/,2(/, ')', a, = 1M*/,'(l,')',

„C=(-i) 2M, /2r/, 2 C, =*M(/,')".
Let us now calculate

y Pv g pc/gv8y

Defining

g —(yD1 ~2 j)2) ~ —(F22 E$1 F12
)

one obtains

212
8=+iH+M (l,')"- ~ er-,r'

X=+iE+iM (l2)"—
2

Cr".r'
The dual of F„„is

(2.31)

(2.32)

(2.33)

(2.34}

(2.35}

D E2v s F2 +1 u Fn +I E2n [B F""]
P PP PP

(2.46)

(2.4V)

D„*Z~' =0.

Thus from (2.40),

(2.48)

(2.49)

= s„F""—[B„,F""].
Using evident symmetry properties (valid for all
torsion-free metrics) and (A6) holding for the K&

metric the Christoffel symbols disappear alto-
gether. The curvature, however, enters through
the definition (2.32). Flat-space solutions cannot
be carried over.

In any case one has the Bianchi identity
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where

j"=-&„J"'-[B„,J""].

Thus for Q=P =0 we have (2.44}, (2.45), and

g)„Z"' =0.

(2.50)

(2.51)

Eqs. (1.22) of Ref. 11 (taking care to supply factors
i due to altered conventions).

Next w'e perform a coordinate transformation
[inverse to (A10), acting on the index y, of B„],
namely

For the charged case there is a "source term" j'
given by (2.50}with

(2.52)

From (2.29)-(2.35) one obtains, for both the upper
and lower signs,

drt'=t+r-
N '

and obtain finally

0

(2.59)

(2.60)

(2.61}

and

2) 2 t2

0 r2+ —((*)"— '
I

(2.53)

+ I 2(I 2}u] (2.54}

There are simple relations between the invariants
such as Tr(E„,F""), Tr(F„„y"y"), and those con-
structed trom t'he Riemann tensor (see Loos, Ref.
2).

So far we have obtained the results by system-
atically exploiting the beautiful properties of the
KS metric (Al}. This permitted us to treat the spin
connections in a unified way. But, as already men-
tioned, passage to the Euclidean section wil1. be
considered for static spherical symmetry only.
Moreover, we will use for that purpose the metric
corresponding to (A7). Though values of the in-
variants [such as (2.53)] will not be affected, it is
interesting to try to obtain a particularly simple
form for B„after a coordinate transformation in-
verse to (A10). For this purpose we first introduce
a spin gauge transformation. We again separate
the two cases in (2.27) and (2.28) from the start
and define

After continuation this will provide the simple gen-
eralization of the Schwarzschild case discussed by
Charap and Duff. 3 The results (2.45} for the un-

charged case are, of course, conserved. These
results may also be easily obtained directly for the
metrics in question.

Before continuation, however, we have complex
SU(2) gauge fields. In particular, taking note of
our convention, we see that Bo is pure imaginary
(for real N) and 8' are purely real (for N~ 0). This
should be compared with the example in Ref. 12.
Complex monopoles have also been studied by
Manton. " On the other hand, the 't Hooft-Polyakov
type of monopole in curved space has been studied
by several authors. '4 In curved space possible
singularities at r -0 or r -~ may possibly be
avoided by restricting the domain appropriately.
This will be made more explicit in the- next sec-
tion, where, moreover (as a consequence of the
continuation procedure) the time integration will be
over a finite period.

III. PASSAGE TO THE EUCLIDEAN SECTION

To construct So(4) gauge fields [leading to SU(2),
ones] one has to complexify the spacetime and go
to the Euclidean section in a suitable fashion. ' The
pure Schwarzschild case has been discussed in
Ref. 3. Let'us consider the (uncharged) case-with
a nonzero cosmological constant, namely (A7) with

S = exp(+)8(r)C ),
where

tanhP(r) =-

(2.55}

(2.56)

(3.1)

The maximal analytic extension has been discussed
recently. " We will utilize those results. We will
start with the interesting case"

from (A13). Now B„-SB„S'- Ss„S ' gives for the
transformed spin connection

0&9M A &1. (3.2)

Bo =+2¹@, (2.57)

(2.58)

(Certain limiting features will be treated eventual-
ly. ) For (3.2),

This result follows from a direct application of (3 3)
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r =-2A '/'cosa. &0, (8.4)

ri =2A ' 'cos~ a- —[&0,

r, =2A ~'cos~ a+ —l)0
(8.5)

where, defining cos8 a = (QM'A) ', (0 & a & w/6),

iBO=+2N 4'

tB = c(V' - 1}[4,p4] .
Our convention now corresponds to

(3.16)

(As compared to Refs. 3 and 5 our line element has
an opposite overall sign. This may be reabsorbed.
The difference is trivial anyhow. ) The corres-
ponding continued fields are now [replacing Bo by
iBD in (2.60) and (2.61)]

rj +rm ~ (8.6)

Transforming to Kruskal-type coordinates gives in
(A8V), for the region r2 &r &r„

(g' —]') = 4 exp(2cr*)

B„=B'„2'.— (a=1, 2, 3),
and the components 8'„are now real for g &0. In-
stead of (2.45) we now have

where

4(y. y, ) scAi/A (y y, ) BcA 2/A

y (r ~ )-ecA /A (3.V)

Epv +g~pv (3.17)

[since N" = (2/r"')(N- 1)], i.e., self-dual and anti-
self-dual solutions, respectively. In (2.53) and
(2.54) we now obtain

(r, -r, )(r, —r ) ' ' (r, —ri)(r, —r )
'

M 3M A
f [(I 2) I]2 + I 2(I 2) II] +r' r' (3.18)

(3.8)
We have for the Pontryagin index (after continua-
tion and simplifications)

A =. .. , (A, )0, A, &0, A &0).

Choosing

c = -A/6Ai, (3.9)

T r&

P = 82, dt x'dr(T rE„,*E"")
33lT 0 r2

1 (6M —y )
2M (r, -r )

(3.19)

c = -A/6Am, (3.10)

the metric becomes regular at r, but remains
singular at r, (the root r- being negative does not
he in the region of interest). For

the metric'corresponding to (A36) becomes regular
at r, but remains singular at r, . Similarly, choos-
ing

P =+1+O(e').

Using (3.9) one obtains similarly

(3.20)

For a coupling constant e (instead of 1) the action
is' (av2/e2)i p (.

[Though the metric is not regular at r =r„ the
integrand is so and one may integrate up to (r, —6)
and take the limit 6-0.] When (8.11) holds we have
from (3.19)

MA -e &&l

r =A ' '[-W - e+o(e')]
r =A '[+W —e+O(e'}]

(3.11)

(3.12)

1 (6M-r )
2m (~, -~ )

(3.21)

r, =2M+o(~').

Thus it is seen that as e-0 (for A-0) it is the
choice (8.10) that leads to the Schwarzschild limit
regu1, arimed at r =3M.

Let us now' introduce the continuation~'

This diverges as q ' a,s g-0.
Let us now go back to (3.10) and (3.20) and com-

pare two different limiting possibilities. We have
the result that c-0 both for

A-0

ig, t --it-
when [for (3.10)] the metric remains real for

(3.13) and for (3.22)

r2 ~&r (r)
and g is now an angular variable with a period

(3.14) and for both cases P-+j. Though P has the same
limiting behavior one should study the extreme
eases separately by starting respectively with

12m 12m r,
(~, -r, )(r, -r )

' (3.15) 2m
N =

~
1 — (Schwarzschild) (3.23)
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N= i - de Sitter limit
Ar

3
of the static case). (3.24)

IV. REMARKS

(3.33)

The first case is the one studied in Ref. 3. Here
we consider the second case where the situation is
fundamentally different. The corresponding KS
metric is now (substituting Ml ' =Ar'/6),

(3.25)

There is no essential singularity at x=0.
We will choose as the region of interest

One obtains (after continuation)

—,'(q'+ (') =exp(2cr*)

3 ) 1l2 . c(3/A) I- 3 ) i/2 "c(3/A)
+r — -r

A) - A)

(3.26)

and the line element (A36) involves

~/2 —i- c(3l/~) l
N exp(-2cr*) = —— —r

A

1/2 "1+c(3/A)
X — +t) (3.27)

Choosing

(3.28)

the metric is regular at r = (3/A)'~2 and the (con-
tinued) time has a period

r = 2v(3/A)'"

Also for both SU(2),

(3.29)

(3.30)

Now we notice that if we integrate as before
from r, to r„w'e get

(3/~) i/2

w 6 (3.31)

(3.32)

If the domain of integration is defined to be this
whole region, one obtains

This is the limit one gets from (3.20). Direct sub-
stitution in (3.15) and (3.19) shows that T-0 and
the radial integral ~ leading to (3.20). This is
why we have treated this case separately. More-
over, there is now no essential singularity at r =0
even before continuation and g, g are real in the
Euclidean section for

The possible origin and consequences of a cos-
mological term have recently been studied by sev-
eral authors in different contexts and from differ-
ent points of view. One aspect is the study of quan-
tum vacuum fluctuations (related to the Casimir
effect) as the source of a nonzero cosmological
term (S.ee, for example, Refs. 16 and 17 which
contain other references. )

Speculations have been made concerning micro-
de Sitter universes as possible models for parti-
cles." It is to be noted that zero-point fluctuations
are also evoked in the MIT bag model' in order to
furnish a supplementary parameter. The formula-
tion of supersymmetry in de Sitter space also has
interesting properties (see Ref. 20 and references
quoted therein).

In this paper we point out certain topological fea-
tures one obtains (in a macrouniverse or a micro-
universe) in the presence of a cosmological term
and in particular for the de Sitter limit of the sta-
tic case.

We have analyzed in Appendix B a class of sing-
ular solutions of the Dirac equation, pointing out
how similar solutions arise also (in flat space) in
the presence of monopoles and instantons. We hope
to present elsewhere a more complete study of dif-
ferent types of solutions for spinors in the Kerr-
Schild metric.

Since the first version of this paper was written
several important references have been brought to
our attention.

Charap and Duff' and Duff and Madore" study
certain classes of solutions directly in the Eucli-
dean section with appropriate changes in the signs
of certain parameters.

Duff and Madore analyze the singularity struc-
ture of their types of solutions and -obtain quantiza-
tion conditions necessary to remove the string
singularities (electric and magnetic). These con-
ditions are found to be just those which lead to in-
tegral values of the Pontryagin integral.

This aspect may be compared with one arising
in our discussion of the Schwarzschild-de Sitter
case. For this case we cannot desingularize si-
multaneously both the horizons (r, and r, in Sec.
III). The corresponding Pontryagin integral (3.19)
is not an integer. Only the limiting cases

(i) 9M'A =0 (A =0 or M=0) and

(ii) 9M'A = 1 give integral values.
We have discussed case (i) in detail, and it may

be verified that as 9M'A-i, rj r2and T-~ in
such a way that
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t= t+r* —r . (A10)

These limits are thus seen to correspond to a
quantization condition.

Spin structures in curved spaces and self-dual
solutions to Euclidean gravity have been studied
in several recent papers. """
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gp, =qp, —2Mlpl, ,

where

(A12)

Then

ds' = (dt' —r'dO —dr') + (N —1)(dt+ dr)' (A11)

and hence, in these coordinates,

We thank Professor M. J. Duff for helpful re-
marks concerning the relation between singularit-
ies and nonintegral values of the Pontryagin inte-
gral.

and

(A13)

/„= / X„-=/ (1,sin9 cosy, sine siny, cose) . (A14)

APPENDIX A

. Here we collect together some useful results
concerning the Kerr-Schild metric. The essential
references are quoted in Sec. G. The Kerr-Schild
metr&c is given by

Epv ~pv 2M' lv ~ (A1)

where q„„is the Lorentz metric (+1,-1,-1,-1) and

/„ is a null four-vector with respect to r/&„(and
hence also with respect to g„„), i.e. ,

R„„=O (A 15)

by expanding R„,in powers of M. One obtains

Let us next consider the stationary axially sym-
metric Kerr,metric with angular momentum. We
will consider mainly the uncharged case without
cosmological constant, though solutions exist in-
cluding both. "' Now we do not assume spherical
symmetry but starting with (A1) we solve the equa-
tion .

l„l„g~"=l„l,g~"=O.

I is a constant parameter. One obtains

g ~"=q~'+2ml~l"

8,nd

v'-g =+1 .
The connection coefficients are

(A2)

(A3)

(A4)

l"B„l„=-A lv

and

BJX) = A(5(~ —A. )Ag)

+pq&~~A~ (i, 2', k=1, 2, 3).
%e also define the scalar

(A17)

(A18)

and in particular

(A5) The scalars &,8, o., p are determined as follows.
The Einstein equations are satisfied if

(A6)

Let us first note the relation of (Al) to some
well-known static spherically symmetric metrics.
Let

p'(o. +ip) -=V'y = 0

(~y ')' -=(&~)' = I

(A19)

ds =Ndt -N 'dr -r dQ

where dA =(de'+sin'edy') and

2M Q +P ArN=&- +r r2 3
~

(A7)

(A8)

and further

and

Q. +a)/, = n'+ p',
(A21)

(A22)

.*f= (A9)

and

(M is. the mass of the central body with electric
charge Q and magnetic monopole charge P. A is
the cosmological constant. )

We now introduce Eddington-Finkelstein type of
coordinates as follows. Let

Q —a) =-2/, ~.
For the static case

A =a„/„8=A+2/, jr

(A23)

(A23')

where / is given by (A13).
Introducing the (Boyer-Lindquist) coordinates

through

x+iy =(p+ia) singe'~,
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z =pcosg,

one obtains for the Kerr metric

=p —M cosg =p+$0',

(A25)

(A26)

APPENDIX 8

In our representation the Dirac equation in the
KS metric is [see the steps leading to (2.17)]

(A27) (~»s im—)g = itd[-i» e„+,'(A ——a)]y. (B1)

and once again
For m=0 let us consider the class of solutions
satisfying

y» =(1, sin8 cosy, sing sing&, cos8) . (A26)

The parameter a is interpreted through the relation
that the angular momentum

ran =0, (B2)

(B3)

(A30)

Let us now go back to the case of spherical sym-
metry and indicate briefly the passage to Kruskal-
type coordinates. " I.et

U=t-r* and V=t+y*, (A31)

where r* is defined by (A9). Then (AV) becomes

ds =NdUdV-x dQ. (A32)

Now defining

(A33)

one obtains

(A 29)

Let us just briefly mention that for the charged
case

This is the class studied in Ref. 1, though our rep-
resentation simplifies the situation from the very
beginning.

One of us'has studied, elsewhere, a class of
~ singular solutions for spinors coupled to non-

Abelian magnetic monopoles" and instantons (un-
pubhshed). These solutions possess springlike
singularities. The same type of solutions reappear
in the context of Kerr-Newman space. '

For comparison, let us briefly indicate the
structure of the solutions. %'e use the following
notations and definitions. Vfe start with the case
of sphencal symmetry.

Let

&=tan —e'~ &=tan —e '~8 g

2 ' 2

where (x, 8, y) are the spherical coordinates Let.

ds' = c 'N exp(-2cr*)dudv —r'dA .
Again with the definitions

u=-,'(&-q), v=-,'(g+q),

(A34)

(A35)

(B5)

be two 2-components spinors, singular on the axis

we get
ds' = 4c 'N exp(-2cr*)(dt' —dn') - r'W, (A36)

where
(For compactness sometimes we use the notations

=- f.) Let

exp(2cr*) = —,'(q' —(')

+ X/2

exp(ct)= "
g —$

(A37)

(A36)

c„-=~ ~ Vr, oe =o(~V8)-, and o =rsin8o V'p . -
(B6)

Then (with e=+)

The roots of g =0 determine the spacetime re-
gions. A proper choice of c may be used to re-
move a chosen apparent singularity. Examples are
given in Sec. III.

0'„@'~ = E4~, 0'84 =e 4, and g~4~ = gee 4

(BV)

Moreover, for arbitrary functions f(g) and g(r, f)

(o.&) (»»)'f(t, )
' C, =(sin8)"f(g, )—eg'(~, t)C', +Xg(x, t) e""4, (g'=—S„g).
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The final singularity structure, of course, depends
on the choice of f and g.

Using such properties [with g =0 in (88) to start
with J one can easily verify that one has (away
from possible singularities) solutions for (82) and
(83) of the form

r~=p- gQcos8

for X, and X, respectively.
Now our

(819)

where

(X+ )
&x-)

' (89}

(810)

Thus we see that taking, as particular cases,

g, (~+t) =exp[i%, (t+~)],

g {~+t}=exp[i@(t+~)],
f, (z) = (c)"',
f (c)=-i(i) -,

(821)

(a Vp) =o~+a sine(ac~- pre), (811)

X
= g-""f(n4. ;y

the functions g„f, are arbitrary
For the axially symmetric Kerr-Newman case

we use the Boyer-Lindquist coordinates and the
notations of Appendix A [(A24)-(A30)]. The follow-
ing results are useful (with v still denoting deriva-
tives w'ith respect to x, y, z, while p, 8, y are the
BL coordinates}:

we get respectively the solutions (9.12+}and
(9.12-) of Ref. 1.

Let us now indicate very briefly this type of sol-
utions for isodoublet massless spinors coupled to
instantons in flat Euclidean spacetime (for the re-
stricted case of spherical symmetry in the three-
space). The Dirac equation is now

y {ie-w)y=o {822)

where the Hermitic W„' are [compare with (2.2V) .
and (2.28)]

1 9(o.ve)= —o ——(acr -po )
p

8 p
y' 8

(c vy}= . o„+ . (po„+noe)
p sing + p sing

(812)

so=dc

W'=a%4+(5-1}i[4,v4]+c4r",

where
14- Pa'~y

(823)

1 (ao„-po8),

1
(o vt)= . [ac+i~(no -poe)],

p sing

and hence

(g vg)4, =0.

(813)

. (814)

(815)

and with f(r, t) = 1np(r, t)

a=re =rf, (5-1)=-rd=-f' (f= S f, f'-=8 f).
(824)

For

p=(~2+~') '=(Z'+r'+tm) '

Similarly

(o vp}4 =0.
Using such results one may again verify that

(816)
one gets the Belavin-Polyakov-SchwartF. -Tyupkin
(BPST)" regular solution. The isodoublet solution
can now be written as

g~((8+t)
( )

g ((d+t)
( )

QP

are the necessary generalizations of (810). Thus,
for this class of solutions, the technique of a sim-
ple complex translation" works also for the spin-
ors, namely

r - '= p+ ia cosg

(818}

e '~™cos—y -sin —
g))

8 . 9
2 2

8e''{I'~' sin — +cos—

where the Dirac spinors 4,, 2 are

4 r'(sing) '~'f {g)-

& p "a(r+it) 4, )

(828)

(82V)
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x(sine)J/2f (f)(pgm(r +it)c'

( p "'a,(r-tt)e j
(B28}

the functions f, „g, „h, , are arbitrary. These
functions may be chosen so as to make the energy
density finite and integrable at the cost of intro-
ducing a branch cut so that the density is single
valued only in a cut plane. These solutions can,
moreover, be extended to Witten type configura-
tions" and also to more general representations
of SU(2) (j= 2, 1, ~, . . . ). We will not enter into
these details here.

The lesson of solution (817) is that in a very
particular case a passage to axial &ymmetry is
possible through a complex translation.

For the mell-known pg-instanton solutions in tPe
singular gauge, '0 already referred to after (2.13},
the solution of a set of nonlinear equations is again
reduced to one of a linear equation, namely

Qp=0.

Here again one can obtain new types of solutions
through a complex translation. But the action is
then found to be divergent.
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