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Behavior of positive ions in extremely strong magnetic fields
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The Thomas-Fermi statistical theory yields a total energy for positive ions with N electrons and atomic
number Z in a very strong magnetic field B of the form E~(Z,N, B) = —Z "B "f(N/Z). It is first
shown that for small N/Z, f(N/Z) is proportional to (N/Z)"'. The Coulomb field energy is also
calculated in the statistical limit as ET'F""m (Z, N, B) =const x Z 'B "(N/Z)'", and the constant is
obtained. Finally, the relation to the 1/Z expansion for ions in very strong magnetic fields is established.

INTRODUCTION

Considerable interest has been shown in the
properties of atoms in very strong magnetic fields
because of possible astrophysical implications
concerned with the emission of electrons and ions
from the surface of pulsars, the abundances of the
elements in cosmic radiation, and the properties
of condensed matter forming the outer crust of
magnetic neutron stars.

This has led to extensive studies of the statist-
ical model of an atom, with or without exchange,
in the limit of very high magnetic fields. ' ' In.
this note, we wish to examine

(a) the form of the Thomas-Fermi energy
E~ (Z, N, B) of a positive ion of atomic number Z,
with N electrons (8 ~ Z), in a very strong mag-
netic field B,

(b) the connection of ETF with the Z ' expan-
sion, ' which is so valuable for atoms in zero
magnetic fieM.

SELF&ONSISTEN'f STATISTICAL ATOM

Vfe begin with the statistical model without ex-
change, where we can write, "using natural units
k=c =1 throughout,

(Z ~ E) 28/5~ 2/5~ 4/SZQ/5L2/5e (Hy)

where ct is the fine-structure constant, I = eB/m',
=8/B„withe, =4.4&&10' G,Sand the energy is
measured in the Rydberg unit ~m+2 In (1), e .is
expressed in terms of the slope at the origin Q'(0)
of the solution of the appropriate dimensionless
Thomas-Fer mi equation

0"=(xA)~,

x= p. 'x=a 2 vP 'e 'Z' 'I ' 'x0

in the strong-field case. Clearly, we must solve
(2) for a positive ion, in which case the ion has
a finite (dimensionless) radius x„while to en-
sure N electrons the solution of (2) must satisfy

$(xa) -x,Q'(x, ) = I -N/Z,

and if the ion is i.n a free state

4(xo) =0.

(3a)

(3b)

5, I N'
e =- — Q'(0)+ —1-—

9 X0 Z

It is a straightforward matter to show that a
solution of (2) satisfying (3) can be expanded
around x0 aS

y(x) =~
'

~

)1-—+s,(x -x)'/'/x, x't -(

«0 /(
+higher order terms,

where

( ~)i/s
a
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In the limit of small N/Z, (4) is valid also into
x=0, and from the condition Q(0) =1 it can be
demonstrated that, for small N/Z,

a/5
x -const'x

~

— +higher-order terms. (5)
E~

I

Furthermore, evaluating Q'(0) from (4) in the
limit of smaQ N/Z, it can be shown that

~)8/5
s-const&& —

~

+"
Z) (6)

Hence, the conclusion is that for small N/Z, (1)
and (6) yield

3/5
E (~, Z, E)-Z/ ("-

~
TF» (Z

in the high-field regime.
Devel. oping e to higher order shows that the

next term in (6) is O(N/Z) higher. We note that
Mueller et al.' used a variational trial function
within the Thomas-Fermi framework which yielded
the energy of the neutral atom -B' 'Z ', which
agrees with (1) when N/Z =1.
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COULOMB ENERGY FROM STATISTICAL THEORY

Next we establish the Coulomb energy
EP„„b (Z, N, B) from the statistical theory by
noting that the Thomas-Fermi density p~(r) is
given by"

mx/~(~) t'ZP ~ ua

p(r) = 2~2~

where

Zea Ze P / 5m& / 5(&B)2 / 5C2 / 5(Z &2)1 / 5
(Nv)2/'

Ze/51 2/5

S'I —- 1 16'

Writing p, =Ze /ro, where ro= p'xo, and using

J p(r)d r =N yields

Furthermore, the electron-nuclear potential
energy V, related to E by the virial theorem, "
is given by5, p(r)d r 5 (Ze')' ' 2' 'm' '(eB)(Ns)' 'D

Ecoulomb 6 ~ 6Ze
6 ff 2 m (e9/10 3/1P~ @~3/5gs/5 IZ R&3/lp8 j

0/5Z6/ 5'/5~/5 [Ry] (10)

where

D= 8 —-1 d8=-.

915 2/'5E (Z N B)=Z' 'I'/' — e +-e + ~ ~ ~TF» Z P Z

+ ~ oo

Clearly, (10) is simply pN using Zg. (9) which
is evidently correct.

REI.ATION TO Z i EXPANSION

We now generalize the well-known Z ' expan-
sion' in zero magnetic field to the high-field
regime by writing formally the exact nonrela-
tivistic energy as .

E(Z, N, B)= Ec,„„b(Z,N, B)+ —E,(Z, N, B)+ ~ ~ ~

+ —„E„(Z,N, B)+~ ~ ~;

the idea is to correct the Coulomb term by elec-
tron shielding effects in higher-order terms. The
implication of the 1/Z expansion is that one can
factor out the remaining Z dependence, and in
particular, in the statistical theory without ex-
change, (11)becomes

It is now readily demonstrated from Eqs. (1), (7),
and (10) that &„ is independent of N for large N.
Explicitly, &p 3 a ' '=-S5.364. From Table I
of Ref. 3, & and thus E~ can be obtained for
several N/Z values. We have thereby estimated
&, and &, by a least-squares method as 36.9 and
-2.78, respectively. It should be noted that since
Q'(0) and xo are independent of I or B, these
quantities are pure numbers to be contrasted
with the zero-field result given earlier by March
and White. ' The asymptotic N dependence of E„
in Eq. (11)for large N is thereby established.

In summary, we have demonstrated the way
in which ETF(Z, N, B) behaves for small N/Z and
have thereby been able to determine the asymp-
totic N dependence of the coefficients of the 1/Z
expansion in the limit of targe N in the high-field
limit and in a nonrelativistic framework.
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