Path integrals for a particle in curved space

I.eonard Parker

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (Received 28 June 1978)

We consider a particle obeying the Schrödinger equation in a general curved n -dimensional space, with arbitrary linear coupling to the scalar curvature of the space. We give the Feynman path-integral expressions for the probability amplitude, $\langle x, s | x', 0 \rangle$, for the particle to go from x' to x in time s. This generalizes results of DeWitt, Cheng, and Hartle and Hawking. We show in particular, that there is a oneparameter family of covariant representations of the path integral corresponding to a given amplitude. These representations are different in that the covariant expressions for the incremental amplitudes, $\langle x_{1+1}, x_{2+1}, y_{2+1}\rangle$ $s_i + \epsilon |x_i, s_i\rangle$, appearing in the definition of the path integral, differ even to first order in ϵ (after dropping common factors). Finally, using the proper-time representation, we give the corresponding generally covariant expressions for the propagator of a scalar field with arbitrary linear coupling to the scalar curvature of the spacetime.

I. INTRODUCTION

The dynamical system under consideration obeys the Schrödinger equation

$$
i\hbar \frac{\partial}{\partial s} \langle x, s | \psi \rangle = \left[-\frac{\hbar^2}{2\mu} g^{\alpha\beta}(x) \nabla_\alpha \nabla_\beta + \frac{\hbar^2}{2\mu} \xi R \right] \langle x, s | \psi \rangle ,
$$
\n(1)

where $g_{\alpha\beta}(x)$ is the metric of the *n*-dimensional space, R is the scalar curvature, and ∇_{α} is the covariant derivative formed from that metric, with the wave function $\langle x, s | \psi \rangle$ regarded as a scalar at x (summation over α and β from 1 to n is understood). Here ξ is an arbitrary dimensionless coupling constant. This equation can be viewed as the Schrödinger equation of a particle

of mass μ moving in an *n*-dimensional curved space (or more generally of a dynamical system having an n -dimensional configuration space, with the metric determined by the expression for the kinetic energy). Equation (1) also appears in connection with the proper-time representation of the propagator of a scalar field $\phi(x)$ satisfying the field equation (in units with $\hbar = c = 1$ and $\mu = \frac{1}{2}$)

$$
(-\nabla^{\alpha}\nabla_{\alpha} + \xi R + m^2)\phi(x) = 0,
$$
 (2)

as wi11 be discussed in the final section.

We show that the probability amplitude $\langle x, s | x', 0 \rangle$ satisfying Eq. (1) and the boundary condition

$$
\lim_{s \to 0} \langle x, s | x', 0 \rangle = [g(x)]^{-1/2} \delta(x - x')
$$
 (3)

can be written in the path-integral form

$$
\langle x, s | x', 0 \rangle = \int d[x(s')] [\Delta^p] \exp \left(\frac{i}{\hbar} \int_0^s ds' \left\{ \frac{1}{2} \mu g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} - \frac{\hbar^2}{2\mu} [\xi + \frac{1}{3} (p-1)] R(x) \right\} \right), \tag{4}
$$

where p is a dimensionless parameter which can be chosen at will. The meaning of the notation $\lceil \Delta^p \rceil$ and the measure of the path integration will be defined in detail in Sec. II.

The case $p = 0$, $\xi = \frac{1}{3}$, in which Eq. (4) reduces to

$$
\langle x, s | x', 0 \rangle = \int d[x(s')] \exp \left(\frac{i}{\hbar} \int_0^s ds' \tfrac{1}{2} \mu g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} \right), \tag{5}
$$

has been given before by DeWitt,¹ who was the first to notice that a scalar curvature term appears in Eq. (1), and by Cheng.² They used units with $\mu = 1$. The same case, in units with $\mu = \frac{1}{2}$, was also discussed by Hartle and Hawking,³ who made use of Riemann normal coordinates, a technique which we will use in Sec. II. The case $\xi = \frac{1}{6}$ was also considered in Ref. 1. The case with ξ general was briefly considered in Ref. 3, but the expression suggested there does not yeild a result for $\langle x,s \, | \, x',0 \rangle$ with the correct trans formation properties.

II. PROOF THAT SCHRÖDINGER EQUATION IS SATISFIED

The path integral in Eq. (4) can be defined⁴ by breaking the time interval from 0 to s into $N+1$ equal increments of length ϵ , and writing

$$
\frac{19}{438}
$$

1979 The American Physical Society

$$
\langle x, s | x', 0 \rangle = \lim_{N \to \infty} \left(\frac{\mu}{2\pi i \epsilon} \right)^{n(N+1)/2} \int \prod_{j=1}^{N} \left\{ d^n x_j [g(x_j)]^{1/2} \right\} \times \exp \left\{ \sum_{i=0}^{N} \left[i \int_{i\epsilon}^{(i+1)\epsilon} \left(\frac{1}{2} \mu g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} - \frac{\lambda}{2\mu} R \right) ds' + p \ln \Delta(x_{i+1}, x_i) \right] \right\}, \quad (6)
$$

where $d^n x_j = dx_j^1 dx_j^2 \cdots dx_j^n$, $g = \det(g_{\alpha\beta})$, $s = (N+1)\epsilon$, $x_0 = x'$, $x_{N+1} = x$, and

$$
\lambda=\xi+\tfrac{1}{3}(p-1).
$$

The integral from $s' = l \in \{0, s' = (l+1) \in \{0, s' \in \{0\}\}$ (shortest) geodesic path $x(s')$, from x_i to x_{i+1} . We are using units with $\bar{n} = c = 1$, and taking the spatial metric signature as $(+, +, \dots)$. If the signature of $g_{\alpha\beta}$ were $(-, +, +, \ldots)$, then a further factor of $(1/i)^{N+1}$ would be present in Eq. (6), and $(g)^{1/2}$ would be rewere $(-, +, +, \ldots)$, then a further factor of $(1/i)^{n+1}$ we
placed by $(-g)^{1/2}$. The quantity $\Delta(x_{i+1}, x_i)$ is defined as

$$
\Delta(x_{l+1}, x_l) \equiv [g(x_{l+1})]^{-1/2} \det \left[-\frac{\partial^2 \sigma(x_{l+1}, x_l)}{\partial x_{l+1} \partial x_l} \right] [g(x_l)]^{-1/2}, \qquad (8)
$$

where

$$
\sigma(x_{l+1}, x_l) = \frac{1}{2} \int_{l\epsilon}^{(l+1)\epsilon} ds' \left[g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} \right]^{1/2} \tag{9}
$$

is $\frac{1}{2}$ of the proper arc length along the geodesic from x_i to x_{i+1} . The symbol $\left[\Delta^{\rho}\right]$ in Eq. (4) indicates that each term of the form $\exp[i\int_{t_0}^{(l+1)\epsilon} ds'(\cdot)]$ in Eq. (6) is multiplied by a factor of $[\Delta(x_{l+1}, x_l)]^{\rho}$. The quantity $\Delta(x_{i+1}, x_i)$ transforms as a scalar at x_{i+1} and at x_i . In flat space $\Delta(x_{i+1}, x_i) = 1$ and $R = 0$, so that Eq. (6) reduces to the correct flat-space limit. In the classical limit, $\hbar \rightarrow 0$ [see Eq. (4) for the placement of \hbar], the path integral is clearly dominated by the geodesic from x' to x for which the classical action $\int_0^s \frac{1}{2} \mu g_{\alpha\beta} (dx^{\alpha}/ds') dx^{\beta}/ds'$ is stationary.

From Eq. (6) it follows that

$$
\langle x, s + \epsilon | x', 0 \rangle = \left(\frac{\mu}{2\pi i \epsilon}\right)^{n/2} \int d^n x_{N+1} [g(x_{N+1})]^{1/2} [\Delta(x, x_{N+1})]^p
$$

$$
\times \exp \left[i \int_{(N+1)^6}^{(N+2)^6} ds' \left(\frac{1}{2} \mu g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} - \frac{\lambda}{2\mu} R \right) \right] \langle x_{N+1}, s | x', 0 \rangle, \qquad (10)
$$

I

where now $x_{N+2} = x$. To show that Eq. (1) is satisfied, introduce Riemann normal coordinates⁵ with origin at x . [We assume that these coordinates are good out to x_{N+1} . As the main contribution to the integral in Eq. (10) comes from x_{N+1} close to x as $\epsilon \rightarrow 0$, this appears to be justified if the geodesics near x are continuous and do not intersect.] Let y^{μ} be the Riemann normal coordinate of the point x_{N+1} . The geodesic joining x to x_{N+1} is linear in these coordinates, and it can be shown that

$$
\int_{(N+1)\epsilon}^{(N+2)\epsilon} ds' g_{\alpha\beta} \frac{dx^{\alpha}}{ds'} \frac{dx^{\beta}}{ds'} = \epsilon^{-1} \delta_{\alpha\beta} y^{\alpha} y^{\beta}, \qquad (11)
$$

where we have, without loss of generality, taken the metric tensor at $y=0$ to be $\delta_{\alpha\beta}$ in these coordinates. One also has

$$
\sigma(x, x_{N+1}) = \frac{1}{2}\delta_{\alpha\beta}y^{\alpha}y^{\beta}, \qquad (12) \qquad \delta_{\lambda}\langle x, s|x', 0\rangle = \left[\partial \langle x_{N+1}, s|x', 0\rangle / \partial y^{\lambda}\right]_{y=0}
$$

so that Eq. (8) yields
\n
$$
\Delta(x, x_{N+1}) = [g(y)]^{-1/2}.
$$
\n(13)

From Eq. (11) it is clear that the contributions to the integral in Eq. (10) come mainly from the region in which $\delta_{\alpha\beta} y^{\alpha} y^{\beta} \leq \mu \epsilon$ Thus, we expand the quantities appearing in Eq. (10) about $y = 0$ (only the terms up to order y^2 will contribute to order ϵ) and extend the range of integration from $-\infty$ to ∞ (if it is not already over that range). One has'

$$
[g(y)]^{(1-p)/2} = 1 - \frac{1}{6} (1-p) R_{\mu\lambda} y^{\mu} y^{\lambda} + O(y^3),
$$
\n(14)

where $R_{\mu\lambda}$ is evaluated at $y=0$. Also

$$
\langle x_{N+1}, s | x', 0 \rangle = \langle x, s | x', 0 \rangle + y^{\lambda} \partial_{\lambda} \langle x, s | x', 0 \rangle
$$

+ $\frac{1}{2} y^{\lambda} y^{\mu} \partial_{\lambda} \partial_{\mu} \langle x, s | x', 0 \rangle + \cdots$, (15)

where

$$
\partial_{\lambda}\langle x,s|x',0\rangle\equiv\big[\partial\langle x_{N+1},s|x',0\rangle/\partial y^{\lambda}\big]_{y=0}.
$$

Furthermore, expanding $R(y)$ about $y = 0$ and integrating along the geodesic gives

$$
\int_{(N+1)\epsilon}^{(N+2)\epsilon} ds'R(y) = \epsilon [R + \frac{1}{2} y^{\mu} R_{;\mu} + O(y^2)], \qquad (16)
$$

 (7)

where R and R_{;µ} are evaluated at $y = 0$. Therefore

$$
\exp\bigg[-\frac{i\lambda}{2\mu}\int_{(N+1)\epsilon}^{(N+2)\epsilon} ds'R(y)\bigg]=1-\frac{i\lambda}{2\mu}\epsilon[R+\frac{1}{2}y^{\mu}R_{;\mu}+O(y^2)].
$$
\n(17)

Substituting Eqs. (14), (15), and (17) into Eq. (10), using y as the variable of integration, and retaining only terms which will give contributions up to order ϵ , one finds

$$
\langle x, s + \epsilon | x', 0 \rangle = \left(\frac{\mu}{2\pi i \epsilon}\right)^{n/2} \int_{-\infty}^{\infty} d^4 y \exp[i\frac{1}{2} \mu \epsilon^{-1} \delta_{\alpha\beta} y^{\alpha} y^{\beta}]
$$

$$
\times \{ \langle x, s | x', 0 \rangle - [\frac{1}{6} (1 - p) R_{\mu\lambda} y^{\mu} y^{\lambda} + i \epsilon (\lambda / 2\mu) R] \langle x, s | x', 0 \rangle
$$

$$
+ \frac{1}{2} y^{\mu} y^{\lambda} \partial_{\mu} \partial_{\lambda} \langle x, s | x', 0 \rangle + \cdots \}.
$$
 (18)

Terms odd in y have been dropped because their integrals vanish. The remaining Gaussian integrals are

$$
\int_{-\infty}^{\infty} d^n y \exp(i \frac{1}{2} \mu \epsilon^{-1} \delta_{\alpha \beta} y^{\alpha} y^{\beta}) = \left(\frac{2 \pi i \epsilon}{\mu}\right)^{n/2}
$$
\n(19)

and

$$
\int_{-\infty}^{\infty} d^n y y^{\mu} y^{\lambda} \exp\left(i \frac{1}{2} \mu \epsilon^{-1} \delta_{\alpha \beta} y^{\alpha} y^{\beta}\right) = \left(\frac{2 \pi i \epsilon}{\mu}\right)^{n/2} \delta^{\mu \lambda} \left(\frac{i \epsilon}{\mu}\right). \tag{20}
$$

Hence

$$
\langle x, s+\epsilon | x', 0 \rangle = \langle x, s | x', 0 \rangle - \frac{i \epsilon \lambda R}{2 \mu} \langle x, s | x', 0 \rangle + \frac{i \epsilon}{\mu} \delta^{\mu \lambda} \left[\frac{1}{2} \partial_{\mu} \partial_{\lambda} \langle x, s | x', 0 \rangle - \frac{1}{6} (1-p) R_{\mu \lambda} \langle x, s | x', 0 \rangle \right] + O(\epsilon^2), \tag{21}
$$

and in the limit $\epsilon \rightarrow 0$,

$$
i\frac{\partial}{\partial s}\langle x,s\,|x',0\rangle=\left\{-\frac{1}{2\mu}\,\delta^{\alpha\beta}\partial_\alpha\partial_\beta+\left[\frac{1}{6\mu}(1-p)+\frac{\lambda}{2\mu}\right]R\right\}\langle x,s\,|x',0\rangle\,.
$$
 (22)

Using Eq. (7) for λ , and returning to general coordinates yields

$$
i\frac{\partial}{\partial s}\langle x,s|x',0\rangle=\left\{-\frac{1}{2\mu}\nabla^{\alpha}\nabla_{\alpha}+\frac{1}{2\mu}\xi R\right\}\langle x,s|x',0\rangle,
$$
\n(23)

which shows that the path-integral expression for $\langle x, s | x', 0 \rangle$ satisfies the Schrödinger equation [Eq. (1)]. To show that the boundary condition of Eq. (3) is satisfied, write Eq. (6) in the form

$$
\langle x, s | x', 0 \rangle = \lim_{N \to \infty} \int \prod_{j=1}^{N} \left\{ d^n x_j [g(x_j)]^{1/2} \right\} \langle x, s | x_N, N \epsilon \rangle \langle x_N, N \epsilon | x_{N-1}, (N-1) \epsilon \rangle \cdots \langle x_1, \epsilon | x', 0 \rangle,
$$
\n(24)

with

 \overline{a}

$$
\langle x_{i+1}, (l+1)\epsilon | x_i, l\epsilon \rangle = \left(\frac{\mu}{2\pi i \epsilon}\right)^{n/2} \left[\Delta(x_{i+1}, x_i)\right]^p \exp\left[i \int_{i\epsilon}^{(l+1)\epsilon} ds' \left(\frac{1}{2} \mu g_{\alpha\beta} \frac{dx_{\alpha}}{ds'} \frac{dx_{\beta}}{ds'} - \frac{\lambda}{2\mu} R\right)\right],\tag{25}
$$

where the integration is along the geodesic path $x(s')$ from x_i to x_{i+1} . Working in Riemann normal coordinates at x_{i+1} and using the previously given expansions about $y = 0$, one finds for an arbitrary smooth function $f(x)$ that

$$
\int d^n x_i [g(x_i)]^{1/2} \langle x_{i+1}, (l+1)\epsilon | x_i, l\epsilon \rangle f(x_i) = f(x_{i+1}) + O(\epsilon).
$$
 (26)

It then follows from Eq. (24) by repeated use of Eq. (26) that

$$
\int d^n x' [g(x')]^{1/2} \langle x, s | x', 0 \rangle f(x') = \lim_{N \to \infty} [f(x) + O(N\epsilon)] = f(x) + O(s),
$$

440

Thus, the path integral of Eq. (4) , with p having any given value, satisfies Eqs. (1) and (3). Therefore that path integral, which gives $\langle x, s | x', 0 \rangle$, is independent of the value of p . By choosing $p = 0$ one can eliminate the $\lceil \Delta^p \rceil$ term in Eq. (4), or by choosing $p = 1-3\xi$ one can eliminate the scalar curvature term in Eq. (4). When the path integral is written as in Eq. (24) each factor $\langle x_{l+1}, (l+1)\epsilon | x_l, l\epsilon \rangle$ does depend on p. Each factor has the form of Eq. (25), and is thus a scalar at x_{i+1} and at x_i for all values of p. It is interesting that for different values of \dot{p} , the corresponding expressions for

$$
(2\pi i \epsilon/\mu)^{n/2} \exp\left(-i \int_0^{\epsilon} ds' \tfrac{1}{2} \mu g_{\alpha\beta} \dot{x}^{\alpha} \dot{x}^{\beta}\right) \langle x, \epsilon | x', 0 \rangle
$$

differ even to first order in ϵ . For example, one has from Eq. (24), using Riemann normal coordinates at x, that

$$
\left(\frac{2\pi i \epsilon}{\mu}\right)^{n/2} \exp(-i\frac{1}{2}\mu \epsilon^{-1} \delta_{\alpha\beta} y^{\alpha} y^{\beta}) \langle x, \epsilon | x', 0 \rangle
$$

$$
= 1 + \frac{1}{6} p R_{\mu\nu} y^{\mu} y^{\nu} - i \epsilon \frac{\lambda}{2\mu} R + \cdots, \quad (27)
$$

with λ given by Eq. (7). It is only after integration over $d^n y[g(y)]^{1/2}$ in Eq. (10) that p drops out of $\langle x, s+\epsilon | x', 0 \rangle$ to first order in ϵ . We know of no other system in which expressions for $\langle x_{k+1}, (l+1)\epsilon | x_{l}, l\epsilon \rangle$ in a path integral have been shown to.exist which differ (after common factors are dropped) to order ϵ , but nevertheless yield the same result for $\langle x, s | x', 0 \rangle$. That the additional requirement of covariance under general transformations of the coordinates x_i can also be met

by the $\langle x_{l+1}, (l+1) \in | x_l, \epsilon \rangle$ for all values of p is rather surprising.

III. PROPAGATOR FOR SCALAR FIELD

Consider the following curved spacetime generalization of the Minkowski Space scalar field equation:

$$
(-g^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta} + \xi R + m^2)\phi(x) = 0,
$$
 (28)

where m is the mass of the particles associated with the field, and the metric now has the signature $(-, +, +, \ldots)$ in this *n*-dimensional spacetime. For $\xi = 0$ one has minimal coupling, and for $\xi = \frac{1}{6}$ one has conformal coupling. The Green's function satisfying

$$
(-\nabla^{\alpha}\nabla_{\alpha} + \xi R + m^2)G(x, x') = [-g(x)]^{-1/2}\delta(x - x')
$$
\n(29)

can be written in the proper-time representa- $\text{tion}^{\mathbf{6.7}}$ as

$$
G(x, x') = \int_0^\infty i ds \ e^{-i m^2 s} \langle x, s | x', 0 \rangle, \qquad (30)
$$

where $\langle x, s | x', 0 \rangle$ satisfies Eq. (23) with $\mu = \frac{1}{2}$, and where $(x, s | x, y)$ satisfies Eq. (25) with $\mu = 2$, and the boundary condition of Eq. (3) with $g^{-1/2}$ replaced by $(-g)^{-1/2}$. The parameter s is known as the "proper time" because it does not change under transformation of the spacetime coordinates x^{μ} . With the metric signature $(-, +, +, \dots)$, one can show that Eqs. (4) and (6) remain valid, except that $(g)^{\pm 1/2}$ is replaced by $(-g)^{\pm 1/2}$ in Eq. (6) and in the definition of Δ in Eq. (8), and a further normalization factor $(1/i)^{N+1}$ appears in Eq. (6), as well as a further factor of (-1) on the right-hand side of Eq. (8) . Thus, one has the generally covariant expression

$$
G(x, x') = \int_0^\infty i ds \ e^{-i m^2 s} \int d[x(s')] [\Delta^p] \exp \left[i \int_0^s ds' \left(\frac{1}{4} g_{\alpha\beta} \frac{dx^\alpha}{ds'} \frac{dx^\beta}{ds'} - [\xi + \frac{1}{3} (p-1)] R(x) \right) \right].
$$
 (31)

If we replace $\exp(-im^2s)$ by $\exp(-im^2s - s^{-1}\delta)$ where δ is a small positive quantity to be taken to zero at the end of the calculation, then Eq. (31) can be shown to yield the Feynman propagator in the flat-spacetime limit. One is always free to eliminate the scalar curvature term in Eq. (31) by choosing $p = 1-3\xi$, or to eliminate the Δ term by choosing $p = 0$. The propagator $G(x, x')$ is independent of the value of p . It is interesting

'B. S. DeWitt, Bev. Mod. Phys. 29, 377 (1957).

- ²K. S. Cheng, J. Math. Phys. $13, 1723$ (1972).
- ³J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188 (1976), Appendix.
- 4 R. P. Feynman, Rev. Mod. Phys. 20, 327 (1948).
- 5 These coordinates are described in A. Z. Petrov,

that if one uses the simplest path-integral expression, corresponding to Eq. (5), for $\langle x, s | x', 0 \rangle$ in Eq. (30), then one obtains the propagator for Eq. (28) with $\xi = \frac{1}{3}$, which is neither the minimal nor the conformal coupling.⁸

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (Grant No. PHY 77-07111).

Einstein Spaces (Pergamon, Oxford, 1969).

 6 J. Schwinger, Phys. Rev. 82, 664 (1951).

 ${}^{7}B. S.$ DeWitt, Phys. Rep. 19C, 295 (1975).

⁸For another context in which curvature enters into the path-integral formulation see M. M. Mizrakhi, unpublished report, Center for Naval Research of the U. of Rochester. I thank Professor C. M. DeWitt for pointing out this reference.