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Path integrals for a particle in curved space
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We consider a particle obeying the Schrddinger equation in a general curved n-dimensional space, with
arbitrary linear coupling to the scalar curvature of the space. We give the Feynman path-integral expressions
for the probability. amplitude, {x,s|x’,0, for the particle to go from x’ to x in time s. This
generalizes results of DeWitt, Cheng, and Hartle and Hawking. We show in particular, that there is a one-
parameter family of covariant representations of the path integral corresponding to a given amplitude. These
representations are different in that the covariant expressions for the incremental amplitudes, <{x,,, ,
s, + €x;,5;), appearing in the definition of the path integral, differ even to first order in € (after
dropping common factors). Finally, using the proper-time representation, we give the corresponding generally
covariant expressions for the propagator of a scalar field with arbitrary linear coupling to the scalar
curvature of the spacetime.

I. INTRODUCTION

The dynamical system under consideration
obeys the Schrodinger equation

. ”
ih’%(x,slll)) .—.l:- E-Jg B %)V Ve+ E‘ﬁﬁR](xysl‘p),

(1)

where g44(x) is the metric of the n-dimensional
space, R is the scalar curvature, and V, is the
covariant derivative formed from that metric,
with the wave function (¥, s|¢) regarded as a
scalar at ¥ (summation over o and 8 from 1 ton
is understood). Here &.is an arbitrary dimen-
sionless coupling constant. This equation can be
viewed as the Schrddinger equation of a particle

of mass p moving in an z-dimensional curved
space (or more generally of a dynamical system
having an z-dimensional configuration space, with
the metric determined by the expression for the
kinetic energy). Equation (1) also appears in
connection with the proper-time representation of
the propagator of a scalar field ¢(x) satisfying
the field equation (in units with Z=c=1and pu=3%)

(-Vava'*’gR +m2)(P(x)=0’ (2)

as will be discussed in the final section.
We show that the probability amplitude (x, s|x, 0)
satisfying Eq. (1) and the boundary condition
lim (%, s|x’, 0) =[ g(*)]” Y26(x - x") 3)

S0

can be written in the path-integral form

-

dx® dx®

x,s|x’,0) =[d[x(s')][AP]exp (hé ]'sds'{gug“ T T %}[5 +5(p - 1)]R(x)}> , (4)

where p is a dimensionless parameter which can be chosen at will. The meaning of the notation [A?] and
the measure of the path integration will be defined in detail in Sec. II.
The case p =0, £=%, in which Eq. (4) reduces to
i (¢ dx® dx®
(x,s|x, 0)=fd[x(s')]exp(f_£ ds’%ugaBF le—,),

has been given before by DeWitt,' who was the first to notice that a scalar curvature term appears in Eq.
(1), and by Cheng.”> They used units with 4 =1. The same case, in units with u =3, was also discussed
by Hartle and Hawking,® who made use of Riemann normal coordinates, a technique which we will use in
Sec. II. The case £ =% was also considered in Ref. 1. The case with £ general was briefly considered in
Ref. 3, hut the expression suggested there does not yeild a result for (x,sl x’, 0) with the correct trans-
formation properties.

(5)

II. PROOF THAT SCHRODINGER EQUATION IS SATISFIED

The path integral in Eq. (4) can be defined* by breaking the time interval from 0 to s into N+1 equal
increments of length €, and writing
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)n(Nu)/z J’ H{dnxj[g(xj)]w}

x,slx’, 0)-11m (2—2 ]

dx® dx® A

N (1+1)e
Xexp{z [i fu (% H8as 77 Fo7 ~ EER)ds' +p lnA(xm,x;)}}, (6)

1=0

where d"x; =dx}dx3 ¢ - dx], g=det(gqp), s =WN+1)€, x,=x", xy,, =%, and

A=£+3(p-1).

(M

The integral from s’=1€ to s’ =(l +1)e is along the (shortest) geodesic path x(s’), from x; to x;,,. We are
using units with Z=c =1, and taking the spatial metric signature as (+,+,...). If the s1gnature of gus

were (=, +,+,.

32

A(xhu xl) E[g(xlq)].uz det [_ M}[g(xl)]-w ’

9%1,,9%;
where

(1+1)e dx® dx® 122
0¥y, %1) = éf ds’ \:gaﬂ as7 3;7]

le

..), then a further factor of (1/4)**! would be present in Eq. (6), and (g) would be re-
placed by (-g) . The quantity A(x,,,,x;) is defined as

®)

C)

is 3 of the proper arc length along the geodesic from x; to x;,,. The symbol [A?] in Eq. (4) indicates that
each term of the form exp[i j('”)‘ ds’( )] in Eq. (6) is multiplied by a factor of [A(x;,,, ¥;)}’. The quantity

A(x4,,, %) transforms as a scalar at x;,, and at x;.

In flat space A(x;,,,%;)=1 and R =0, so that Eq. (6) re-

duces to the correct flat-space limit. In the classical limit, Z— 0 [ see Eq. (4) for the placement of %],
the path integral is clearly dominated by the geodesic from x’ to x for which the classical action

f:éugaﬂ(dx“ /ds’)(dxP /ds')ds’ is stationary.
From Eq. (6) it follows that

(x, S + elx’, 0) = (2’n’l€ ) f d’lanlg(xﬂu) l'/Z[A(-x xNu)]p

(N+2)6
Xexp[if ds’ (
(

N+1)e

where now xy,,=x. To show that Eq. (1) is satis-
fied, introduce Riemann normal coordinates® with
origin at x. [We assume that these coordinates
are good out to xy,,. As the main contribution to
the integral in Eq. (10) comes from xy,, close to

x as €— 0, this appears to be justified if the geo-
desics near x are continuous and do not intersect.]
Let y* be the Riemann normal coordinate of the
point xy,,. The geodesic joining x to xy,, is linear
in these coordinates, and it can be shown that

b dx® dx®
J(.Nu)l ds . gaB ds’ dsl =
where we have, without loss of generality, taken

the metric tensor at y =0 to be 5,5 in these co-
ordinates. One also has

€ 104 )"y", (1)

O(%, Xysy) = éaaay“yB, (12)
so that Eq. (8) yields
A(x,xN+1)=[g(y)]-1/z- (13)

From Eq. (11) it is clear that the contributions
to the integral in Eq. (10) come mainly from the

dx® dx® A
2 M8as 7 ds’ ds’ ~ E;L-R>] <xN+1ys|x" 0), (10)

region in which 8,5¥*y® <€ Thus, we expand
the quantities appearing in Eq. (10) about y =0
(only the terms up to order y* will contribute to
order €) and extend the range of integration from
—o to o (if it is not already over that range). One
has®

(g 22 =1 =L (1 =p)R, ¥y +0(3°),

(14)
where R,) is evaluated at y=0. Also
(Kyers SI%7, 0y =(x, s|x’, Oy + 978, (x, s|%", 0)
+59 9" 0,0,(x,s|x", 0) +o0e,
(15)

where

(%, s|x’, 0y =[8 (xy.y, 8| %7, 0) /89" ] oy
Furthermore, expanding R(y) about y=0 and
integrating along the geodesic gives

(N+2)€
f( | dSRO)=elR+3YRW+0O0M],  (16)
N+1)e
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where R and R ;, are evaluated at y=0. Therefore
exp[ ﬂf(mz)sds,R(y)} =1 -i—k-E[R +39"R,, +0(5%)] (17)
20 A we1)e - 2u 2V B Yol

Substituting Eqs. (14), (15), and (17) into Eq. (10), using y as the variable of integration, and retain-
ing only terms which will give contributions up to order €, one finds

nlz o
(x,8+€lx',0>=<2,ﬁ-€> f d*y expliz L€ 0457%Y" ]

x{(x,s|x’, 0y = [2(1 = p)R .y ¥4 3" +3€(N/2u)R}(x, s|x’, O)

+3y%y%0,8, (x,s|x’, 0y +e0e}, (18)
Terms odd in y have been dropped because their integrals vanish. The remaining Gaussian integrals are
f Ty explik pe 10us9°9*) = (gl:_ey/z (19)
and
fw d'yy*y* exp(iz ne " 8,p9"y") = (%zj) " (lf) . (20)
Hence

EAR i i€ ‘
(%, +€|x",0) =(x,s|x’, 0) — o sk, 0+ Ifb“[ 20,0x(%, 8| 4", 0) =3 (L = p)Ra(x, s|x, 0] +O(€?),

(21)
and in the limit €~ 0,
N 1 1 A
za(x,s |’ 0) ={ _ E_IIGGBaaaB + [_6.;:(]_ -p)+ E/I] R} (x,slx', 0). (22)
Using Eq. (7) for A, and returning to general coordinates yields
.9 , 1 vey 1 , )
z—a-;-(x,slx,0>= M a+§;§R (x,six’, 0y, (23)

which shows that the path-integral expression for (x,s|x’, 0) satisfies the Schrddinger equation [Eq. (1)].
To show that the boundary condition of Eq. (3) is satisfied, write Eq. (6) in the form

N
(%512, 0) =lim S T L0 )12hex, s i, N6yt Ne gy @0 = D)) G35, 137, ), (24)
i=1
with
po\"”2 [0 dx, dx A
<xl¢1’ (l+1)e|x,, l€>= (21[i€ ) [A(xhuxl)]’exp [1’ jl; dS' %'/J‘gaﬂa-\;%gs-% - -Z_H.-R ’ (25)

where the integration is along the geodesic path x(s’) from x; to x;,,. Working in Riemann normal coordi-
nates at x;,, and using the previously given expansions about y =0, one finds for an arbitrary smooth
function f(x) that

fd"x,[g(x,)]‘/z(x,,“ ¢+ l)elxb le) flx;) =f(%1,,) + O(e). (26)
It then follows from Eq. (24) by repeated use of Eq. (26) that

[ s g, sl 57, oy fiar) = tim [(6) +OQV€)] =/(x) +O6),
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since s =(N +1)e is held fixed as N— «, Taking
the limit s -~ 0 now yields Eq. (3).

Thus, the path integral of Eq. (4), with p having
any given value, satisfies Eqs. (1) and (3). There-
fore that path integral, which gives (x,s Ix',-O), is
independent of the value of p. By choosing p =0
one can eliminate the [A?] term in Eq. (4), or by
choosing p =1 - 3£ one can eliminate the scalar
curvature term in Eq. (4). When the path mtegral
is written as in Eq. (24) each factor
(%141, (1 +1)€|x;, l€) does depend on p. Each factor
has the form of Eq. (25), and is thus a scalar at
%3, and at x; for all values of p. It is interesting
that for different values of p, the corresponding
expressions for '

€
(2mie/u)” exp (—i f ds's ugaak"‘&ﬁ> (%, €lx’, 0)
0

differ even to first order in €. For example, one
has from Eq. (24), using Riemann normal co-
ordinates at x, that

arie \"2 -
( m ) exp(~i3 L€ B,59%y°)Xx, €|x’, 0).

=1+%pR,, y*y" —ieR s , (27
24

with A given by Eq. (7). It is only after integration
over d"y[g(y)]“? in Eq. (10) that p drops out of
(x,s +€|x’, 0) to first order in €. We know of no
other system in which expressions for
(%11, (L +1)€|x;, l€) in a path integral have been
shown to exist which differ (after common factors
are dropped) to order €, but nevertheless yield
the same result for (x,slx’, 0). That the additional
requirement of covariance under general trans-
- formations of the vcoordinates' %; can also'be met

J

If we replace exp(~im?3s) by exp(~im?3s —s~15)
where 6 is a small positive quantity to be taken

to zero at the end of the calculation, then Eq.

(31) can be shown to yield the Feynman propagator
in the flat-spacetime limit. One is always free

to eliminate the scalar curvature term in Eq.

(31) by choosing p =1 ~ 3£, or to eliminate the A
term by choosing p =0. The propagator G(x,x’)

is independent of the value of p. It is interesting

«© * . o
6, 2= [ ids et [ afets Malenp s [ ast (bpus Sr 25
0 4]

by the (x,,,, (I +1)€|x;, € for all values of p is
rather surprising.

III. PROPAGATOR FOR SCALAR FIELD
Consider the following curved spacetime gen-

eralization of the Minkowski space scalar field
equation:

(-g**VaVs +ER +m*)P(x) =0, (28)

where m is the mass of the particles associated
with the field, and the metric now has the sig-
nature (-, +, +,...) in this n-dimensional space-.
time. For £=0 one has minimal coupling, and
for &—- one has conformal coupling. The Green’s
function satisfying

(=YY, + ER +m2)G(x, ') = [~g ()] 26(x - ")
(29)

can be written in the proper-time representa-
tion®7 as

G(x,x’):J’ ids e"™*(x, s |x", 0y , (30)
[+

where (%, s|x’, 0) satisfies Eq. (23) with u =3, and
the boundary condition of Eq. (3) withg™/ 2 replaced by
(-g)™*/2, Theparameter s isknown as the “proper
time” because it does not change under transforma-
tion of the spacetime coordinates x*. Withthe metric
signature (-, +,+,...), one can show that Egqs. (4)
and (6) remain valid, except that (g)*2 is replaced
by (-g)**/2 in Eq. (6) and in the definition of A in
Eq. (8), and a further normalization factor

(1/:)¥** appears in Eq. (6), as well as a further
factor of (-1) on the right-hand side of Eq. (8).
Thus, one has the generally covariart expression

[}§+§(1>— 1)]R(x)>] . | (31)

r

that if one uses the simplest path-integral expres-
sion, corresponding to Eq. (5), for (x,slx’, 0) in
Eq. (30), then one obtains the propagator for Eq.
(28) with £ =4, which is neither the minimal nor
the conformal coupling.® )

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation (Grant No., PHY 77-07111).

IB. s. DeWitt, Rev. Mod. Phys. 29, 377 (1957).

2K. S, Cheng, J. Math. Phys. 13, 1723 (1972).

3J. B, Hartle and S. W, Hawking, Phys. Rev. D 13, 2188
(1976), Appendix.

‘R. P. Feynman, Rev. Mod. Phys. 20, 327 (1948).

5These coordinates are described in A. Z. Petrov,
Einstein Spaces (Pergamon, Oxford, 1969).

83, Schwinger, Phys. Rev. 82, 664 (1951).

'B. S. DeWitt, Phys. Rep. 19C, 295 (1975).

8For another context in which curvature enters into the
path—integral formulation see M. M. Mizrakhi, un-
published report, Center for Naval Research of the
U. of Rochester. I thank Professor C. M. DeWitt for
pointing out this reference.



