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Path integrals for a particle in curved space
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We consider a particle obeying the Schrodinger equation in a general curved n-dimensional space, with
arbitrary linear coupling to the scalar curvature of the space. We give the Feynman path-integral expressions
for the probability. amplitude, (x,s~x', 0), for the particle to go from x' to x in time s. This
generalizes results of DeWitt, Cheng, and Hartle and Hawking. We show in particular, that there is a one-
parameter family of covariant representations of the path integral corresponding to a given amplitude. These
representations are different in that the covariant expressions for the incremental amplitudes, px7+I
s, + e~x„s(), appeating in the definition of the path integral, differ even to fnwt order ."',n e (after
dropping common factors). Finally, using the proper-time representation, we give the corresponding generally
covariant expressions for the propagator of a scalar field with arbitrary linear coupling -to the scalar
curvature of the spacetime.

I. INTRODUCTION

The dynamical system under consideration
obeys the Schrodinger equation

5 olPik—(x, s)g) = ——g (x)V V]]+—gi', (x, s[(]]),8s 2p. 2p,

where g a(x) is the metric of the n-dimensional
space, 8 is the scalar curvature, and ~ is the
covariant derivative formed from that metric,
with the wave function (x, s ~(7)) regarded as a
scalar at x (summation over n and ]3 from 1 tost
is understood). Here t' is an arbitrary dimen-
sionless coupling constant. This equation can be
viewed as the Schrodinger equation of a particle

of mass p. moving in an n-dimensional curved
space (or more generally of a dynamical system
having an n-dimensional configuration space, with
the metric determined by the expression for the
kinetic energy). Equation (1) also appears in
connection with the proper-time representation of
the propagator of a scalar field (p(x) satisfying
the field equation (in units with It = c =1 and ]t = a)

(-V V. +gfl+m')y(x) =0,
as wi11 be discussed in the final section.

We show that the probability amplitude (x, s
~
x', 0)

satisfying Eq. (1) and the boundary condition

lim(x, s(x', 0) =[g(x)] '~'5(x —x')
S~0

can be written in the path-integral form

(x s[x', 0) = d[x(s')][0 ]exp( — ds' -'tsd s, d, ——[(s-,' (p-l)]d(x)I),
t'i ', , dx dx'

(4)

where p is a dimensionless parameter which can be chosen at will. The meaning of the notation [&s] and
the measure of the path integration will be defined in detail in Sec. II.

The case P =0, t' = —,', in which Eq. (4) reduces to

z dx dx
(x, six', 0) = f d[x(s')]exp — ds'-,'Xd„s

has been given before by DeWitt, ' who was the first to notice that a scalar curvature term appears in Eq.
(1), and by Cheng. ' They used units with p, = l. The same case, in units with ](t = g, was also discussed
by Hartle and Hawking, ' who made use of Riemann normal coordinates, a technique which we will use in
Sec. II. The case t = e was also considered in Ref. 1. The case with t' general was briefly considered in
Ref. 3, but the expression suggested there does not yeild a result for (x, s

~

x'., 0) with the correct trans-
formation properties.

II. PROOF THAT SCHRODINGER EQUATION IS SATISFIED

The path integral in Eq. (4) can be defined~ by breaking the time interval from 0 to s into f(I+1 equal
increments of length e, and writing
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fag

where d"xi d-x&dx~&" dx&, g=det(g z), s =(Ã+1)e, xo=x', xz„=x, and

~ = &+ 3(P —1)

The integral from s'=le to s'=(I+ 1)e is along the (shortest) geodesic path x(s'), from x, to x„,. We are
using units with I=c =1, and taking the spatial metric signature as (+, +, . . .). If the signature of g ()

were (-, +, +, . . . ), then a further factor of (I/i)"' would be present in Eq. (6), and (g) would be re-
placed by (-g) '. The quantity A(x,.„x,) is defined as

where

xg

( +»6
I dx+ dx&

- »2
v(x)y|4 xg) g ' ds, g~()

te ds ds

is ~ of the proper arc length along the geodesic from x, to x„,. The symbol [&~] in Eq. (4) indicates that
each term of the form exp[i J„"''ds'( )] in Eq. (6) is multiplied by a factor of [&(x„„x,)] . The quantity
&(x,.„x,) transforms as a scalar at x„, and at x, . In flat space &(x„„x,) =1 and 8 =0, so that Eq. (6) re-
duces to the correct flat-space limit. In the classical limit, II- 0 [see Eq. (4) for the placement of k],
the path integral is clearly dominated by the geodesic from x' to x for which the classical action
J'~ pg 8(dx /ds')(dx~/ds')ds' is stationary.

From Eq. (6) it follows that

n»
(x, s + e~x', 0) =

i
. d"x))(„[g(x„„)]'~~[a(x,x„„)]~

dx dx'
xexp i ds' ~pg z, , — If

~ (xN, ~, s(x', 0),
(N+»g ds ds 2p. )

(10)

where now xz„=x. To show that Eq. (1) is satis-
fied, introduce Riemann normal coordinates with
origin at x. [We assume that these coordinates
are good out to x„„.As the main contribution to
the integral in Eq. (10) comes from xN„close to
x as e- 0, this appears to be justified if the geo-
desics near x are continuous and do not intersect. ]
Let y" be the Riemann normal coordinate of the
point x&„. The geodesic joining x to x„„is linear
in these coordinates, and it can be shown that

f dx dx ~ I pds'g )), , =e '6 ~y y~, (11)
(~+»I ds ds

where we have, without loss of generality, taken
the metric tensor at y = 0 to be 5 z in these co-
ordinates. One also has

I

region in which 6 zy y &p& Thus, we expand
the quantities appearing in Eq. (10) about y =0
(only the terms up to order y' will contribute to
order e) and extend the range of integration from
-~ to ~ (if it is not already over that range). One
has'

[g(y)l' ""=I- -,
' (I P)&,iy'y" +-0(y'),

(14)

where B„q is evaluated at y=0. Also

(x„„,s [x', 0) = (x, s (x', 0) + y"8„(x,s (x', 0)

+ ~ y"y" 8),8„(x,s ix', 0) + ' ' ',
(15)

where
o(x, x„.,) =;6 ()y y, (12) 8„(x,s (x', 0) -=[8(x„„,s [ x', 0)/8y" ]„.0 .

so that Eq. (6) yields

&(x, xg.,) =[g(y)] ". (13)

From Eq. (11) it is clear that the contributions
to the integral in Eq. (10) come mainly from the

Furthermore, expanding A(y) about y = 0 and
integrating along the geodesic gives

J
(N+2)

d 'R(y) = [ft+-,'y"R.,„+0(y')],
(N+»

(16)
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where 8 and R,.„are evaluated at y =0. Therefre
(/+2) 6

exp —— ds'ft(y) =1-—e[R+ zy"8;„+O(y')].
2p. (~„), 2p.

Substituting Eqs. (14), (15), and (17) into Eq. (10), using y as the variable of integration, and retain-
ing only terms which will give contributions up to order c, one finds

n/2

(x, saalx', 0)= ( . d'ysxp[i pa'p ay"y j
a OO

(17)

x((x, s[x', 0) —[-, (1-p)R»y"y" +is(A j2lz)R](x, s[x', 0)

+ z y"y"8„8„(xys (x'y 0) + ~ «}. (18)

Terms odd in y have been dropped because their integrals vanish. The remaining Gaussian integrals are
OO ~ n/2

d"yexp(zip@ '5 zy y ) = (19)

and

(20)

Hence

(x, s + e ( x', 0) =(x, s (x'y 0) — (x, s )x', 0) + —5""[zs „8&(xy s ( x', 0) — (1 —p)R»(xy s (x', 0)j + O(e ),

(21)

and in the limit &-0,

i —(x, six', 0) = ——5 s s()+ —(I-p)+ 8 (x, s(x', 0).A.

~s 2p 6p. 2p,
(22)

Using Eq. (7) for A., and returning to general coordinates yields

1i—(x, s(x', 0) = ——V V + — (x, s[x', 0), (23)

which shows that the path-integral expression for (x, s ~x', 0) satisfies the Schrodinger equation [Eq. (1)].
To show that the boundary condition of Eq. (3) is satisfied, write Eq-. (6) in the form

(x, six', 0) =i)ra J [] (rpxr[ai(xr)]' }(x, lx„, )ia&(x„sraa Ix„„()y—))a& , (x„a[x',i)),
g~ce

(24)

with

n /2 dx dx, x{„x„(&+I) ( &xi )e=
~

. [&(x„„x,)] exp i ds' ~[zg~(), , ——8(2mie (25)

where the integration is along the geodesic path x(s') from x, to x„,. Working in Riemann normal coordi-
nates at x&„and using the previously given expansions about y =0, one finds for an arbitrary smooth
function f(x) that

d xi g +r &i+j~ ~+1 & x» l6 xg = x&+1 +0 6

It then follows from Eq. (24) by repeated use of Eq. (26) that

(26)

d"x gx '/2~, s x', 0 x' =lim x +OX~ = x+Os,
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(2m~'e/g)~'exp (-f f ds'-,'pg„Vx')(x, a[a', 0)
a

differ even to first order in e. For example, one
has from Eq. (24), .using Biemann normal co-
ordinates at x, that

nl2

exp(-~i~e '5.&y y')&», elx', o)
p.

. A.= j.+-PR „y y -&&—R+ ~ ~
jk V

2p
(27)

with A. given by Eq. (7). It is only after integ'ration
over d"y[g(y)]'2 in Eq. (10) that P drops out of

(x, s+e(x', 0) to first order in e. We know of no
other system in which expressions for
(x„„(L+1)e[x~, le) in a path integral have been
shown to.exist which differ (after common factors
are dropped) to order e, but nevertheless yield
the same result for (x, s[x', 0). That the additional
requirement of covariance under general trans-
formations of the coordinates x, can also be met

since s =(X+1)e is held fixed as E-~. Taking
the limit s - 0 now yields Eq. (3).

Thus, the path integral of Eq. (4), with p having
any given value, satisfies Eqs. (1) and (3). There-
fore that path integral, which gives (x, s[x', 0), is
independent of the value of P. By choosing P =0
one can eliminate the [&~] term in Eq. (4), or by
choosing p =1-3g one can eliminate the scalar
curvature term in Eq. (4). When the path integral
is written as in Eq. (24) each factor
(x„„(l+1)e(x„le) does depend on P. Each factor
has the form of Eq. (25), and is thus a scalar at
x&„and at x& for all values of p. It is interesting
that for different values of P, the corresponding
expressions for

by the (x„„(l+ 1)e(x„e) for all values of p is
rather surprising.

III. PROPAGATOR FOR SCALAR FIELD

Consider the following curved spacetime gen-
eralization of the Minkowski Space scalar field
equation:

(-g V &q++m')y(x) =0, (28)

where m is the mass of the particles associated
with the fiel.d, and the metric now has the sig-
nature (-, +, +, . . . ) in this n-dimensional space-.
time. For g =0 one has minimal coupling, and
for g =-, one has conformal coupling. The Green's
function satisfying

(-V V. +~+mm)G(x, x') =[-g(x)] ~' 6(x- x')

(29)

can be written in the proper-time representa-
tion" as

G(x, x')= ids e '" '(x, s(x', 0),
"0

(30)

where (x, s(x', 0) satisfies Eq. (23) with p, = ~, and
the boundary condition of Eq. (3) withg'~ ' replaced by
(-g) '~'. Theparameter s is known as the "proper
time" because it does not change under transforma-
tion of the spacetime coordinatesx". With the metric
signature (-, +, +, . . . ), one can show that Eqs. (4)
and (6) remain valid, except that (g)'~' is replaced
by (-g)" 2 in Eq. (6) and in the definition of 4 in

Eq. (8), and a further normalization factor
(I/i)"" appears in Eq. (6), as well as a further
factor of (-1) on the right-hand side of Eq. (8).
Thus, one has the generally covariarit expression

40 S dx Cx~
G(x, x').= „ ids e ™~'

J d[x(s')][6 ]exp i ds' —,'g z, , -[g+& (P-1)]R(x)
I

(31)

If we replace exp(-im's) by exp(-im's -s '5)
where 5 is a small positive quantity to be taken
to zero at the end of the calculation, then Eq.
(31) can be shown to yield the Feynman propagator
in the flat-spacetime limit. One is always free
to eliminate the scalar curvature term in Eq.
(31) by choosing P =1-3E, or to eliminate the b,

term by choosing P =0. The propagator G(x, x')
is independent of the value of P. It is interesting

that if one uses the simplest path-integral expres-
sion, corresponding to Eq. (5), for (x, s~x', 0) in
Eq. (30), then one obtains the propagator for Eq.
(28) with g = ~, which is neither the minimal nor
the conformal coupling. '
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