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Evolution of scalar perturbations near the Cauchy horixon of a charged black hole
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%'e describe the evolution of a scalar test field on the interior of a Reissner-Nordstrom black hole. For a
wide variety of initial field configurations the energy density in the scalar field is shown to develop
singularities in a neighborhood of the geometry's Cauchy horizon, suggesting that for a stellar collapse
curvature singularities will develop prior to encountering the Cauchy horizon. The extension to the interior of
stationary perturbatioris due to exterior sources is shown not to disrupt the Cauchy horizon.

I. INTRODUCTION

The Reissner-Nordstrom geometry' is the uni-
que, ' asymptotically flat, spherically symmetric
solution to the Einstein-Maxwell equations that
describes the spacetime outside of a spherical
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FIG. 1. Part of the conformal Carter-Penrose diagram
for a Reissner Nordstr-nm solution with

~ Q ( &M. The
level surfaces of the coordinates t and r* are shown by
the dashed lines. The coordinates g and v are null co-
ordinates related to t and r*byu=-r*-t and v =-r*
+t. The Cauchy horizon is the null hypersurface r =r
with u =~ and v =~ on the left and right sides, respec-
tively. The event horizon for the left exterior region
is the null hypersurface r=r, with u =-~. Paths a and
b represent timelike world lines beginning in the ex-
terior, crossing the u= — eventhorizon, and crossingthe
u =~ and v =~ parts of the Cauchy horizon, respectively.

star with charge Q and mass M. This geometry
may be analytically extended to an electrovacuum
solution representing a black hole for 0& ~Q(&M
(Ref. 3). While similar to the Schwarzschild black
hole in the exterior region (i.e. , outside of the
event horizon r =r,), the charged-black-hole in-
terior (i.e. , inside of the event horizon) is dram'-
atically different. The Carter -Penrose diagram
in Fig. 1 illustrates two distinguishing features:
the timelike character of the curvature singularity
(cf. the spacelike curvature singularity of a
Schwarzschild black hole) and the Cauchy horizon
inside of the event horizon at r =r (See .Hawking
and Ellis' for the definitions of the global proper-
ties and Graves and Brill' for details on the ana-
lytic structure, coordinate systems, etc. , for
Reissner-Nordstrom black holes. )

The Cauchy horizon or (as we will call it) the r
horizon has the peculiar global property of being
the boundary in spacetime where the Einstein-
Maxwell equations (or any other physical theory
based on partial differential equations) lose their
predictive power to describe the future evolution
from prior data. However, the r horizon also
has the property of being a null surface of infinite
blue-shift. An observer crossing it will see an
arbitrarily large blue-shift of any incoming radia-
tion and the entire history of the exterior region
inafinite lapse of her own proper time as she
approaches the horizon. These properties sug-
gested to Penrose' that the r horizon will be un-
stable, small perturbations will develop into
curvature singularities just before it. The future
development then stops at a curvature singularity
rather than the Cauchy horizon.

The instability of the r horizon gives rise to
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the conjecture that in describing stellar collapse
the development of a Cauchy horizon ' is a special
feature arising from the assumption of spherical
symmetry. Previous studies"" suggest that non-
symmetric perturbations from symmetric stellar
collapse develop into curvature singularities be-
fore the formation of a Cauchy horizon.

Penrose and Simpson' have irivestigated num-
erically the evolution of a test massless vector
field on a charged-black-hole background for a
variety of initial field configurations. They found
a general divergence of the field energy density as
the evolution approached r =r and they concluded
that this divergence was a generic feature for this
background geometry. McNamara'0 has demon-
strated the existence of initial data for perturba-
tions by a test scalar field which are bounded by
power laws on 8 and evolve to have unbounded

energy densities on r =x . In this paper we also
consider the evolution of test scalar fields, dis-
cuss their detailed evolution inside of the black
hole, and consider the implications for charged
stellar collapse. In a sequel" we will discuss the
evolution of the coupled electromagnetic and
gravitational perturbations on and the final-state

) oblem for the interior black hole left by a.

!charged stellar collapse.
Perturbation calculations can only show a solu-

;ion to be stable. The unbounded growth of a per-
rbation suggests that (through the Einstein equa-

tions) a curvature singularity may develop, but
higher-order nonlinear terms must be included
to provide sufficient conditions for instability.
(The exterior of a Reissner-Nordstrom black hole
has been shown to be stable to linear perturba-
tions by Bidkk, ' Sibgatullin and Alekseev, "Mon-
crief, "and Zerilli. ") As McNamara'0 has done
we will consider the unbounded growth of linear
perturbations to be indications of possible instab-
ilities and will use the term "instability" in this
sense.

For the electrovacuum solution we will show
that in general a massless scalar test field P with
arbitrary initial data on 8 or on the event horizon
r =x, will develop an unbounded energy density as
measured by an observer freely falling from rest
in the exterior (a "freely falling observer, " FFO)
in a neighborhood of the r horizon. The evolution
of the field P proceeds in two steps: First the
wave propagates in the exterior from 8 to the
event horizon r =r, The detaile. d evolution of P
outside the event horizon may be summarized for
our purposes by a main wave traveling from 8 to
the horizon along a null ray and a sequence of
waves scattered off of the background curvature
from the main wave and subsequently scattered
waves. The scattered fields superpose to fall off

at late times as a pwer law t ". From the work
of Price and Bidlk~ we know that this power-law
falloff is a generic feature of wave propagation in
the exterior. The field along the event horizon
can be characterized by a main wave (which
evolved directly along a null ray from data on 8 )
and a power-law tail. Second the field on the
event horizon evolves through to the interior
region r & r & r, to a neighborhood of the Cauchy
horizon r =r . We analyze in detail the evolution
of P in the interior region and show how the data
on the event horizon evolves to waves running
along and across the r horizon. The waves run-
ning along the r horizon are then blue-shifted by
an arbitrarily large amount at the ~ horizon.

The formation of power-law tails by waves pro-
pagating in the exterior and the blue-shift of the
tails on the interior suggest that almost any per-
turbation in the exterior spacetime will grow into
an instability on the x horizon. We also find that
perturbations that develop inside the black hole
(for example a momentary switching on and off
of some scalar charge on the surface of a collap-
sing star after it has crossed the event horizon)
evolve subsequently to fields that are regular but
with still divergent energy densities at the r
horizon.

In accord with Israel's theorem, ' investigations
of spherically symmetric collapsing shells of
charge ' and dust have Reissner-Nordstrom geo-
metries as their exterior solutions. Therefore,
we may use the previous considerations supple-
mented with appropriate boundary conditions at
the surface of the star to discuss the evolution of
a charged collapse. Figure 1 shows two possible
world lines for the surfaces of collapsing stars.
These lines are to be interpreted as the boundar-
ies of the stars, with the Reissner-Nordstrom
solutions attached smoothly on the right and the
stellar interior geometries (not shown in the fig-
ure) attached on the left. The development of cur-
vature singularities along the ~ horizon then
follows as in the previous case. (We note that
McNamara's" analysis of instability depended
upon the two-sphere P, the singularity in the
Killing vector field. The collapse described by
the world line to the right in Fig. 1 does not con-
tain P in that spacetime and so his proof is not
applicable to that case. Our discussion will show,
however, that this section of the r horizon in
that geometry is also unstable. )

In Sec. II we write the wave equation we will use
for the propagation of the field P on the Reissner-
Nordstrom background, define the condition for
stability at the r horizon, define the appropriate
boundary conditions, and set up the characteristic
initial-value problem to evolve data in the interior.
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In Sec. III we solve for the evolved behavior of the
field (t) at the r horizon and present the result of
a numerical integration. In Sec. IV we discuss the
perturbations from exterior stationary sources.
In Sec. V we summarize our results and briefly
consider the effects of quantum-mechanical pro-
cesses on our conclusions. -5—

N

II. THE WAVE EQUATION

The Reissner-Nordstrom black-hole interior
for r &r&r, is described by the metric

-IO
Q =0.9Mr', (r, r)(r——r )

(r, -r)(r-r )
' r'

—r (d8' +sin'Hdy'), (2.1)

-l5
-I 0 I 2
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FIG. 2. The potential of the separated wave equation.

where. r, =—M+ (M' —Q')'", r is a temporal coor-
dinate, and f is a spatial coordinate (see Fig. 1).
It is convenient to define a "tortoise" coordinate
r* by the equation

1 1r *= -r -—ln(r, - r) +—ln(r - r ),
K+ K

(2.2)

n84;;eg (2.3)

To exploit the symmetries of the background we
expand P in spherical harmonics and Fourier
transform in t to obtain

(2.4)

Substituting this expression for p, the wave equa-
tion is reduced to an ordinary differential equation
in r* for the modes g, „,and given by

where ~, -=(r, —r )/rm are the surface gravities at
the two null surfaces. We will regard r as an im-
plicit function of r* with the asymptotic limits
given by r-r, as r*-+~, and define the null co-
ordinates u and v by the equations u = -r*- t and
v=-r*+t. These definitions for g and v are the
natural extensions to the interior of Price' s" ex-
terior null coordinates. The event horizon is the
null hypersurf ace u = -~ and the left and right r
horizons are the null hypersurfaces u =~ and v =~,
respectively.

The propagation of the scalar test field on this
background is taken to be governed by the scalar
wave equation

CP (mt + [P V (rm)]y (rm) P (2.5)

where the scattering "potential" V, (r*) is given by
the equation

l(l + 1) 2M 2Q~
X ~ +-3 — 4r r (2.6)

The potential V, (r*) (shown in Fig. 2) is sharply
localized in r* and falls to zero exponentially with
the asymptotic forms given by

V, (r*)-exp(vw, r*) as

The solutions to Eq. (2.5) as r*- -~ have the
asymptotic forms given by

(2.7)

(2.8)

Near the r horizon these solutions may be des-
cribed as left-going (e "")and right-going (e"")
waves with exponentially vanishing corrections in
r* Similar e. xpressions hold for P near the r,
horizon.

The energy density in the (()) field (we are not con-
sidering the conformally invariant scalar field so
the ~A term is absent) as measured by our FFO is
a quadratic function of the quantity (t) U" where
TJ is the FFO's four-velocity. A FFO falling
from rest in the exterior towards the left u = ~
horizon has a four-velocity given by



416 GURSEL, SANDBKRG, NOVIKOV, AND S'f AROBINSKY 19

At u =~ the FFO will measure a P „U given by

U" -~ e'-"'" ~'+(const)~ as u- ~..K t)+g 2 9h
, n (Z) Bv

(2.10)

[The absence of the conjugate function P)('),(r*),
which has the asymptotic behavior e""as r*-~,
in Eq. (3.1) is due to the initial condition (j) =0 on
the null surface v =-~.] At the r horizon )if )

k, (r*)
has the asymptotic form given by

Similarly a FF0 falling to the right v = ~ horizon
will measure a p „rg" given by

a ~+ K Q+u)/2 Bh

(2.11)

e-fk)k~(-) (rg) g (k)e Ikv-+ B (k)e N

where

fA,.(k}(' - /B,.(k) P' = I,

(3.3)

(3.4)

Hence, for the FFD's to measure physically non-
singular fields near the r horizon, the appropriate
derivatives of the field times the exponential
blue-shift factor must be bound. [The condition
Eq. (2.11) is identical with McNamara's'0 condi-
tion derived by an exponential boost to a nonsingu-
lar coordinate system at v =~.]

The higher-order terms in the solutions in Eq.
(2.8) all fall off as fast or faster'than e"-' as
r*- -~ and the physical features described by
these solutions are dominated by the leading terms
(j)- e ""and (j)- e"". From Eqs. (2.11) and (2.10)
we see that the e ""waves are singular along the
right (v =~) r horizon and the e""waves are
singular along the left (u =~) r horizon.

The development of (j) in the interior region from
data on the x, horizon is most naturally stated as
a characteristic initial-value problem. Since we
are basically concerned with the history of a
stellar collapse we take (f) to be 0 on the left (v
=-~) r, horizon and take (j) to be some initial-
value function h(v) on the right (u =-~}r, hori-
zon —the event horizon for the collapsing star.
In the interior (r &r&r, ) r* is a timelike coor-
dinate (as r* goes from ~ to -~ time increases
in a positive sense) and Eq. (2.5) describes the
temporal evolution between the horizons. In this
respect the calculation is more like a cosmological
problem than a scattering problem (cf. scattering
in the exterior). The final evolution of (j) is given
by its values on the u =~ and v =~ r horizons.

which follows from the Wronskian condition. In
the sequel" we will show that A, (k) and B, (k)
are analytic in & in a neighborhood of k=0, take
the values at 4 =0 given by

A (k =0) = —'+=(-1)' r,
rm

. (-1)' r, r l
B,.(k =0) =-

2 r r&'
(3.5)

H, „(k}=— h, (v)e""dv.1
(3.6)

The general structure of the solution in a neigh-
borhood of the r horizon has the form

p, (r*, t) =—[h, (v)+ j()( )+v(j)2) (u) +O(r-r )],1

where

(3.7)

and as k- ~, [A, (k}-1] and B, (k) decay expon-
entially. [A strict proof of the regularity of A, „(k)
and B,„(k}at all intermediate points for real k has
been given by McNamara. "]

The function H, (k) is determined from the initial
data h, „(v) on the right (u = -~) r, horizon [here
h, (v) are the multipole moments of the initial
value data h(v), i.e. , h(v) =Q, „h, (v)I', „(8,y)].
Evaluating Eq. (3.1) as u —-~, with the help of
Eq. (3.2) and using the Fourier inversion theorem
we may write

k(o) fdke ""H,„(k)[k=, (k)-1), (3 6)

III. EVOLUTION OF THE SCALAR FIELD

y, (r+, t)= dk e '~'H, „(k)—g~( ),(r*), (3.1)

where P,
) „(r*) is the solution to Eq. (2.5) with the

asymptotic form at the r, horizons given by

ll P( )kk(r g) e k)k)l aS (3.2)

To impose the initial conditions on r*=+~ it is
convenient to write for a particular /, m-spherical
harmonic mode the expression

(&)=J kk&""k, (k)B, (k). „(3 9)

[Note that the integrals in Eqs. (3.6) and (3.9) are
convergent. for a wide class of data H, (k) due to
the exponential fall off of the A, „(k)-1 and B, (k)
coefficients. ] [A formal mathematical proof that
the fourth term in Eq. (3.7) is O(r-r ) has also
been given by McNamara. "]

If P, (k) is regular on the real k axis, then
since A, „(k) and B,„(k) havenoirregularpoints in
a neighborhood of the real k axis the contour of
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In this case H, (k) is not analytic at the point k =0.
The nonanalytic part of H, (k) is proportional to
gp

' if a is nonintegral and k~ 'ink if n is an inte-
ger. In either case H, (k) has a cut in the complex
k plane and we shall place this cut along the im-
aginary k axis in the lower half plane in the case
of Eq. (3.6) and in the upper half plane in the case
of Eq. (3.9).

We now consider the contribution to Q„(v}and

P» (u} from the power-law tail [second term in
Eq. (3.11)]. Due to the cut, the main contribution
to P» (v) and Q„(u) for large values of their
arguments comes from the integration in the vicin-
ity of the origin. The general form of the contour
for Eq. (3.8) is shown in Fig. 3. Owing to the
analyticity of A, (k) and B, (k) at k =0 we can sub-
stitute for them their values at k =0 [Eqs. (3.5)]
in Eqs. (3.8) and (3.9) and we obtain

(v} = p, v ~[A, (0) —1] as v- ~, (3.12)

(u)=pu B, (0) asu-~, (3.13)

where the tilde means these are the contributions
from the second term in Eq. (3.11). Therefore,
in the case of a power-law tail P is bounded at the

horizon and vanishes at the point P (u- ~, v- ~),

but the invariants in Eqs. (2.10) and (2.11}diverge
according to the equation

-v (") -V
K

-(a+ i) exp—
Q 2 Q

(3 14)

on the respective horizons. Hence, the r horizon
is unstable against scalar perturbations with
power-law initial data at all points along the hori-
zon except the point B (u =-~, v =~). (The proper-
ties and behavior of perturbations at the point 8
will be discussed in the subsequent paper. ")

It is interesting to note that the 6-function part
of k, (v) [i.e., the first term in Eq. (3.11)]also
gives rise to singularities along the r horizon.
In this case H, „(v)= (Il2m)e'""0 and hence it is analytic
in the whole complex plane. Therefore the contour
in Eqs. (3.8) and (3.9) can be deformed into the
lower and upper half planes, respectively, until
the contour intersects the nearest nonanalytic
point of A& (k) or B, (k). Then we obtain the re-
sult that P» (v) and P» (u) [the corresponding
contribution to P„„(v)and P„(u) from the first
term in Eq. (3.11)]decay exponentially for large
values of their arguments. An estimate of the
index y for the exponential decay depends upon the
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imaginary value of the point where A, „(k) or B, (k)
becomes nonanalytic. Numerical computations of
the evolution of a Gaussian wave packet are shown
and described in Fig. 4. These computations indi-
cate numerically that

y„(v) - e """as v -~,
(())2)„(u)-e "-"" as u-~. (3.15)

We have not yet obtained an analytical proof of
this result. Since &,&~ the invariants in Eqs.
(2.11) and (2.10) diverge at the v =~ horizon.

IV. STATIONARY EXTERNAL SOURCES

In this section we consider the nonradiative
fields (()) which are connected with external sources
outside of the r, horizon. We assume that these
sources are at rest in the exterior with respect to
the charged black hole. This means that in the
exterior part oi' the black-bole geometry (r & r, )
the field (t) is independent of the exterior time and
is well behaved at the r, horizon (its behavior at
r =~ is unimportant for this discussion). To ex-
tend this field inside (r ~r, ) we must solve Eq.
(2.3) for the case that P is independent of t on
r =r+. This means finding the solutions to Eq.
(2.5) for @=0.

The 0 =0 solutions to Zq. (2.5) can be written in
closed form as

(4 1)

where P, is the Legendre polynoinial and Q, is the
Legendre function of the second kind. " Of these
two independent solutions only P, is regular at r,
and hence describes the extension inside the hole
of fields due to external sources. With this solu-
tion we see that near the r horizon the (t) field
behaves as P, (-1) and the energy density as mea-
sured by one of our FFO is proportional to the ex-
pression

0.'~+1 K r+ ~+1
U - ' e"-" +(const)-- '+(const),go pre Br

which is finite.

V. CONCLUSION

This work has described the dynamical develop-
ment of a test scalar field with the aim of demon-
strating that for a, wide class of physically reason-
able initial conditions (really, for all the conditions

we considered) the energy density in the field
grows singular along the Reissner-Nordstrom
geometry's Cauchy hor izon. Such behavior sug-
gests that for the real collapse of a charged star
curvature singularities will develop in the in-
terior of the forming bl.ack hole before the Cauchy
horizon and timelike singularity of the Beissner-
Nordstrom black hole are encountered by the
developing spacetime geometry of the collapse.
These conclusions for the development of perturba-
tions that began in the exterior are in agreement
with the resu1ts of Penrose and Simpson and
McNamara. " An interesting feature of the present
calculation is that even a 5-function initial dis-
tribution on the outer horizon leads to the un-
bounded growth in the energy density of the scalar
field at the inner horizon.

In this paper we have restricted our attention to
classical fields. To examine the physical evolu-
tion of a more realistic stellar collapse we must
take into consideration quantum mechanical effects:
viz. , pair creation by the gravitational field (all
particles are created, including massless par-
ticles) and the creation of charged particle pairs
by the electromagnetic field. The former process
takes place for all values of M and Q, the latter
process is possible if ~eQ)&4GrnM. If ~eQ)»G'mM/8
then the creation of charged pairs by the electro-
magnetic field. is much more rapid than the crea-
tion of pairs by the gravitational field. We expect
these and associated processes to drive perturba-
tions that also disrupt the Cauchy horizon, but
their contribution to the total energy-momentum .

tensor will be proportional to Planck's constant
and in general small as compared to the classical
perturbations. Work on these problems is cur-
rently underway.
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