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Static model of the quark potential
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We present a semiclassical method for calculating the potential energy of a heavy quark-antiquark pair.
Our method preserves the operator charge structure of the quark and antiquark. The operator structure of
the gluon fields is approximately maintained by truncating the gluon degrees of freedom to a minimal set, a
set which preserves the operator charge structure of the quark-antiquark-gluon system. The energy of this

truncated system is determined using a variational principle. The potential thus determined accurately
reproduces the results of renormalization-group improved perturbation theory up to and including effects of at
least order a'inn. '

I. INTRODUCTION

Perhaps the simplest manifestation of the
forces which bind quarks is to be found in the
structure of heavy quark bound states, for which
dynamics are relatively unclouded by the intrica-
cies of the relativistic bound-state problem. For-
tunately, nature has provided us with such states
in the g/J (Refs. 1-6) and T (Refs. t-9) families
of particles. Early attempts to fit the g/J spec-
trum provided an adequate description using a
combination of Coulomb and linear potentials. '
More recently, attempts have been made to
systematically reconstruct a phenomenological
potential using the inverse-scattering method. '

A challenge to our understanding of these bound
states is the probl. em of relating phenomenological
potentials to quantum chromodynamics (QCD), the
candidate for a fundamental theory of strong inter-
actions. Unlike the corresponding calculation in
an Abelian gauge theory, the determination of
such a potential in QCD is nontrivial. In an
Abelian theory, the interaction between massive
point charges is simple. It is governed by the
Coulomb potential, and this potential is the energy
of the unique static classical field configuration
in the presence of stationary charged sources of
given separation. Neither of these statements is
known to hold in the non-Abelian case.

Perturbative analysis of the quark-antiquark
Bethe-Salpeter equation in QCD in the limit of
large quark mass" " indicates that a description
of the interaction in terms of an effective poten-
tial is appropriate in the color-singlet channel.
In this channel the potential can be written in the
form

where t is the momentum transfer, T, = (1V' —1)/

F(o.) =—I+ b n', (1.2)

so that at short distances (corresponding to
small o.) the potential is Coulombic. At large
distances a confining potential can arise only by
virtue of the dependence of n on the momentum
scale and the nontrivial dependence of F(a) on ct

Evaluation of such a confining potential must
necessarily be nonperturbative.

This paper attempts to address the question of
what we can learn about the quark-antiquark
force from classical and semi-classical analysis
of Yang-Mills theory. Analogy with the Abelian
case suggests finding static solutions of the clas-
sical Yang-Mills equations in the presence of
stationary external quark charges. However, the
non-Abelian nature of the theory complicates the
classical problem and prevents a straightforward
interpretation of classical solutions in a quantum
context.

Since the classical theory has no ultraviolet di-
vergences and thus no need of renormalization,
the classical interaction energy of two charges
separated by distance r must be of the form

V„(r) = -(n/r)TF„(n, T), (1.3)

where T represents the classical color dependence
of the interaction. The dependence of V on r is
necessarily Coulombic on dimensional grounds.
The essential content of the theory is contained in
the function F,~

(n). Ultimately our semiclassical
analysis will be aimed at determining F,& as an
approximation to the F(o.) occurring in Eq. (1.1).
This treatment sheds no light on the scale depen-
dence of n arising from the renormalization group

2A is the quadratic Casimir operator of SU(1V),
and o.(t) is the running QCD coupling constant
determined from the Gel. l-Mann-Low equations. " '
For small coupling, F is of the form
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in the full quantum theory. Such a nonperturba-
tive approximation to E(n), when combined with
conventional perturbative renormalization-group
analysis of n(t), will perhaps allow a reasonable
extension of (1.1) from the short-distance Cou-
lomb region to intermediate-distance scales. We
shall see that this semiclassical approximation
agrees very well with QCD perturbation theory,
at least to order aP inn.

It is clear that a purely cl.assical description
of quark charges does not in general offer an
adequate approximation. In the quantum theory
the charge operators of a quark or antiquark
satisfy

at b ~ abc- cs (1.4)

whereas classical Yang-Mills charges are
simply c-number (N —1)-component vectors in
the adjoint representation of SU(N). Classical
treatment of the charge operators would be a
good approximation only in a limit in which quarks
lie in a very large representation of SU(1V). As
we are interested rather in the case in which the
quarks lie in the smallest representation of SU(N),
the fundamental representation, our analysis must
be semiclassical, at least insofar as the commu-
tation relations (1.4) must be maintained. This
point has been noted before by Adler" and by the
authors" and provides part of the motivation for
the introduction of Adler's "algebraic chromo-
dynamics. "

The semiclassical model we shall introduce
here keeps not only these quantum effects due
to quark charges, but also some of the effects
due to gluons. The necessity of retaining these
effects reflects the color-charge structure of the
quantum theory. The quark-antiquark pair must
be allowed to make transitions between the singlet
and (N' —1)-piet quark states, accompanied by
the emission or absorption of a (N' —1)-piet gluon.
We treat quark and antiquark in the large-mass
limit as stationary point charges. Our approxi-
mation involves truncating the infinite-dimen-
sional Hilbert space of transverse gluon states in
Coulomb-gauge QCD to a space of gluon states
in which al. l gluons share a single spatial wave
function. This wave function is determined by a
self-consistent variational principle applied to the
expectation value of the Hamiltonian in the result-
ing state. The semiclassical model of the quark-
antiquark state thus obtained is very similar to

'the static model of nuclear physics'; our
truncation of the QCD Hamiltonian to a single set
of gluon modes is the analog of the Tomonaga ap-
proximation in the theory of P-wave pion-nucleon
interactions. "

The organization of this paper is as follows,

II. THE CLASSICAL POTENTIAL

Let us consider the classical system of station-
ary pointlike charges interacting with an SU(N)
Yang-Mills field. By a stationary point charge
we mean a point charge the spatial position of
which is time independent. The Yang-Mills equa-
tions appropriate to the descr'iption of this system
are

D„F""=J",
where

+pv = ~g&v- ~v&y +g&g +&v ~

In these equations the covariant derivative is

D„U= ~„U+gA.„&U,

(2.1)

(2.2)

(2.3)

with the cross-product of any two vectors U,
and V, in the adj'oint representation of SU(N) de-
fined to be

(U x V), =f,~,U~V, . (2.4)

For an assembly of k stationary point charges
located at the positions r„.. . , r„ the correspond-
ing color current J" is of the form

J"(r, t) =5"'Q eQ' '(t)5 "(r-r~).
O*l

We have written the charges as eQ (t), where

(2 5)

In Sec. II we briefly review the classical two-
charge problem in non-Abelian gauge theory.
We discuss the problems and ambiguities assoc-
iated with static solutions of the equations of
motion and describe the resolution of these am-
biguities in perturbation theory.

Section III concerns the quantum-mechanical
quark-antiquark system. We introduce the ra-
diation-gauge QCD Hamiltonian. We apply the
Tomonaga approximation to this Hamiltonian. We
then proceed to a mean-field approximation to
this truncated Hamiltonian and arrive at an ef-
fective model Hamiltonian describing a simple,
tractable system of color charges interacting
with 1V' —1 harmonic oscillators. We describe
the diagonalization of this effective Hamiltonian
in the singlet sector.

In Sec. IV we compare the results of our semi-
classical approximation to known results in QCD
perturbation theory. We see that our model re-
produces perturbation theory up to terms of order
n'inn in E(n).

Section V is devoted to some concluding re-
marks on the implications of our results for
physical systems such as the g/8 and T. In a
later paper we shall present detailed numerical
analysis of the effective Hamiltonian.



R. GILES AND L. McLERRAN 19

Q
' is a dimensionless SU(A) adjoint vector. In

the quantum theory these dimensionless charge
vectors satisfy SU(iU) commutation relations and
form the basis of a charge algebra.

The parameters e andg, and the fields A. , have
dimensions which are easily determined by in-
spection of the classical Hamiltonian

N

a = —,
' Q d'xE,""(x,t)E,'"(x, t) . (2.6)

The dimensions of e, g, and A~ are, respec-
tively, (energyx length)", (energy x length) '~',

and (energy/length)' '. In the ciuantum theory,
gauge invariance relates particle and gluon
charges and requires that e be equal to gh. In
the classical theory, there is no such require-
ment. The dimensionless parameter which char-
acter iz es the str ength of interactions in the clas-
sical theory is eg.

Our objective is to determine the lowest-ener-
gy, nonradiating configuration of gluon fields in

the presence of specified charges. In the
Abelian theory, these configurations are simply
the Coulomb-field solution appropriate to the
charge distribution. Several complications,
however, arise in the non-Abelian theory.

A primary problem is that the values of the
external charges are gauge dependent. Under a
gauge transformation G(x) & SU(A), the charges
transform as

(2.7)

where D~(G) is the matrix representation of G in
the adjoint representation. Although each charge
vector has A'-1 degrees of freedom, this equa-
tion implies that only Ã —1 of these are gauge
invariant. These A' —1 correspond to the A —1

independent eigenvalues of the traceless matrix
Q, . w„where 7, is a generator of SU(1U).

The problem of gauge invariance is manifest
in the extended current conservation condition

(2.8)

Ao(r. )xQi l =0. (2.10c)

Assuming no background field, the perturbative'
solution begins in order e. In this order, the
fields are of the Abelian Coulomb form

In addition to ambiguities arising from gauge
degrees of freedom, we must consider those
ambiguities arising dynamically from the Coulomb
instability. Mandula has shown that for a suf-
ficiently large charge, eg/4n & —, in SU(2), the
Coulomb solution describing a single charge is
unstable. ' The lowest-energy conf iguration
for eg/4v& —,

'
may prove to be a static solution

involving nontrivial chromomagnetic fields, or
perhaps a time-dependent finite-energy screening
solution such as that discussed by Sikivie and

gneiss.

"
We will consider the problem of finding static

perturbative solutions to the Yang-Mills equa-
tions in the presence of two charges. Static field
configurations are those for which all gauge-in-
variant quantities are time independent. A gauge
can be found in which such static configurations
are represented by time-independent potentials. "
As we shall soon see, these time-independent
potentials are such that 4 is finite and, in gen-
eral, nonzero at spatial infinity. After requiring
that the fields be static, we still have the freedom
to make a time-independent gauge transformation,
and can the ref ore impos e an arbitrary gauge
condition on the spatial components of the vector
potential.

The Yang-Mills equations are
-V'A' =J' ~ gV&(A& x A') + gA& x Vp'

+ g 'Aq x (Aq xA'), (2.10a)

V x (V x A) =gA' x VA'+ gV (A x A) + gA» x V'A

-gA' x VA" + g 'A' x (A xA')

+g 'A' x (A" x A), (2.10b)

and the extended current conservation condition is

For stationary charges, this equation becomes
A"«& =O (2.11a)

-gA'(r, t) x Q'(t) =0, (2 9)

and the A' -1V gauge-dependent degrees of free-
dom of Q process in time.

Whether or not these gauge-dependent degrees
of freedom, combined with a complete specifica-
tion of gauge, correspond to distinct field con-
figurations is an open question, In perturbation
theory, this correspondence is the ease. It is
not known, however, whether these perturbative
solutions converge to a well-behaved, unique
solution of the Yang-Mills equations.

0 e «) 1 1

I

1 1

In this order, the field energy

(2.11b)

2

Z=-.' ~d'r(E2+5')=Z + Q'" Q'l
4vl~, -~.l

(2.12)

The quantity E, is the divergent self-energy
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of the point sources. The interaction energy is
the familiar Coulomb energy.

We should note that this leading-order contribu-
tion to the fields depends on all Ã'- 1 parame-
ters which specify each charge. If the perturba-
tion series converged, we would expect that so-
lutions which differ in leading order would be
independent, except for equivalence under overall
global SU(A') gauge rotations.

The leading nonzero contribution to A is of
order e'g. Using Eq. (2.10b), we find

V x (V x A(3)) =J ~) (2.13)

where

J(') =gAt, ) X VAI', )

gg () () ( 1 1

1 1
xvIl-, -,

l

—
ir -, l, l

~ (2.14)

The current J ' is transverse. We observe that
this current generates a nonzero chromomag-
netic field whenever the charges are not parallel,
q(i) )& q(2) g 0

The inversion of V && (V &&A ' ) =Z ' to find A '
is ambiguous in that we may add to it a solution
of the homogeneous equation. To eliminate this
ambiguity and to facilitate comparison of the
classical. results with the results of Sec. III as
well as with the results of QCD computed in the
radiation gauge, we impose the radiation-gauge
condition & A =0. To the extent that we are
working in perturbation theory with small fields,
we are insensitive to the Gribov-Mandelstam
ambiguities. ' '

The contribution of A~' leads to a correction
of order e'g' to Ao. Using Eq. (2.10a), we find

Feynrnon Clossical

X

-2
X

X
I

I

I

k;kJ k;kJ
wwvw

IJ 2 k2k IJ 2
k k

I = r(l) IIQ(l)
I

The function X is encountered in evaluating the
"H-graph" contribution to the quark-antiquark
potential in QCD. In this feature, the QCD H
graph reflects a classical effect. It is interesting
to note that in QCD this graph represents the
dominant contribution to the coefficient of the g'
color-singlet potential by at least two orders of
magnitude. "

Indeed, there is a general parallelism between
the classical perturbation expansion of the energy
and the corresponding expansion in QCD. If we
introduce If in the QCD perturbation theory and
introduce e's rather than g's at charge-Coulomb
vertices, we see that the QCD expansion for the
potential will consist of terms of the form
e'(eg)" (g'I)". The terms which correspond to the
classical perturbation expansion are those which
survive the formal limit 0- 0 with e and g fixed.
Topologically, these are graphs containing no
gluon loops (see Figs. 1 and 2).

Despite the similarities between some impor-

Feynmon C loss i ca I

Q(2)
I

X

FIG. 1. Elements of Feynman and classical tree-graph
perturbation theory.

A(5) = 4" A(3) Asi) + k" |3) AIi) (2.15)

(2.16)

The coefficient R(lr, —r, l) may be written as

Again, the constant term in A.(',i must be deter-
mined so that (2.10c) is satisfied.

The vector potential [Eq. (2.14)] and the con-
tribution to A' [Eq. (2.15)] give an order-e'g'
contribution to the energy of the form

&' =-e'z'J6(lr, -r, l)(Q'" xQ")'
I I I I I

I I I I

+ I I + I I

I I I I
I I I

I I I I I I I I I * )I( *

where

d' rd r'J& (r), ,
l

J& ( r'),
4~LIr - ri (2.17)

I I I I I I

I I I I I

+ I ~ + I ~ +
twwwW

I I I I I I

1 i( 1 1J(r) = —
I

4mt, l~-~, I i~, -r, I)
I I I I I I I I I

Wwwwi Wwd
I I I + I I I y I I I

I I I I I I I I I

I I I

)k

xv( 1 1

i lr-r, l lr, -r~l ) (2.18) FIG. 2. Correspondence between Feynman graphs
and classical tree graphs.
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tant sets of Feynman diagrams and classical tree
graphs, there is a fundamental obstacle to
straightforward application of class j.cal results
to the quantum problem. This obstacle is posed
by the charge structure of the two theories, a
point which has been discussed at length else-
where. " In the quantum theory the charge of a
particle is an operator in a space of color states,
and satisfies the equal-time algebra

[Q(ta& Q(() )] tg f Q(ta) (2.19)

In small representations (e.g. , the fundamental
representation appropriate to quarks), the com-
mutator of two charges is of the same order of
magnitude as the charges themselves and cannot
be reason. ably neglected.

The approximation discussed in Sec. III is in-
spired by the parallels between classical and
quantum chromodynamies. We shall retain,
however, the essentially quantum nature of the
quark charge operators. Our approximation rep-
resents a truncation of the full set of states of
quarks and gluons to a set of states appropriate
to the description of heavy quarks, and of gluons
in a single spatial wave function. These states
are similar to the gluon coherent states which
are appropriate to the description of classical
gluon conf igurations.

III. THE SEMICLASSICAL APPROXIMATION

We now turn to the problem of developing a
semiclassical approximation to the quark-
antiquark interaction which takes into account
the charge structure of QCD. In the infinite-
quark-mass limit, quark recoil and spin effects
are completely suppressed. In this limit, we may
therefore introduce one-dimensional fermionic
operators q, (t) and (f, (t), a =I, . . . , IV, which de-
scribe a quark and antiquark at the fixed posi-
tions r, and x;.""The Lagrangian for this
system is

Q.(t) = -q (t)r.*(f(t). (3.3b)

Q,Qb
——

2 Iv
5ab+d, b,Q, +i f,b,Q, ~, (3.4a)

1 1
QaQb 2 ~ ~ab dabcQc+ fabcQc )

(3.4b)

It is convenient to work with the Hamiltonian
form of the theory in the radiation gauge,

A, =0. (3.5)

In this gauge, the separation between the inde-
pendent degrees of freedom of the transverse
gluon field and the constrained nature of the lon-
gitudinal electric field is particularly clear.

The radiation-gauge Hamiltonian is"

H= d'x2 E~' x +B' x +E~' x

where the chromomagnetic field is B, the trans-
verse chromoelectric field is E~, and the longi-
tudinal electric field is defined in terms of the
independent degress of freedom by

(3.6)

t

E~(r, t) = —V'
(
d'r' Q G„(r, r';t(A)Jb'(r'; t).

b

(3.'I)

The charge density J' generated by quarks and
transverse quanta is

J,'(r, t) =p„'„„k(r,t)+ gf'"E(, (r, t) A'(r, t). (3.8)

The Green's function G„(r, r'; t~A) satisfies

[-V'()„. gf„,.A'(r, t—) &]G, b(r, r', t~)A)

=5„() ' (r —r'). (3.9)

The operators E„and A satisfy the canonical
radiation-gauge commutation rel.ations

[E,",(r, t), E)'b(r,'t)]

The quark and antiquark number operators qtq
and q q are conserved. We shall work exclusively
in the sector of the theory where q q and q q have
eigenvalue 1. In this sector, the charges Q, and

Q, satisfy the algebraic relations

(3.1)
=[A, ,(r, t), A~ b(r', t)]=0,

[E,",(r, t),A) b( r', t)] (3.10)

where

Q, (t) =(I (t)& V(t)

and

(3.3a)

where the matrices 7 are the matrix generators
of SU(N) in the fundamental representation.

The quark charge density is expressed as

p.(r, t) =Q.(t)()'"(r —r.)+Q.(t)&'"(r —r.-»
(3.2)

iD 542+Vs
— VJ 5(3) r r/

Mandelstam and Gribov have pointed out dif-
ficulties in properly defining a quantized Yang-
Mills theory in the radiation gauge. "'" These
difficulties stem from the nonuniqueness of the
construction of G in the solution of Eq. (3.9). This
nonuniqueness is known to arise if A is a suf-
ficiently singular function of r. In the analysis
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3

A, (r, t) = }, [e' '"a,(k)+e '"'"aJ(k)],

&" ( &)= —f ["' («)- "*«'(«))

The operators a, (k) are transverse, with

k a, (k) =0,

and satisfy the commutation relations

[a,'(k), a', (k')] = 0,

[a.'(«), «,'(«')]=«" («"-, )(««)'

xm6&'(k-k ).

(3.11)

(3.12)

(3.13)

This plane-wave oscillator basis is not, how-
ever, the most profitable basis in which to begin
making approximations. From analysis of the
classical external field problem, we expect that
a coherent chromoelectric and chromomagnetic
field will develop in the presence of charges.
This observation suggests we transform to a
different basis which is better tailored to suit
such a situation. We therefore write

a,'(k) = Q P„'(k)a„'.
n

The wave functions P„'(k) are transverse,

k f„(k)=0,

and complete,

(3.14}

(3.15)

g P.'(k)4.'*(k) = 6"- ~. ,l(2v}3
n

x 2@5'"(k—k') .
This completeness condition guarantees the
orthonormality condition

d3k

(2 )32k ~„*(k)~ P (k) =5„

(3.16)

(3.17)

and the commutation relations

[a„',a„]=0, [a„',a ] =5'~5"". (3.18}

We can now insert E(l. (3.14) into E[l. (3.6) and
attempt to diagonalize the Hamiltonian. A full
diagonalization would, of course, be extremely

we shal. l perform, the vector potentials we con-
sider are sufficiently nonsingular that the
Mandelstam-Gribov ambiguities would appear to
give no problem. Whether or not these am-
biguities appear outside the analysis we present
is a question we shall not address. . It seems
possible to adopt our techniques to other gauges
if the radiation gauge is singul. ar.

A representation of A and Et, in terms of plane-
wave creation and annihilation operators is

Qr =ia xa +Q+Q (3.19)

is conserved.
Before proceeding to an explicit calculation,

we make one further approximation. The Hamil-
tonian of E[l. (3.7) in the Tomonaga approximation
still describes a complicated, nonlinear system.
The nonlinearities arise from the nonpolynomial

difficult, because of the nonlinear couplings of
the infinite set of coherent modes. We shall pro-
ceed by truncating the Hamiltonian to the sector
which involves only one family of excitations
with wave function g', (k). A truncation to such a
small. number of modes could directly offer a
good approximation if modes of high excitation are
relatively unimportant in the dynamics of the qq
interaction. We know, on the contrary, that
highly excited modes control the high-momentum
(short-distance) structure of the field theory.
This short-distance structure is important for
converting an expansion in n into an expansion
in a scale-dependent charge, u(R). For the two-
charge problem, we attempt to take into account
the effect of these high modes by expanding in a
coupling appropriate to the momentum scale given
by R. The dependence of n(R) on R may be es-
timated by solving the Gell-Mann-Low equation.
Put another way, we use the renormalization
group to minimize the effect of highly excited
coherent modes, and thus. allow for a consistent
truncation to a small number of coherent modes.
In Sec. IV we shall compare our truncated calcula-
tion to renormalization-group improved perturba-
tion theory. We shall find good agreement.

The procedure we employ was first devised by
Tomonaga in the context of the static model of
P-wave pion-nucleon interactions. It yields a
variational estimate of the ground-state energy
of the normal-ordered Hamiltonian. In the
implementation of the Tomonaga approximation,
we first consider a Hamiltonian H obtained from
the original Hamiltonian by truncation to the
sector of states involving only gluon excitations
in n =0 modes of the basis P„. We next diagonalize
this Hamiltonian and find its lowest energy 8, as
a functional of the wave function $0. We then
compute the optimal I()o by minimizing So[((t)o] over
the space of normalized, transverse go's. This
procedure yields a variational estimate of the
minimum energy of the system of gluons and
quar ks.

We note that this procedure preserves the
charge structure of the theory. The truncated
Hamiltonian depends on the quark and antiquark
charge operators and one set of A' —1 gluon
creation and annihilation operators, a'=—a„' „
a =1, . .. ,A'-1. The total charge
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dependence of Ei on A. We have not succeeded
in diagonalizing this nonpolynomial Hamiltonian,
even in the n =0 sector.

The truncated Hamiltonian can, however, be
diagonalized in a mean-field approximation. The

mean-field approximation we employ linearizes
the EL' contribution to H with respect to E„and
A. . For a system of a quark at position r, and an
antiquark at r„

(3.20)

This mean-field approximation retains those con-
tributions to H which shift local gauge-invariant
operators from their values in the absence of
sources to nonzero average values. The approx-
imation ignores distortions of gluon wave propa-
gation due to interactions with quarks, and ig-
nores interactions of transverse gluons among
themselves. The region of validity of this ap-
proximation is briefly discussed in Sec. IV.

The second term in Eq (3.2.0) for E~' may be
interpreted as a chromomagnetie contribution
to the energy generated by a current source J.
Since only the transverse part of this current
contributes to the integral, we can write

g'Q Q

4m/r, —r, f

-4'(1) x14),f rxA, (r, )rJ(r), (2.21)

where

P ~ J —0

and, explicitly,

4rlr-r( 4rir, -r, li)

4rlr-r, i 4rir, -r, l) '

(3.22)

(3.23)

H = boat ~ a+PQ ~ Q+QxQ ~ (ay+aty*) . (3.24)

The parameters h„P, and y are functionals of

The current gener'ates ehromoelectric and chro-
momagnetic fields, and induces a cloud of trans-
verse virtual gluon radiation. This current is
represented by the graph of Fig. 3.

The Hamiltonian in the Tomonaga mean-field
approximation is

0'.(k):

d'I
P J (2 )32 Po (k) 40(k) 2 (3.25)

and

4m[r, —r, [' (3.26)

y=-z' „' (2„),2~&(k) k.(k). (3.27)

xrr

The truncated Hamiltonian H describes a
complicated system. We know of no analytic
solution to the equations describing this system.
The numerical diagonal. ization of H, together with
the numerical solution to the Tomonaga mean-
fieM Hamiltonian for color-singlet states, com-
prises the subject of a later paper. In the Ap-
pendix, we briefly discuss the procedure by which
H is diagonalized for singlet states. The pro-
cedure described is applied to the perturbative
calculation of the quark-antiquark potential in
Sec. IV.

The wave function P', (k) is determined by the
minimization of the smallest eigenvalue of H,
subject to the renormalization and transversality
constraints on (j)0(k). The minimization becomes

5)4 ( )
(l Ol (2 )32' PO(k) 00(k)

(3.28)
where A. is the I agrange multiplier which imposes
the normalization constraint. The variation of
~ '" is dete~ mined by first-order perturbation
theory in H about its state ~Q). We obtain

g 3 (Q[(a+at) ~ (Q x Q) ~Q) j(k)
2 (Q(at a)Q) k+A '

(3.29)

with the parameter A defined as

A=—(Q~at ~ a)Q) 'X. (3.30)
I

J = wv~
I

Cp

FIG. 3. Classical current J.

The transversality condition is satisfied by Eq.
(3.29).

The functional form of ((j)o(k) is completely
specified by the known current J(k) and A. The
parameter A must be chosen so that g', has norm
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IV. PERTURBATION THEORY

In this section, we compute the energy of our
effective quark-antiquark Hamiltonian to order
g'lng' in perturbation theory. The result of our
computation agrees with the result calculated
from corresponding @CD Feynman graphs.

It is very difficult to disentangle analytically
the relationships between the parameters S„P,
y, and A, and g and R as given by Eqs. (3.25)-
(3.27) and (3.29). This difficulty arises from the
implicit dependence of S„P, y, and A on the
ground-state wave function of our effective
Ham iltonian.

The structure of this problem can be clarified
by a few algebraic manipulations. First, we
scale the R dependence out of all dimensional
quantities. We can then measure S„P, y, and

A in units of 1/R, which units correspond to
setting R = 1 in all equations for these parame-
ters.

Next, we define integral functions of A as

d'k 1
(2 )'2k (k+A)"

(4.1)

For small A, C, (A) becomes a constant, while

C, (A) is proportional to lnA. .

We further define the ratio of ground-state
expectation values which occur in Eq. (3.29) as

&al(a+a') (Q xQ)
2(&la' al&&

(4.2)

The normalization condition on P, which im-
plicitly defines A, becomes

g'C, (A)P2 = 1. (4.3)

1. Because of the implicit dependence of g, and
therefore A, en the ground state lQ), the solution
of the system of equations (3.29) and (3.30) is not
straightforward. For each g there is some A
which solves the system of equations. The pa-
rameter A(g) may be determined numerically.
In Sec. IV we discuss the solution to this system
of equations in perturbation theory.

C C~~2
y g3 1 2

C, -AC, ' (4 7)

8C =X;0+%~,

where

(4.8)

and

R =a a+PQ ~ Q

R, =yQ x Q ~ (at +a) .

(4.9)

(4.10)

We shall find the ground-state wave function and
energy in perturbation theory in Xl.

The structure of K and the eigenstates of Ro
are discussed in some detail in the Appendix.
The unperturbed color-singlet ground state is
denoted by l0),

(Q+Q). l» =o, a.l» =0 (4.11)

In first-order perturbation theory, this state
mixes only with the first radial excitation

8
I )=

A(A

X/2

' (Q x 9)l0), (4.12)

and the ground-state wave function is

y 1V(1V' —1) '~' 1
ly& = lo& —

2 2, ,~ li&+ory'). (4.13)

The first-order correction to the ground-state
energy appears in second-order perturbation
theory. We find

We see from Eqs. (4.5)-(4.7) that for any g, A
determines S„P, and y. Given P and y, we can
determine the ground-state wave function of X,
from which we can then determine the ratio P.
The parameter A is then obtained as a function of
g by the normalization condition of Eq. (4.3).
The explicit determination of A analytically for
arbitrary g' appears to be an intractable problem

"We shall present a detailed numerical analysis
in a later paper. We consider only perturbation
theory for small g' in this paper.

We begin the perturbative analysis by observing
that P is of order g', and y is of order g' for
small g. The Hamiltonian & can be written as

Finally, we write a rescaled effective Hamiltonian
%as

3C=-8/So=at ~ a+ pQ ~ Q+yQ x Q ~ (a+at). (4.4)

If we combine Eqs. (3.25)-(3.27) with Eq. (4.3)
we have

N -1 — ylV
p+ 4(„,,p)

+ory')

The quantity P, defined in Eq. (4.7), is

(4.14)

(4.15)

C~ —AC2
0=

C2
(4.5)

We can now solve for A as a function of g'.
The normalization condition of Eq. (4.3) is

p 8 C,
S, 4~ C, -AC, ' (4.6) 1 g c,(A)l I + 0y' (4.16)

and Using Eqs. (4.6) and (4.7) to express P and y in
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terms of A, Ci and C„we find Q

A =Ng'/8m+0(g') . (4.18)

The energy corresponding to the scaled energy
& is

1 = 1+ —A ' [1+O(g '}]. (4.17)
Bx C, A

We have, therefore,
Q

0
FIG. 5. Quark-antiquark pair propagator.

C, (A) +o(g ")
2X 4w 4 ' 8m

(4 19)

Coulomb interaction energy, a phase which
modifies the pair propagator

e(t) e(t) -i(0: /s)o Qt (4.25)

+ C,'o.,' inn. , +O(n, '}, (4.21)

where

T, = (AI'- 1)/2N

and

C2 =1V,

(4.22)

(4.23)

T, and C, being the quadratic Casimir operators
of the fundamental and adjoint representations of
Su(A).

The first term in Eq (4.21), .of order g', is
the Coulomb interaction in a color-singlet state.
The correction term

g' N&E= ——T C 'C —n2 2 1 2 &j (4.24)

is the sum of all H graphs containing arbitrary
numbers of Coulomb exchanges (Fig. 4). This
fact is most easily seen by evaluating the Feyn-
man graphs for the four-point amplitude at zero
external momentum in a mixed momentum-
relative-time basis. The bare quark-antiquark
pair propagator over relative time t is e(t)
(Fig. 5). The effect of summing Coulomb ex-
changes is to produce a phase proportional to the

The expansion of C, for small A is performed
in Ref. 33. We find that

3 p' 2
C, (A) =

( ), 1 ——
2

+
(4 ), A lnA+O(A).

(4.20)

Equation (4.19) becomes, therefore,
2

E=- ~n 1+ C n
7T

R ' ' 12

The sum of these Coulomb exchanges is repre-
sented graphically in Fig. 6.

The time-dependent part of the integral repre-
sentation for the sum of graphs shown in Fig. 4
arises from the transverse gauge field propaga-
tor, and from the ratio of phase factors between
the singlet and N-piet states given by Eq. (4.25).
The integrals over t and the gtuon energy give

t i(pe~/2) 0 i]pt
n

2m &, ko' —k'+i e k(k+ ', Nct, )
'—

(4.26)

When this result is combined with all. relevant
factors from the Coulomb gauge Feynman rules,
we find precisely the result of Eq. (4.19), with

C, expressed in the integral form given by Eq.
(4.1).

We have seen that in perturbation theory the
Tomonaga mean-field approximation has left
intact the Coulomb interaction and the entire sum
of Coulomb modified H graphs. That this should
be so is not surprising. Our approximations have
dropped only two of those effects which are in-
cluded in QCD perturbation theory. We have trun-
cated the longitudinal electric field El, to a linear
term in A. This term gives the H graph. The
Tomonaga approximation excises all fluctuations
of the gluon field save those in the single mode
with wave function II(k). The H graph includes
only a one-gluon intermediate state, and the
operator which creates this state is of the
Tomonaga form. The Coulomb modifications of
the H graph are also included in the truncation
of E& and involve a one-gluon intermediate state.

I I

I

~nnN
I

I I

I ' I

I

Inn hh/A/v)

I I I

I I

I
I I

I I
IIhhhlV~

I

I a s I

+ ~ ~ ~

I

I

I

I

I

I I

I

I + ~ ~ ~

I I

I I

FIG. 4. H graph and its modifications arising from
Coulomb exchange.

FIG. 6. Modifications of the pair propagator arising
from Coulomb exchanges.
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V. SUMMARY AND CONCLUSIONS

The object of this paper has been to develop an
approximation to the description of the interaction
of heavy quarks and antiquarks in QCD, an ap-
proximation stressing the classical aspects of
the Yang-Mills theory while retaining the operator.
charge structure of the quantum theory. Our
efforts have been motivated by the observation
that the dominant O(g') H-graph contribution to
the color-singlet quark-antiquark potential arises
from a classical effect, and by the hope that in-
formation about the classical quark-antiquark
interaction will be applicable to the description
of the quantum interaction. Our result is an
approximation of the interacting quark, antiquark,
and gluon system as a simple quantum-mechan-
ical system in which all gluons share a single
classical wave function. The validity of this
approximation depends, however, on a variety
of assumptions and simplifications which we
shall now review.

We have described quarks in the infinite mass
limit as stationary, pointlike objects which are
entirely characterized by a (1V' —1)-component
charge operator. This description is appropriate
to the lowest-order contribution to the QCD inter-
action in inverse powers of the quark mass M+.
Whether the 1/Mo expansion is valid in QCD for
nonsinglet states is unclear. ""The only state
we consider is a color singlet.

In our analysis, we have not addressed the
interesting problems of including quark kinetic
energies and spin-dependent forces. These con-
tributions appear in the lowest-order 1/M@' cor-
rections to our results. Our procedure is based
on an essentially variational analysis of the nor-
mal-ordered QCD Hamiltonian. The solution to
our equations gives an approximation to the
difference between the energy of the lowest state
in the presence of a quark and antiquark and the
energy of the vacuum.

To calculate this energy difference, we con-
sider QCD in a Hamiltonian framework. The
interpretation of this Hamiltonian appears simplest
in a physical gauge, such as the Coulomb gauge
which we have used in this paper. (We have not

fully addressed the problems of properly fixing
the gauge and of resolving potential problems
arising from Gribov-Mandelstam ambiguities. )

In the Coulomb gauge, the Hamiltonian is a
complicated nonpolynomial function of the trans-
verse gluon field. Normal ordering of the Cou-
lomb operator f ~Ez,

' is related to renormalization
of the theory. For example, the dominant con-
tribution to the P function in one loop comes from
the normal-ordering term shown in Fig. 7. The

FIG. 7. Normal-ordering correction to 3C.

proper implementation of the normal ordering of
the Coulomb-gauge Hamiltonian, and properly
interpreting the Hamiltonian as a finite operator
to all orders in g, appear to be very complicated

pr oblems.
In this paper we have sidestepped these prob-

lems by considering only the mean-field approx-
imation to the Hamiltonian, and by assuming that

a running coupling constant n(R) can be defined

at a momentum scale of O(1/R), chosen so that

the finite normal-ordering terms such as that

of Fig. 7 can be ignored. Although we can easily
imagine going beyond the mean-field approxima-
tion, in practice it seems difficult to achieve a
better approximation than o.- a(R) and dropping
of finite normal-ordering terms.

Finally, we note that there appears to be no

obvious way in which the Tomonaga approximation
might include the effects of a complicated phase
structure for the vacuum. In the mean-field ap-
proximation, the gluon wave function contains
contributions from low-momentum gluons. We

expect, however, that in a confining theory these
low-momentum contributions will be drastically
modified because of a nontrivial vacuum phase
structure. If these low-frequency gluons give
important contributions to the quark-antiquark
potential, then our model would not accurately
represent the true structure of the quark-anti-
quark system.

Despite these reservations and our dependence
on numerous assumptions and simplications, it
is interesting how accurately opr approximation
reproduces the results of QCD perturbation theo-

ry. It is particularly reassuring that our method

is sufficiently sensitive to treat accurately the

nonanalyticity in the coupling reflected by
g8 lng2

In a forthcoming paper, we will present the

results of a numerical diagonalization of H and

the solution of the coupling constzaints of Eq.
(4.3) and Eqs. (4.5)-(4.7). Our hope is that these
results, combined with the scale dependence of

n(R), will give a reasonable approximation to the
quark-antiquark interaction for intermediate
coupling strength.
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APPENDIX

In this appendix, we discuss some properties
of the scaled Hamiltonian of E(I. (4.4),

R=at ~ a+PQ ~ Q+y(Q x Q) ~ (a+at). (Al)
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occupation number. The nonvanishing matrix
elements of X are

&2KI3(:I2E& =2E- p

&2K+ IIKI2E+1) =2K+1+p—,—1

(A7a)

(A7b)

N -1
&2K+ II36I2E) = —N E+2. 2

(A7c)

&2E —1I&I2k& = —v'NK.
2

(A7d)

E(luations (A7) form the basis for the perturbative
diagonalization of 8C discussed in Sec IV

Although iri general 8C must be diagonalized
numerically, for a special value of P the ground
state may be exactly determined. To find this
state, we define an operator Z as

Qr=iaxa +Q+Q. (A2)

It is also symmetric under charge conjugation:

This Hamiltonian is invariant under global SU(1V)
color rotations generated by the operator

Z =(8/N)~'a ~ (q x q).
We easily compute

Z ZI2K+1) =2KI2E&

and

(A8)

(A9a)

Q —Q, a--a, a --a (A3) z'ZI2E+ 1) =(2E+N' —1)I2K+ 1),

alo) =o, (q+q)lo) =o. (A4)

The ground state of this system is expected to
be a color-singlet state. In the color-singlet
sector, X may be written in a simple and natural
basis. We construct this basis by operating on
the state I0). This state is the ground state of

for y =0, and is formed using a product of
ground-state harmonic oscillators and the singlet
state of the total quark charge:

so that, operating on these states,

Z~z =at ~ a+ (Q+Q)'.
A2 —2

N (A10)

The Hamiltonian X may therefore be written as

Ni z/2

x= z'+y —
I z+y —

I

2 2j 2 2)

+q Q P-
N

2(N' —2)
I

The set of color-singlet states is generated
from I0) by operating with arbitrary integer
powers of a ~ Q x Q. These radially excited
states have even and odd occupation numbers
and can be written as

(N' —1)(N' —2) y'1V

8-'

2(N2 —2)

(A 11)

(A12)

(1V~ -3)!!
(2E)!!(2K+N' —3)!! (a»)& IP)

(A5a)

(N2 3)! ( 1/2

( (2K)!!(2E +N' —1)!!
8 u

x (a ') — a ~ (q x q) I p& .
1V

(A5b)

(A6)

The orthonormality of these states is easily ver-
ified by use of the identity

(Q x Q), (Q xq) Ifl) =(N/8)5. , I&&,

where IQ) is any singlet state of Q+Q.
In the basis given by E(I. (A5), the first two

terms of X are diagonal. The interaction term
proportional to y mixes only states of adjacent

this Hamiltonian is
~e

x= z+ —(!v/2)'~'
2

z+ —&N/2)"''2
(1V' —1)(N' —2) y'N

N 8
(A 13)

(A14)

The ground-state energy is

(N' —2)(N' —1) y'1V
(A15)

The product term in this equation is a non-
negative operator whose minimum eigenvalue
corresponds to the state I(!() such that

Z+ —(N/2)'~" If) =0
2
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