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We study the phase diagram of lattice gauge theories coupled to fixed-length scalar (Higgs) fields. We
consider several gauge groups: Z„U(1), and SU(N), We find that when the Higgs fields transform like the
fundamental representation of the gauge group the Higgs and confining phases are smoothly connected, i.e.,
they are not separated by a phase boundary. When the Higgs fields transform like some representation other
than the fundamental, a phase boundary may exist. This is the case for SU(N) with all the Higgs fields in
the adjoint representation and for U(l) with all the Higgs fields in the charge-N(N & 1) representation. We
present an argument due to Wegner that indicates the stability of the pure gauge transition. Another phase,
free charge or Coulomb, is generally present. In this regime, the spectrum of the theory contains massless
gauge bosons (for continuous groups) and finite-energy states that represent free charges.

I. INTRODUCTIQN

A. The problem of matter fields

The formulation of gauge theories on a lattice
by Wilson and Polyakov' allows us to study these
theories outside the realm of weak-coupling ex-
pansions. In particular, in the strong-coupling
regime they are known to exhibit confinement
of static sources. "

It is hoped that for non-Abelian groups in four
space-time dimensions confinement persists for
all couplings, ' allowing one to make a continuum
theory weakly coupled" at short distances, con-
fining at large distances. The Abelian U(1) theory,
that is, Polyakov's compact photodynamics, ' in
four dimensions is thought to be confining only
down to a finite critical coupling g, ."' At g,
a phase transition occurs, leading to a weak-
coupling phase (g&g, ) characterized by the ex-
istence of massless photons and Coulomb-type
forces between static sources. This picture (we
hope) allows one to define a continuum theory
where charged particles are free, such as con-
ventional electrodynamics.

The above comments apply to pure gauge
theories, possibly in the presence of static
sources. Any attempt at realistic theory will
necessarily include dynamic matter fields (e.g. ,
quarks for quantum chromodynamics; Higgs
scalars, leptons, and quarks for Weinberg-Salam
theory; etc.). In certain regimes these matter
fields can exert a dramatic effect on the be-
havior of the gauge theory. A prime example is
the Higgs mechanism, where scalar fields inter-

act with the gauge bosons rendering them massive
and the forces they mediate short-ranged. It is
important, therefore, to have some understanding
of the combined matter-gauge system, in par-
ticular its phase diagram.

Dynamic matter fields immediately create a
problem in classifying the phases of the theory.
The criterion used for diagnosing confinement in
the pure gauge theory, the energy between static
sources, no longer works. Even if the energy
starts increasing as the sources separate, it
eventually becomes favorable to pop a particle-
antiparticle pair out of the vacuum. This pair
shields the gauge charge of the sources, and the
energy stops growing. So even in a theory that
"looks" very confining our signal fails. "

There are ways around this. In a noncompact
Abelian theory one can introduce fractionally
charged sources that cannot be shielded by in-
teger-charged particles. For compact groups,
however, charge is quantized, "and this trick is
out. One can still imagine using matter fields
in other than the fundamental representation, "
more precisely, matter fields that cannot shield
sources in the fundamental (e.g. , fields in the
adjoint representation). However, this still
leaves open the question of the behavior of the
theory when the matter fields carry the funda-
mental charge.

B. The models

We shall restrict ourselves to. lattice gauge
theories coupled to scalar (Higgs) fields. To sim-
plify the problem (without, we feel, throwing away
any important physics) we freeze out the radial
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mode of the Higgs fields, vgorking with fields with
fixed norm B. Thos we shall be dealing with fields
that are strictly compact.

The action of the. model on a d-dimensional hy-
percubic lattice with finite lattice spacing (set to
be one) reads

S[g(r);U„(r)] =—g Tr[U„(r)U„(r+e„)U„(r+e„)Ut(r)+h.c.]+
2

g [ t)()r).D(U„(r)] ~ p t(r +e„) +c. c],
(r, p v) (r, p)

where
(i) (r, p) labels the link with end points at the

lattice sites r and r+e&,
(ii) (r, gv) labels the elementary plaquette

defined by the links (r, )u) and (r, v),
(iii) Q(r) is the Higgs field at site r and trans-

forms like some M-dimensional irreducible
representation of a compact gauge group G,

(iv) U&(r) are gauge group matrices residing
at the link (r, tt),

(v) D(U„(r)] is an M-dimensional representa-
tion of U„(r). .

The dimensionless coupling constants P and K
are related to the gauge coupling constant g and
to the Higgs length 8 through the relations K
=1/g and P=R .

The action (1.1) is invariant under arbitrary
local gauge transformations (V(r)) such that

U„(r)- U& (r) = V(r) U& (r)V '(r + e& ),

4)(r)- 0'(r) =D(V(r))4(r)
(1.2)

U„(r) = exp[iA„(r)], 0 ~A„(r) & 2v .
The action (1.1) takes the form

S,[6(r);A„(r)]=P Q cos[a„e(r) —qA„(r)]

+ K Q cos [F„„(r)].
(r, pv)

The integer-valued parameter q is the charge
carried by the Higgs field. In Eq. (1.4) the field
strength F&„(r) is defined by

F„„(~)= &„A„(r)—a„A„(r) . (1.5)

The gauge transformations for this Abelian ex-
ample are

where D(V) is the same matrix representation
given above. For instance, if the gauge group G
is the Abelian group U(1) the model reads as
follows:

Q(r) = exp[is(r)], 0 ~ e(r) &2v,

A „(r)-A'„(r) =A„(r) + a„a(r),

e(r) -O'(r) = e(r)+ qnCr),

with V(r) = exp[in(r)]

C. Limit models

(1.6)

In particular, if G=Z, we get the Ising model, if
G = U(1} we get the XY model, and if G = O(N) we
get the Heisenberg model. If the space-time
dimensionality d is high enough, two phases will
be present. " When P &P, the global symmetry G
is sPontaneousLy broken. The Higgs field develops
a nonzero expectation value (Q} and the correla-
tion function (propagator) ($(0).g (r)} has the
asymptotic behavior

($)0) ' g)~)r)) (p) Lonstx axp -,}.
(1.8)

The behavior (1.8) is actually valid for continuous
symmetry groups and it is obtained in the spin-
wave (linearized} approximation. The 1/~ r

~

behavior is a consequence of the existence of
Goldstone modes (spin waves) in the model. For
discrete groups the excitations are always
massive and the correlation function behaves
like

()t) (0) '
)t) (r)& ~ ()t)}'+constx exp ——

where g is the correlation length.

The pure gauge theory and the Higgs model are
recovered as limit situations of the model (1.1).

(a) The Higgs-Heisenberg model (K=~). When
the gauge fields are frozen to pure gauge con-
figurations (K=~) a family of models is obtained.
These models have a global G invariance and are
generalized Heisenberg-e models. " Their action
in an axial gauge U„(r) =I (identity of G) (P = 1,
for instance) is

S [y(r)] =
2

Q [y(r) y'(r+ e„)+c.c.] .
(r, p)
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On the other hand, if P &P„ the symmetry is
restored. That is,

(( (0) '( (r)) constx exp(- —.—
t I- (1.10)

S~„„[U„(r)]=—~ Tr [U„(r)U„(r + e„)
K

x Ut (r + e„)Ut (r) +H.c.] .

The model (1.11) has been studied by a number of
authors with different techniques. ' "'"'"'"
If the dimensionality is high enough" two phases
are found.

If K&K (g&g, ) we are in the strong-coupling
regime. The behavior of the theory is charac-
terized by the Wilson loop integral for sources
in the fundamental representation

Cr= Tr Up r
(», p)sr

where I" is a closed path of links. In the strong-
coupling regime C decays like

Cr - exp(- area of I') (1.13)

for asymptotically large loops. The energy of
two static fundamental sources Ii'(R) separated
a distance B during a time T is given by

1
W(B) = ——lnC r ~ (1.14)

For a rectangular loop (1.13) and (1.14) give a
linear potential (confinement).

In the weak-coupling phase K&K, (g&g, ) static
fundamental sources are no longer confined. The
Wilson loop obeys a perimeter law

Cr- exp(- perimeter of I') (1.15)

and the force between the sources is weak. If
the gauge group is discrete the force is ex-
ponentially damped (massive photon), while if
the group is continuous the force is of a Coulomb
type (massless photon).

D. Phases of the theory

The phase diagram of the full theory depends
crucially on whether the Higgs fields transform

for all the models. Note that even though the
length of the Higgs field has been kept fixed
(R =P' '), the symmetry here is normal (i.e.,
(e) =o).

|'b) The pure gauge theory (p =0) I.n this limit
the Higgs fields decouple. The action now has the
form

lige the fundamental representation of G or not.
For instance, if the gauge group G has a non-
trivial center C [like Z„ for SU(N)] it is possible
to introduce Higgs fields that transform trivially
under the center of G (e.g. , in the adjoint repre-
sentation). If we introduce enough Higgs fields so
that the gauge invariance G/C is completely
broken in the unitary gauge ((j) = constant vector),
a leftover local C invariance will still survive
even at P =~. In the SU(N) example the result
will be a Z~ gauge theory. " In general, the Higgs
fields may leave some subgroup of G unbroken.
Now a phase transition of the type discussed in
(Sec. IB) may occur depending on which subgroup
survives and on the space-time dimensionality.
If this is the case we find that tPsree distinct phases
may generally occur:

(a) A, Higgs-mechanism-type phase Her.e the
gauge bosons are massive. The force law is
short-ranged and the Wilson loop exhibits a
perimeter law ((3 and K large).

(b) A free charge -or, for continuous groups,
&oulomb phase. Here, for continuous groups
the gauge bosons are massless giving a Coulomb
force between static sources. In general we shall
see that in this phase there are finite-energy
states that represent free charges (P small, K
large).

(c) A confinement phase. In this regime, the
Wilson loop for fundamental sources has an area
law. The gauge bosons are massive and there
are no free charges in the spectrum.

When the Higgs fields are in the fundamental
representation, however, the situation is
drastically different. In this case, the unitary
gauge completely breaks the gauge symmetry.
If P = ~ the gauge variables are locked at U„(r)
= I (identity) . Even if P is finite but very large,
not much can happen. Excitations are strongly
suppressed and, in this limit, can be considered
to be dilute. On the other hand, if K=—0, the
theory represents a set of weakly coupled degrees
of freedom living at the links of the lattice. Thus
no phase between the Higgs (S,K large) and con-
fining (S,K small) regimes can exist in this situa-
tion.

These arguments can be made precise. We
shall show in the Appendix that, applying a result
obtained by Osterwalder and Seiler, "the ground-
state (vacuum) energy and all the Green's func-
tions of the theory are analytic functions in a
region of the (S,K) space that includes both the
Higgs and confining regimes (Figs. 1 and 2). These
two phases are continuously connected.

At first glance this result looks quite surprising.
We should keep in mind, though, that most of what
we know about Higgs fields and confinement comes
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such as

y(r) pIexp. I A„(x)dx„l'(0)
— I'(0, r&

O

Zp GAUGE THEORY

FIG. 1. The phase diagram for the Z2 model (d ~ 3).
The shaded region is where the bounds for analyticity
hold. the full curves represent lines of second-order
transitions given by (2.18). The broken lines are their
extrapolation into the diagram. Notice that the analytic-
ity region has a finite width at both the Higgs region
(X=) and confinement (P=O). Also note the curvature
of the phase transition lines. The phases are described
in the text.

inement Coulomb

ABEL IAN GAUGE THEORY

FIG. 2. Phase diagram for the Abelian model with
Higgs fields in the fundamental representation (8= 4).
The broken line emerging from the XF transition (E
=) is a line of first-order transitions. The fu11 line
that emerges from the pure gauge transition {P=0) is a
line of transitions of the same order as the pure gauge
critical point. Notice the curvature of the lines. The
phases are described in the text.

from an approximate picture where one of the
fields is either decoupled or frozen. In fact, all
products of local operators that are candidates for
distinguishing the two regimes turn out to have
the same qualitative behavior in each (see Sec.
II B). Furthermore, gauge- invariant operators

create a "mesonlike" state in the strong-coupling
regime, while in the Higgs regime they create a
state with a massive photon (this is clearest in the
unitary gauge). Thus the spectrum of the theory
seems to be created by the same kind of operators
in both regimes. For these and other reasons,
Susskind has speculated that these two phases
could be 'continuously connected. '

In general, if the Higgs fields are in the funda-
mental representation and all the gauge invari-
ance has been broken no phase boundary will exist
between the Higgs regime and confinement. Owing
to analyticity we expect that the spectrum of the
theory will evolve continuously from one regime
to the other. Higgs fields and confinement are
compatible phases. A theory can at the same time
be confining and exhibit some sort of dynamical
Higgs mechanism.

The pure gauge transition wiQ be shown to be
stable. The arguments are based on a study that
Wegner" presented for the Z, model but that
generalizes for any compact group and dimension
(higher than the critical). A line of transitions
emerging from the pure gauge critical point
(S =O, %=X,) is expected.

Generally, two phases will be present in this
case:

(a) a Higgs-confinement phase,
(b) a free-charge or Coulomb (continuous

groups) phase.
The two possible phase diagrams discussed

above are, naturally, prototypes. They may
change if, for instance, one of the pure transi-
tions does not exist (generally the pure gauge
transition). It is also possible to find more com-
plicated situations depending on the structure of
the Higgs sector.

Our analysis is done on a lattice with fixed,
finite lattice spacing. The question of the con-
tinuum limit of these theories is still an open
question. This problem has to be answered by
means of a renormalization-group analysis.

The paper is organized as follows. In Sec. II
me study the discrete Z, group. There we discuss
most of the consequences of having the Higgs field
in the fundamental representation since the calcu-
lations are much simpler. In Sec. III we consider
the U(1) model (Abelian Higgs model). The results
are generalized to non-Abelian groups [mainly
SU{X)]in Sec. IV, which also serves as a conclu-
sion. In the Appendix we sketch the proof of
analyticity referred to in the text.
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H. THE Z2 MODEL

A. The model

In this case the variables are of an Ising type:

y( r) = o( r) =+ 1,
U, (r)=+1.

(2.1)

The action (1.1}now looks like an Ising model
coupled in a gauge-invariant manner to an Ising
gauge theory,

S„,.„g[o(r), U, (r)]= P Z o(r)o(r+e )

+K g y.„(r),
(r, vv)

where the field strength (t) „(r) through the
plaquette (7, pv) is

P „(r)=U (I')U„(r+e„)U„(r+e„)U„(r). (2.3)

The action (2.2) is invariant under Z, gauge trans-
formations

o(r) - o'( r) = o ( r )s( r),
U (r) -U', (r }=s(r)U„(r)s(r+e ),

(2.4)

F~„.„(P,K) = ——ln Z„„,(P, K) . (2.6)

The limit models of this theory have been dis-
cussed in Sec. IC. The only distinctive character-
istic of this model is the absence of massless
modes (Goldstone and photons) in both limits be-
cause the symmetry is discrete. There are mass-
less modes only at the phase transition (if it is
second order).

B. Higgs and confinement

(a) Analysis of the order para)neters. First of
all, it should be noticed that since the Z, group
has only one nontrivial representation, the matter
fields will be, by force, in the fundamental repre-
sentation. Thus, the model will exhibit most of
the general features produced by this situation, de-
spite the simplicity of the Z, group.

What happens to the signatures of the pure phases
when both fields are dynamical? Consider first
the small-K ("high-temperature") expansion of the

where s(r) =+1.
The generating functional (or partition function}

for this model is defined by

Z„,.„(P,K) = Z exp(S„,.„,[o (r), U,(r)]j
(o(r &, U@( r &)

(2.6)

and the ground-state (vacuum} energy density by

Wilson loop in the pure gauge theory. For a
square loop of linear dimensions R and T the re-
sult is

Cr —- (tanhK)" + ~ ~ = exp( rA—T) (2.V)

C„=(tanh P)""'"+ ~ =exp( ~r), (2.9)

where P= 2(A+ T) is the perimeter of the loop and
X=- --,' lntanh P. We see a sudden crossover from
an area to a perimeter decay for any finite value
of P. This perimeter dependence reflects the fact
that a pair popped out of the vacuum can shield the
external sources. In fact, perimeter behavior for
all nonzero P is a rigorous consequence of a
Griffiths inequality. This crossover does not
imply a singularity in the thermodynamic func-
tions because the theory depends on two parame-
ters, P and K. In the pure gauge theory, how-
ever, there is only one parameter, K, and a
change in the behavior of the loop signals a phase
transition.

Now let us consider what has happened to the
order parameter of the Ising model. The two-point
function (o ( 0)o ( r ))e r is not gauge invariant, so it
vanishes identically for all values of the coupling
K.23 A possible way to make it gauge invariant is
to insert a product of gauge variables along some
path of links I between 0 and r.

The new operator reads

(2.10)

at K=~, the gauge variables can be set equal to
one in a suitable gauge (see Sec. IC) and we obtain
the correlation function of an Ising model,

(2.11)

We can now compute Cr(~ r ~) when K is large but
finite by means of an excitation expansion valid
when P and K are large. This expansion is the

at the lowest order in K. Here &= —lntanhK is
the "string tension" and RT is the a~ca of the
square loop.

Now let P be finite but small. In this case a
kind of high-temperature expansion in P can be
performed. We find"

Cr =(tanh p)" ' '+ +(tanhK)n + ~ ~

(2 6)

For a loop asymptotically large the "area" decay-
ing term (tanhK} is always exponentially smaller
than the "perimeter" decaying term (tanh P)''r).
Thus the long-distance behavior of the Wilson loop,
for pt0, is given by the perimeter law
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analog of the low- temperature expansion of the
Ising model.

For very large K, the smallest excitation of the
gauge fields (d &2) has U„= 1 at all the links of the
lattice except one where U„=-1. This flipped link
variable gives field strength to all the plaquettes
that share that link. In three dimensions this is
a loop of field strength. "

In a dilute gas of excitations (or first cumulant
approximation} Cr(~T ~) has the behavior

0 0 i.. U„r' o' r

=exp( —2
~

r ~exp[- 4K(d- I) —2P]). (2.12)

We see that the gauge-invariant correlation func-
tion (2.10) decays exponentially for any finite value
of K. It is important to note that the product of
gauge variables is the source of the decay. When-
ever one of the excitations crosses the string of
gauge variables, the operator changes sign and the
"gas of excitations" disorders the correlations.

However, it is in principle possible to write an

operator that is invariant under gauge transfor-
mations but does not single out a given path as
(2.10) does. The operator (o (0)o ( r)& is not in-
variant, but its expectation value in a fixed gauge
can nevertheless be nonzero.

A suitable gauge to study this operator is the
"min&nal gauge". It is defined as follows: Given
a configuration of field strength (4 „„(r )], we
choose U~(r) such that (i) it is consistent with the
prescribed l4„,] and (ii) it has a minimum number
of links with U, = -1. For certain configurations
(4„(P))it is possible to find more than one con-
figuration (U„) that satisfies the minimal gauge
prescription. This gauge degeneracy is not im-
portant if K is very large but gets progressively '

worse as K becomes smaller. This is a simple
example of topological entropy" common in com-
pact gauge theories.

Unlike Cr(~ r~), (2.10), the correlation function
in the minimal gauge does not develop an expo-
nential decay in the dilute excitation limit. The
important difference is that the string of U, vari-
ables is absent. The result to lowest order in
e '~is

(&(0)&(1')),.. ., =(&)0)~(T))...„, 1 — Z 0
' —1)»P)-4K(d —1) —llaw(p))I,

& (o) (&)&(,4) (2.13)

where (o (0)o(T)&(r, p) is the correlation function
of an Ising model with a flipped bond at (r, g} and

W(P) is the change in the free energy due to the
flipped bond. '4 But the effects of a flipped bond
are important only within a correlation length
from the defect. Thus (o(0)o(f)&(T, p) can be
different from (o(0)o(r)&„„,if the flipped bond
is close to 0 or R and (2.13) is stable as R-~.
Then, to lowest order, it is possible to find a
nonzero value of (o) given by

&o& = &o&„„,jl - -' «xp[-4K(d - 1) —P g (P)]] .
(2.14}

Therefore we expect some sort of long-range or-
der in the system. This operator is able to dis-
tinguish between the Higgs and disordered regimes,
since (2.14) is valid when K is very large. How-
ever, we think the gauge degeneracies will spoil
this long-range order and this operator will fail
to distinguish between the Higgs and confining re-
gimes.

(b) The Higgs and oonf&ung regimes belong to
tke same phase. We now want to show that the
Higgs and confining regimes belong to the same

phase.
That is, we need to show that there is no phase
boundary separating these regimes. Following the
lines of the Introduction, we first notice that if
such a phase boundary is really present, the
vacuum energy (free energy), as well as all the
possible Green's functions, should exhibit a line
of singularities. The strategy is thus to show
that 5'(P, K) and all the Green's functions are an-
alytic functions ln a strip of the (P,K}plane that
includes both confinement (K(K„P small) and
Higgs field (P & P„K large).

In the particular case of discrete gauge groups,
this result can be shown by transforming the
model (2.2} into a lattice gas. In the unitary gauge
the action of the model is

S[U.(r)]=P P U„(t)+K g e„,(W),

(2.15)

and it turns into a lattice gas (with degrees of
freedom on the links) by setting the occupation
number of the link n„( r) equal to
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1 U+( r ) (2.16) (2.15) is analogous to the action of an Ising model
in a uniform magnetic field, h:

When P is large, the configurations of gauge fields
that contribute the most to the partition function
are those with the fewest links with U„=-1. Thus
the lattice gas is very dilute in this regime. On

the other hand; if K is small, the gas is not dilute,
but the interaction energy is very small. The
system is a set of weakly interacting degrees of
freedom. These comments can be stated formally
through the construction of a set of Kirkwood-
Salzburg equations. "" Gallavotti and Miracle-
Sole ~ have proved a theorem on the analytic
properties of the free energy and correlation func-
tions of lattice gases that, with minor changes,
applies to our case. The theorem, when applied
to our model, establishes the analyticity of the
free energy and all the Green's functions in the
strip of interest. This result also follows from
the more general proof discussed in the Appendix.
There is no phase boundary between the Higgs and

confining regimes. It is also interesting to note
(see Appendix) that the analyticity region has a

finite width in each of these regimes. Then there
are no transitions "off the axis." This proof in-
dicates that itis notpossible to construct atest to dis-
tinguish between these regimes. It is usually as-
sumed that the existence of such a test would imply
a nonanalytic behavior along some line (phase
boundary) between these regimes. We have just
shown, however, that this is not the case. There
are, however, certinaly quantitative differences
between the Higgs and confining regimes, just as
there are between liquid and gas.

C. Stability of the transitions of the pure models

(a) Stabilzty of the transitzon of the Pzzre gauge
theory. In subsection B we have studied some
analytic properties of the vacuum energy. We

found that there is a domain in the (P,K) plane
where P(P, K) is analytic. What about the rest of
the diagram?

In (2.15) we wrote down the action for the model
in the unitary gauge [o(r)=1, all r]. Formally

S'[o(r)]=P Q o(r)o(r+e„)+hQo(7).

The Ising model has a global Z, invariance and k
is a symmetry-breaking field. When h = 0 and

P & P, (the Ising critical point), the global sym-
metry is spontaneously broken and the local order
parameter (o (r)) is nonzero. At the critical point,
the fluctuations of the order parameter become
long-ranged and the spin-spin correlation
(o(0)o(r )) decays as a, power of the distance

t
r i. However, if there is a symmetry-breaking

field acting on the system, the connected part of
the correlation function becomes short-ranged
for all P. Quantities such as the susceptibility
y(P, h) that in the absence of a. symmetry breaking
field are singular at the critical point become
analytic functions of P and h as soon as the mag-
netic field is turned on. Thus a symmetry-break-
ing field has destroyed the transition.

But in the case of a gauge theory, we have a
local symmetry, and a local symmetry is never
spontaneously broken. " Thus, gauge-noninvari-
ant operators, such as U,(r) or U„(0) U„(r},
have a zero expectation value for all values of the
coupling constant K no matter what boundary con-
ditions are imposed. Therefore, even though the
coupling P to the matter fields formally breaks the
local invariance, it is not coupled to an order
parameter, i.e. , to a field with some sort of long-
range order. We conclude that the physics of this
term should be very different from that of a sym-
metry-breaking field in a model with a global
symmetry. Wegner" has analyzed this model, and
for reasons explained above he concludes that the
transition of the pure gauge theory should be sta-
ble. Thus, he predicts the existence of a line of
phase transitions starting at the pure gauge criti-
cs,l point (P = 0, K = K,}.

We now present a slightly different version of
Wegner's arguments. Consider the behavior of
the model when j is small but finite. In order
to understand the effect of the matter fields, we
shall integrate them out and construct an effec-
tive action S,«[U„] for the gauge fields:

(2.18)exp{S„,[U,(r)]j = Z exp P Z o(r)U, (r)o(r+e, )+K Q e,„(r)
Pff (P)l — (r, ~) (r,

gatv)

If P is small it is possible to expand S,« in a power series in P [this is in fact equivalent to computing the
free energy of an Ising model in a fixed distribution of bonds {U,( r )] by means of the high-temperature
expansion]:
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exp/S, «[U~( r )]j= 2"(cosh p)" g (tanh p) ' "'
r

U~(r) exp K g 4 „(r) (2.1&)

S, «[ U~]=[K+tanh '(tanhP)4] g 4~,('P)
(r,v v)

+ (lar ger -plaquettes interactions) .
(2.20)

Thus, at lowest orders in P, the effect of matter
fields is a finite renormalization of the coupling
K into an effective coupling K,«given by

K,« =—K+ P4. (2.21)

The higher-order terms will produce interactions
involving many plaquettes. However, there will
be interactions only between linked plaquettes
(i.e. , plaquettes that share at least one vertex)
and, at lowest order, they contribute to the effec-
tive action with a coupling of the order of (tanhP)"
where n is the length of the loop that encloses the
group of plaquettes. " Interactions at long dis-
tances will be exponentially damped by a factor
e "' "s' (P small). Scaling arguments (assuming
a second-order transition) suggest that such finite-
ranged interactions are unable to destabilize the
system. Hence, in the neighborhood of P =0, the
system can be approximated by a pure gauge
theory with an effective coupling K,«given above.
Thus the curve in the (P, K) plane given by the
equation"

K, =K+ P (2.21a)

represents a line of second-order transitions
starting at the pure gauge critical point (O, K,).
Notice that as P increases the coupling K de-
creases Thus for. finite P, the coupling g'
(g' = I/K) necessary to confine the matter fields
is shifted to st~onge~ values.

(b) Stability of the Ising transition. The singu-
Larity of the pure Ising model is stable against
fluctuations of ihe gauge fields. In the particular
case of d=3, this result follows immediately from
a, duality transformation. " The model (2.2) is self-
dual in three dimensions. The duality transfor-
mation maps a model with couplings (P,K) onto a
model with couplings (P*,K*), where

where I is a closed path of links-of the lattice and
L(I') is the length of that path.

The leading contribution to S,«will be given by
the smallest loops, i.e., the elementary plaquettes.
Thus, to lowest orders in P, S,«will have the
form

exp( —2P*)= tanhK,

exp( —2K*) = tanh P.
(2.22)

P,« ——P —sinh 2P exp(-8K) . (2.23)

In higher orders other effects appear. In the
previous sections we pointed out that larger-
plaquettes couplings are in fact generated. The
dual image of those couplings, by simple topo-
logical arguments, can be seen to be many spin
interactions. But the important fact is that the
interactions that are generated only involve an
even number of spins and are finite ranged. In-
teractions of these types do not break the global
symmetry of the Ising model. They can change
the value of the critical point [as in (2.23)] but are
unable to destabilize it, at least if K is large
enough.

The stability of the Ising critical point is not a
special feature of three dimensions. The duality
argument can be generalized to any dimension.
The difference is that if d& 3 the model is no lon-
ger self-dual. Wegner" has studied the dual
transformation of this model in any dimension.
The dual model is, in general, a higher gauge .

theory. The link interaction dualizes into an in-
teraction on a hypercube [(d —1)-dimensional
simplex] and the plaquette term into an interaction
on a (d- 2)-dimensional simplex. In four dimen-
sions, for instance, links go into cubes and pla-
quettes into plaquettes. The couplings are related
by the usual duality relations. In any event, the
arguments formulated about the stability of pure
gauge theories also generalize to the higher gauge
models. Hence the stability of the transition near
the Ising regime (K=~) follows from the stability
of the transition of the higher gauge theory. The
result (2.23) is then essentially valid in any dimen-
sion. The only change is that the small parame-
ter exp(-8K) is now exp[-4K(d —1)].

(c) SPectrwm of the theory. The results of the
previous subsections, summarized in Fig. 1, sug-

Note that the duality transformation not only ex-
changes large with small couplings, but matter and
gauge couplings as well. In particular, the pure
gauge model is dual (d = 3) to the three-dimensional
Ising model. "" The line of transitions given by
(2.21a) has as its dual image another line of transi-
tions starting at the d = 3 Ising critical point. To
lowest order, in the large-K regime, the effect
of the gauge fields is a finite renormalization of
the Ising coupling P (Ref. 21),
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gest the idea that there is a closed region of the
phase diagram separated from the Higgs and
confining regimes. In the case of a continuous
gauge group there is a simple test for such
a region: the existence of a massless photon
(see Sec. III). The discreteness of the Z,
group rules out this possibility. In this theory, the
photon is always massive, except at the phase
transition ppints.

In order to understand the physics of these re-
gions, we find it useful to discuss the qualitative
nature of the spectrum in each of them. %e intro-
duce here the Hamiltonian formulation of this
theory. The Hamiltonian of this model can be con-
structed by means of the transfer matrix forma-
lism. Using the methods of Ref. 8 we find that
this theory on a d-dimensional space-time lattice
is equivalent to a (d —1)-dimensional quantum-
mechanical system with Hamiltonian

CP)

0, r T3~ r 0, r+e„

T3 r T3 r+ep T3 r+e T3 r

&T(r) .... '"(') l(t'&=lg& (2.25)

at each vertex fof the 'lattice. Here (r, g) labels
all the links that emerge from site r. The new
(renormalized) couplings X and ~ play a role
analogous to that of P and K (see Ref. 8). In the
confinement regime (X and &o small) the (perturba-
tive) spectrum is made up of (a) box excita-
tions, which are created by the operator
lire,"(r) (I" is a closed path of links), and (b) me-
sons, whose creation operators are

[(r, R) is a path of links that joins r and Rj. In
the Higgs regime the (perturbative) spectrum is
made of (a) Higgs excitations, whose creation
operator is o;(r), and (b) monopole strings. In
two space dimensions the monopoles are created
in pairs by the operator II„&„-„)r,'(r), where

(2.24)

where the 0's and the T's are two sets of Pauli
matrices residing on sites and links, respectively.
The 0's represent the Higgs fields and the T's the
gauge fields. 'The states of the theory are subject
to the constraint of gauge invariance. If l(t)& is a
physical state, it must satisfy

~o= v, r ~ T," r T,,"r+e
(P, wv)

x r,"(ry e„) 7',"(r ) .
(2.26)

Let l(t)(%)& represent a free charge residing at x.
It is defined by

o;(y) l(1)(x)& = l(t)(x)&, xe y,
a', (x) lg(x)& = —l(t) (x )&,

'(y)ly(x)&= lq(x)&»I (y ~).
(2.27)

Notice that this state is not gauge invariant. It
is possible to construct a gauge-invariant state
out of it by considering a (normalized) linear su-
perposition of

l
g(x)& with all the states that are

obtained by gauge transformations of it. This
superposition is a gauge singlet and obeys (2.27),
i.e. , represents a free charge. This state can be
shown to have finite energy and, after symme-
trizing under space translations, it is stable (i.e. ,
its energy changes smoothly). States such as
this one cannot be created by a gauge-invariant
local operator.

Therefore, it seems plausible that there are
states in the free-charge regime that may not
exist in the Higgs-confinement phase. The quali-
tative dif fer enc es in their spectrum lead us to
speculate that the lines of phase transitions de-
picted in Fig. 1 may meet at some point in the
P, X(A., m) plane separating the Higgs-confinement
phase from a free-charge phase.

D. Summary

In summary, we argue that this model (d ~ 3) has
the following phase diagram (Fig. 2):

(a) Higgs-confinement phase,
(b) free- char ge phase,

I"(r,R) is a set of links in a direction perpendicu-
lar to a path between the points r and R, located
on the sites of the dual lattice. In 3+ 1 dimensions, -

we find instead that the monopoles arrange in
closed loops. The operators that create the per-
turbative spectrum on the confining and Higgs re-
gimes share a common property: They are gauge-
invariant local operators. Thus there is no room
in these regimes for states that represent free
charges. This is not the case of the A.-small, co-

large regime (large K, small P in Fig. 1), the
free-charge regime. In addition to states that are
created by gauge-invariant local operators, there
are other states that represent free charges. In
this regime the operator o,(r) measures the
charge residing at site r and, in this limit, is a
conserved quantity. Here the unperturbed Hamil-
tonian is
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with a line of transitions separating both regimes.
In three dimensions the model is self-dual and the
line of transitions is symmetric under duality.
However, the dual transformation does not map
one phase into the other.

In two dimensions the free-charge phase does
not exist. The model is dual to an Ising model in
a magnetic field H with the correspondence

tanhP z
= exp( —2P),

tant a= exp(-2K),
(2.28)

where P~ is the inverse temperature of the dual
Ising model. It is a well-established fact that
this dual model has no singularities other than the
pure Ising transition (H=O). Then the free-charge
phase cannot exist. The Higgs-conf inement phase
is the only phase.

III. THE ABELIAN HIGGS MODEL iU(1)]

We want to discuss the Abelian Higgs [U(1)]
model. We shall show that most of the results
exhibited in Sec. II are not related to the dis-
creteness of the Z, group. In particula, r, the
connection between the Higgs and confining regimes
when the Higgs fields transform like the funda-
mental representation of the gauge group per-
sists.

The action for this model was given in Eq. (1.4).
If the matter field g(r) ca.rries q units of charge,
we have

S,[8(r);A,(r)]= P Q cos[&,8(r)-qA, (r)]
(r, P)

+K g cos[E,„(r)], (1.4')

with the notation defined in the Introduction.
This model has been analyzed by several

authors. 3 After recognizing the failure of
the Wilson loop as a test for confinement if q is
one, they argue that only the confining proper-
ties of fractional test charges can be meaningful.
But if the fields are compact, as they are in (1.4),
the only consistent way of introducing fractional
test charges is to let the charge of the Higgs fields
q be larger than one. Then we may ask: What
is the force between static sources with q =1?
However, incrementing the charge of the Higgs
field is a drastic change in the theory. The prob-
lem of Higgs fields with the fundamental charge
remains.

The general properties of the limit models —the
2c I' model (K = ~) and Abelian gauge theory (P = 0)—
have already been discussed in the Introduction.
In contrast to what happens in the Z, model, the

U(1) model has Goldstone modes ("spin waves")
and massless photons for certain values of the
couplings. In particular, the mass of the photon
will provide a simple signature for the Coulomb
phase.

r

A. Matter fields with the fundamental charge (q = 1)

For simplicity we shall assume that the dimen-
sion d is high enough so that both the Abelian gauge
theory and the XY model have transitions. This
means that d ~ 4. The analyticity results, how-
ever, are valid for d ~ 2.

(a) The Higgs and confining regimes. The Wilson
loop and the gauge-invariant correlation function.
behave as in the Z, model. The Wilson loop de-
cays like the perimeter for all P+ 0 and fails as
a signature of confinement.

The gauge-invariant correlation function decays
exponentially even close to the ordered phase of
the XY model. This result can be seen by means
of a free-field approximation valid for large K and
P. Here too we fail to. find order parameters to
distinguish between the Higgs and confining re-
gimes. Again, we will show that this failure is
due to the fact that there is no phase boundary be-
tween them. In the unitary gauge [8(r).=0] the ac-
tion (1.4) reads

S,„„[A,( r )]= P Q cosA„( r )

+K cos F,„(r).

This model has the required form for the theorem
discussed in the Appendix to apply. There is a
strip in the (P, K) plane where the vacuum energy
and all the Green's functions are analytic. How-
ever, since U(1) is a continuous group, the strip
collapses into a point at the limit K=. The rea-
son is that in the region where P and K are large
(d ~ 2) the partition function is dominated by the
low-lying excitations of the linearized theory,
i.e. , massive photons. Their mass is m'= PIK.
So as K increases the mass gets smaller. The
cluster-expansion technqiues used in the Appen-
dix rely on localized excitations and naturally do
not apply for m' small. Nevertheless, in the en-
tire neighborhood of P =K=, ordinary perturba-
tion theory in the broken phase is expected to be
well behaved. It is easy to check that the topo-
logical excitations" of this model do not desta-
bilize this expansion (d & 2).

We conclude that since the vacuum energy is an-
alytic in P and K in that strip, there are no transi-
tions. There is no phase boundary separating the
Higgs and confining regimes.

Notice also that the strip has a finite width in
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the strong-coupling regime (g'&g, '). Thus the
strong-coupling expansion is corivergent and there
is no transition "off the axis. "

(b) The pure gauge transition is stable. Wegner's
arguments can be generalized for an arbitrary
(compact) gauge group. Indeed, these arguments
do not depend even on the statistics of the matter
fields (bosons or fermions). Rather, they are a
consequence of local gauge invariance.

As in the ~, model, it is possible to integrate
out the matter fields. The result is 3, model
whose effective action S,«[A„] is determined by

exp{S„JA,]j
$8 r exp h: cosl„„r

fe»)

+I) P ces[a„8(r)—A, [r)}.
(3 2)

The arguments of Sec. II give here the result that
at lowest order in P the effect of the matter fields
is a finite renormalization of the gauge coupling
constant

K,f, —K+ p /8. (3.3)

Naturally, there are higher corrections that in-
volve larger placiuette interactions (which are
exponentially damped) and interaction with higher

symmetries such as cos pE„„(p integer). As in

the discrete case, we can also argue that these
additional operators do not destroy the transition
(because the critical behavior of this model is not as
well understood, these arguments are not as solid as
inthe Z~case). So we also expect to have a line of
transitions starting at the pure gauge critical
point. For this analysis to hold, however, it is'
essential to have in the pure gauge theory a
transition at finite coupling (d ~ 4). In three
dimensions Polyakov" has shown that the transi-
tion occurs at K =~. In this case our analysis
says that it stays at E = '0 to all orders in P.

(c) The XF transition. For d& 4 the pure gauge
theory has a phase where there are massless
photons (large K). It seems reasonable to analyze
the stability of the X~ transition in this case by
treating the gauge field in the noncompact free-
field approximation. This type of model has been
studied by Coleman and Weinberg, "Halperin
et al. , "and Peskin. " They find that the transition
becomes first order. 'The mass of the photon has
a finite jump across the phase boundary.

The mass of the photon provides a natural way
of distinguishing between the Higgs-confinement
phase and the Coulomb phase. A simple way
to study it is to consider the connected field
strength correlation function C(}r }):

C(
~

r
~
) = (exp[i(E,„(0)-E„„(r))])

—(exp[iE~„(0)] ) '.
If C(~ r ~) decays like exp(-))r), the photon is
massive. Conversely, if C(r) decays like I/~r~"
the photon is massless.

'The quantity

(3 4)

W,„.[)(r) =-ln (exp[i(E„„(0)- E., (r))]) (3.5)

(3.6)

The minus sign in (3.6) shows that oppositely
oriented dipoles attract each other. 'This is clear-
ly the magnetostatic interactions between two loops
of current. We conclude that for K large and P
small there is a long-range static force between
the loops. 'There is a massless photon in this
phase and it stays massless to all orders in P.
We call this regime the Coulomb phase.

(ii) Confinement regime (K, p small). In this
regime the photon is massive. A strong-coupling
expansion shows that C(r) behaves like

C(r) = exp (-4
~

lnK, fg ~ ~

r
~
) (3.7)

for two face-to-face- loops.
Notice that the effect of the matter fields is only

a coupling-constant renormalization. 'The reason
is that the effective action (3.2) does not have in-
teractions between disconnected loops. Then
higher orders in P cannot destabilize the low-order
results.

(iii) Higgs regime (K, P large) In the Hig.gs re-
gime we also find a massive photon. Here the
mass of the photon comes from the Higgs mech-
anism. Again in the free-massive-field (linear-
ized) approximation (m'= P/K) we find

m" "~' exp(-mr)
(&1)I 2r (3.8)

In the Higgs regime the photon is massive and the
force between dipoles exponentially damped.

In summary, in agreement with the results of

is the energy of two small static loops (i.e. , di-
poles) at a distance r. The effective potential
between the dipoles is given by -C(r) where

~

r
~

is much larger than their size. It depends on
their relative separation and orientation.

I et us consider the behavior of C(r) (face-to-face
loops) in the different regimes of the theory.

(i) Coulomb phase (K &K „p small) In.this
regime, we find massless photons. Indeed, C(r)
is not directly sensitive to the matter fields. They
only enter to lowest order through the P depend-
ence of the effective gauge coupling. In the free-
field approximation we get the result
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(a) and (b), if d~ 4, we find two phases (Fig. 2).
For K large and P small there is a Coulomb phase.
Here the photon is massless and the forces are
long-ranged. As in the Z, model it is also possible
to find states in the spectrum that behave. like free
charges. In the Higgs-confinement phase the pho-
ton is massive and the forces short-ranged. The
only states in the spectrum are created by gauge-
invariant local operators.

S,[A„]= P . cos[qA„(r)](,u)

+ K Q cos[E„„(r)].
(rs yV)

If P =~ the only configurations of A„ fields that
survive are those such that

(3.9)

B. Matter fields with multiple charge

'The situation is completely different if the
matter fields carry more than one unit of charge.
The introduction of the matter fields in some
higher representation generates a phase boundary
(i.e., singularities) between the Higgs and confine-
ment regimes that does not exist otherwise.

'The reason is that if the matter fields carry q
units of charge at the limit P=~ the system is
nontrivial. If we write the action in the unitary
gauge we get

ment of this 2, gauge charge. For K small, the
Wilson loop de.cays like the area. In this regime
we get confinement of static sources with the
fundamental charge. This phase exists for all
values of P and K small (see Fig. 3). On the other
hand, if K is large enough, the Wilson loop has a
perimeter law: Static fundamental sources are
not confined. "

'There is still the transition associated with the
massive or massless character of the photon.
This transition has already been discussed in the
model with q= 1 [Eq. (3.1)] and the same argu-
ments are valid for q 0 1.

In summary, when q41 three phases are ex-
pected to occur (d & 4) (Fig. 3):

(a) Confinement of static sources with the funda-
mental charge (K &K„all P). The spectrum is
made of gauge and Z, gauge charge neutral states.
'The gauge boson is massive.

(b) Higgs phase (k.&K„P&P,). The gauge boson
is still massive but Z, gauge cha, rge is not con-
fined. Static sources in the fundamental repre-
sentation are free, with an exponentially damped
force law.

(c) Coulomb phase (K&K„P&P,). The gauge
boson is massless and the static sources in the
fundamental representation are free with a
Coulombic force law. 'There is no confinement of

A„(r) = ", n„(r) integer.2n„(r)m

q
(3.10)

gauge charge. There are states in the spectrum
that represent free charges and have finite energy
(such as the Ising case).

Zp GAUGE THEOR Y

Higgs

0)

0
F '\

Conf inement Coul o mb

0
K

CO

ABEt I AN GAUGE THEORY

FIG. 3. Phase diagram of the Abelian Higgs inodel
for Higgs fields with two units of charge. The differ-
ence with Fig. 2 is that there is a phase with confine-
ment (in the Wilson sense) of static sources in the fun-
damental representation.

The constrained model (p = ~) is just a Z, gauge
theory. 'The Wilson loop for sources in the funda-
mental representation provides a test for confine-

C. Three dimensions

We have pointed out above that the argument on
the stability of Abelian gauge theory does not

apply in d = 3 where there is no transition at finite
coupling. Indeed, the stability argument shows
that the transition occurs at K, =~ to all orders
in P. We have no evidence for a Coulomb phase
in d = 3. Nevertheless, the analyticity arguments
apply here too. So, for charge-one Higgs field,
the Higgs and confining regimes still belong to the
same phase. The situation might be analogous to
the Z, model in d = 2. However, we cannot rule
out the existence of a ' pocket" of Coulomb phase.
Another possibility is a line of transitions ter-
minating at an interior point of the diagram. When

the Higgs fields carry q units of charge, we still
expect a phase boundary between the Higgs and
confining regimes to occur.

IV. CONCLUSIONS: NON-ABELIAN GROUPS

In the previous sections we have seen certain
general features of the phase diagram that are the
same for Z, and U(1) gauge groups. We want to
show now that these features persist for the more
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general case of a compact non-Abelian group.
Let us begin with the case in which the Higgs

fields transform like the fundamental representa-
tion of the gauge group G. In order to be definite
let us consider G to be SU(N). In this case the
gauge fields U, (r) will be N XN SU(N) matrices.

There are a variety of ways to introduce Higgs
fields. One possibility is to let the Higgs field
4(r) be an N-component complex vector trans-
forming like the fundamental representation of
SV(N). However, one Higgs field is not enough,
in general, to break completely the gauge sym-
metry. Thus we shall add as many Higgs fields
as necessary to totally break down the local sym-
metry. This scheme has the unwanted (for us)
feature of generating pseudo- Goldstone bosons.

Another possible way is to introduce Higgs fields
4(r) that behave like a group element, namely
SU(N) matrices. By going to the unitary gauge
4(r) =I, where I is the identity matrix, the gauge
symmetry is completely broken. No Higgs degrees
of freedom are left. We shall choose this scheme.

The action of the non-Abelian model reads

S[4(r); U„(r)]=—p Tr[4(r)U~(r)C (r+0~)+H. c.]
2(p p)

+ — Tr[U„(r)U„(r+ 8„)U„(r+I'„)
2 (,pu)

&& U'„(r)+ H. c,], (4.1)

t

where 4 (r) and U~(r) are SU(N) matrices.
The analytic properties of the model (4.1) can

be examined by the same methods of the previous
sections. In the proof sketched in the Appendix,
we show that the region of the (P, K) plane where
the vacuum energy is analytic extends to the whole
strip of interest. [The only difficulty, as in the
U(1) case, arises in the vicinity of p=K=~, where
the strip shrinks into a point. Here too conven-
tional continuum perturbation theory should be
well behaved if there is no transition at P =E = ~
(d&2).] Thus if the Higgs fields transform like
the fundamental representation of SU(N), the Higgs
and confining regimes belong to the same phase
of the theory.

Iri addition, all the Green's functions, i.e. , the
products of local operators, are analytic functions
of the coupling constants in that strip. This means
that the spectrum evolves smoothly in the whole
strip. The type of excitations is the same al-
though the energies will generally be different.
The Higgs-confinement phase is characterized
by a completely massive spectrum. We expect all
the states in the spectrum to be created by gauge-
invariant local operators.

'The pure gauge transition should be stable.
Wegner's arguments generalize to any compact
group, since it is only a consequence of the gauge-
invariant nature of the interactions.

If d&4, there is a second phase (K large, P
small) characterized by a massless gauge boson.
'The forces are of a Coulomb type. The gauge
boson is massless and stays massless to all
orders in P. As in the Z, theory it is possible,
within -the framework of perturbation theory, to
find finite-energy states in the spectrum that re-
present a free charge. Thus (for d&4) the phase
diagram is like that shown in Fig. 2.

The situation is different if the Higgs fields
transform like some higher representation of
SU(N), for instance, the adjoint. Even if there
are enough Higgs fields to break completely the
local continuous symmetry, a discrete Z„ local
symmetry will survive. As in the U(1) case, the
P-~ limit is just a Z„gauge theory. " In this
case, for d&2, we expect a phase boundary to
separate the Higgs and confining regimes. " The
Wilson loop for sources in the fundamental repre-
sentation will be a good criterion for differentia-
ting between these two phases. If d &2, a transi-
tion from a phase where ~~ gauge charge is con-
fined to another phase mhere it is unconfined mill
occur.

As in the U(1) case, when the Higgs fields are
not in the fundamental representation, we expect
three distinct phases: confinement, a Higgs phase,
and a Coulomb phase.

This situation is depicted in Fig. 3. In four
dimensions, the pure non-Abelian gauge theory
(we hope) has a phase transition at K, = ™.As in
the U(1) case in d = 8, we find that the transition
stay atK, =~ to all orders in p. Hence there is
no evidence for a Coulomb (or free) phase here
either, although we cannot rule out the existence
of a "pocket" of Coulomb phase. 'The arguments
of Coleman and Weinberg" suggest here, also,
that the pure matter- transition persists and be-
comes first order. It is possible that this line
terminates at some interior point of the diagram
for Higgs fields in the fundamental representation.
For Higgs fields in the adjoint representation a
two-region phase diagram (Higgs and confinement)
is likely to occur except for the case described in
Ref. 35.

Note added. When this work was near com-
pletion, we received a report from de Angelis,
de Falco, Guerra, and Marra [Salerno report,
1978 (unpublished)) where a similar analyticity
result is proved. Also, T. Banks and E. Rabino-
vici have found similar results for the U(1) model
independently. E. F. wishes to thank them for
interesting discussions about their work.
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APPENDIX

We want to show here that there are no phase
transitions separating the Higgs and confining re-
gimes when the Higgs fields transform like the
fundamental representation of the gauge. group and
break —in the sense of the unitary gauge —the
local invariance completely. Here we give a
sketch of the proof of Osterwalder arid Seiler"
(OS) specialized to the case of fixed-length Higgs
fields.

We study actions of the form

S =K Q [)I(U„(r)U„(r+B„)U, '(r+ &„)U„'(r))-D]
(P, wv)

+ P g H(U„(r)),
(f, ~)

where- X(U) =-,'(Tr U+ c.c.), D is the dimension of
the representation of U, i.e. , )I(I) =D, H(U) is
the Higgs part of the action in the unitary gauge.
We assume that all the Higgs degrees of freedom

(A1)
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are gone in this gauge so that Honly depends on U.
Up to an (infinite) constant the action (A1) is the
same as (1.1).

We want to study expectations of gauge-invariant
operators F which in this gauge are just a finite
collection of U's,

II dU. ( )e p[S(U)]&,
(f, ~)

Z= dU„r expS U
(rg &)

(A2)

We define a new measure by absorbing the Higgs
part of the action

g dU„(r) exp Z H(U„(r))
('f. I) .

('h I) (A3)f dU, (r) exp, "P Q H(U„(r))
( &~) (5& f)

which satisfies J dp, = 1.
For Higgs fields in the fundamental representa-

tion —assuming all gauge invariance is broken —H(U)
has one maximum at U =I, and it is the only
one. For P large U=I will be strongly favored by
the measure dp, . When U =I the gauge part of 8
reaches its maximum value, zero. We exploit
this by defining

exp/K[)t(U„(r)U„(r+ k„)U„'(r+B„)U„'(r))-D]]
= 1+p„„(r). (A4)

For K small, p„„(r) is near zero. For P large the
U's favored by dp, make p„„(r) small. So the
strategy is to expand in powers of p~„(r). Rewrit-
ing

fdp II [1+p.„(™r)]I&(f. vv) (A5)f dp Q [1+p, „(r)]
we expand the product, getting a sequence of terms
corresponding to larger and larger blocks of
plaquettes. We end up with an expansion [OS Eq.
(4.»)]

8 (without all plaquettes in QU Q,jdp, 5 p~„ r
o( 0) (P, Qv)6 Q

(A6)

where Q denotes sets of plaquettes, Q, is the set
of plaquettes where the operator F lives, and

Q(Q, ) is the set of plaquettes connected to Q, . We
want to show this cluster expansion converges as
the volume tends to infinity. We need the follow-
ing:

(i) The number of possible sets Q connected to
Qo containing n plaquettes grows at most exponen-

tially with n (with constants independent of P and
K). See OS lemma (3.4).

(ii) 8 (without all plaquettes in Q & Q,J/ S grows
at most exponentially with the number of plaquettes
in Q U Q, . The disconnected diagrams are con-
trolled by this estimate. This is proved using
(iii). See OS lemma (3.2).

(iii) If n is the number of plaquettes in Q then
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r dp, 7 g p„„(r) . (const&& (const)". (A7)
(P, »)6Q

If conditions (i)-(iii) hold for suitable constants

we can bound the series (A6) by a geometric one,
proving uniform convergence. %e now examine
for what values of P and K condition (iii), the
crucial one, holds. By Holder's inequality

j./P .

dp P g p, „(r) &const g dp. ~p„„(r)~~

(P, vv)6Q (8, vv)6Q
(A8)

where P is an integer independent of P and K. So
(A7) holds if

(A9)

& const. (Alo)

This yields a region of convergence like the one
shown in the shaded area of Fig. 1. Notice that
this bound gives a finite width in both the Higgs
and confining regimes.

For continuous groups it is convenient to do a
little further analysis. Equation (A9) holds if
[see OS lemmas (4.2) and (4.4)]

dp. XU, —D ' ' '&const, (A11)

For a ~, theory we can directly compute this
bound. For an action S =Kg~(UUUU —1)+P g~U
(P and f. are plaquettes and links respectively)
(A9) becomes

For K small the bound holds. For P large we do
a quadratic expansion of the cosines and the
Gaussian integrals give the result

K —&const (A13)

for P large enough. This yields a convergence
region like that of Fig. 2. Similar results clearly
hold for non-Abelian groups with appropriate
Higgs couplings.

'The convergence of sue;h an expansion implies
the following:

(i) Analyticity of (F) in K and P, because the
series converges uniformly and the terms are
each analytic. This implies that the free energy
is analytic.

(ii) Exponential clustering. If & consists of
two local operators 5, and S, separated by a
distance 8, then

(A12)

where U, is any link variable. 'This further anal-
ysis deteriorates the quality of the bound (A9).
For Z, models (All) no longer yields a finite-
width region in P as K -™.For continuous models
the deterioration is minor. As discussed in the
text we do not expect a finite width in P as K-~
for continuous groups (see Secs. III and IV).

For a U(1) model this yields the explicit bound

(f~"d& exp(P cos&)
~

cos& —1
~

'
t

' '
f~"d& exp(P cos &)

(6',&,) = (P,)(F,) ~ const && exp(-const R). (A14)

(FP,) —(P,)(F,) only gets contributions in the
cluster expansion (A6) from terms containing a
path of plaquettes connecting S, to P,; These
terms contain, at least, A factors of p»(r) and
so the bound (A14) holds.

For further details of these proofs we refer to
the work of Osterwalder and Seiler" and refer-
ences therein.
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