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Inverse scattering transform as an operator method in quantum field theory
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It is shown that the inverse scattering transform used to solve the classical nonlinear Schrodinger equation
may be formulated as an operator method for solving the corresponding quantum field theory {8-function
many-body problem).

Much of the recent progress in quantum field
theory has evolved from the study of nontrivial
solutions to classical field equations. In general
it is a difficult problem to determine the precise
quantum-mechanical implications of such clas-
sical solutions, even when the latter are known

exactly, and in most cases of interest, results
must be based on semiclassical approximation
techniques. To provide a base of experience in
these matters, it is of interest to study a class of
two-dimensional models for which the connection
between classical and quantum phenomena may be
analyzed by exact methods. These are the models
whose classical field equations may be solved by
the inverse-scattering-transform (IST) method. '
In this paper we consider' the simplest of these
models, which in its classical form is known as
the nonlinear Schrodinger equation

where Q is a complex scalar field and c is a con-
stant, which in this paper we shall take to be pos-
itive. If we define the Poisson brackets any two
functionals n and P as

6n 6p 6n 6p
6e( ) 60*( ) 6&*( ) ~0( ) . - '

(2)

then Eq. (l) may be written in Hamiltonian form
8,$ =PI, Qj with the Hamiltonian H given by

H = d+ Bi Bi +C ~

This classical theory is completely soluble by the
IST method and possesses an infinite number of
conserved quantities whose densities are poly-
nomials in the fields @ and P* and their space de
rivatives. "

The quantum version of the theory is obtained
by normal-ordering the Hamiltonian (placing all
Q*'s to the left of all Q's)

H= dxa, *8, +c

and considering P and P* to have canonical com-
mutation relations

This nonrelativistic field theory is equivalent to
the 6-function gas and the Hamiltonian is known to
be diagonalized explicitly by Bethe ansatz wave
functions. ' "

The purpose of this work is to make precise the
connection between the solubility of the classical
and quantum versions of the theory. Some pro-
gress in this direction was made by one of us in
a previous paper, "where it was suggested that
the Bethe eigenstates of the quantum theory were
also eigenstates of suitably ordered counterparts
of all the polynomial conservation laws of the
classical theory. This was explicitly verified for
the first four conserved quantities. However, an
attempt to prove this result in general reveals
that, due to short-distance singularities, the high-
er-order conservation laws are not unambiguously
defined in the quantum theory without a cutoff
prescription, and we were led instead to the con-
siderations of this paper.

We shall first introduce the classical method of
Zakharov and Shabat' and Zakharov and Manakov'
in a language appropriate to the quantum version
of the theory. This classical method is based on
a mapping between the field configuration d (x) at
a given time and a set of scattering data associ-
ated with the Zakharov-Shabat eigenvalue prob-
lem

(6a)

(6b)

For the classical theory the ordering of the fact-
ors on the right-hand side of (6) is immaterial.
However, as we shall show in this paper, the
eigenfunctions 0, and 4, of the linear problem (6)
may also be considered as operators of the quan-
tum theory, and in this case it is easy to see that
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the particular ordering in (6) leads to normal-or-
dering of 4, and C~.

We will discuss in particular the operator Jost
function $(x, () defined as the solution of (6) with
boundary condition

Both the Jost function ())(x, $) and the operator
a($) are analytic in the lower half $ plane. From
Eqs. (6) and (7) the operators A and B satisfy
a pair of coupled integral equations

(1 )
y(x () ~ e (i)(/2

]

I, O]

It is convenient to write

g, (x, $) =e"" 'A(x, (),
g, (x, g) = iVce-'"~'B(x, ()

and define the scattering data

a($) = lim A(x, $),

b(() = lim B(x, () .

(7)

(8)

(9a)

(Qb)

A(x, $) =1+c dy 8(y &x) e "'B(y, $)Q(y), (10a)

d(x, () fdx=a(x &*)a""d'(x)d(), (), (10b)

where 8(y &x) =—8(x- y) is a, step function. By
iterating Eqs. (10), one may generate series ex-
pansions for A and B, and for the scattering data
operators g and b, in terms of the canonical
fields (1) and Q*. Recalling that normal-ordering
in this model simply means grouping all Q*'s to
the left and all (t)'s to the right in each term, it
is easily seen from (l,0) that the expressions
obtained are normal-ordered. The series ex-
pansions for a($) and b($) are

a(() =1+c dxidyi8(x, &yi)e' '") '('Q*(xi)Q(yi)

+c' dx(dxidy, dy, 8(xq yi &xi &yi) e""'* " ' 'Q*(x&)Q*(xi)4 (yi)4(yi) +' ' ' (lla)

b(() = Jdx~aa*ld" (x ) +a dx ~dx~d,a(8,x&,X&x d'a"*i'*~ "i'd"(xdd"(xa)d()~) + (lib)

(a((), (t(('))=(; . )a(()&(('),

(a'((), )d('))=(-,„. )aa(()) (('),

{a(h) (5')}={(h), *(5')}=0,

{b(5) b(5')}=o

{b(() b"((')}=2iiia"(5)a(06(5—(') .

(12)

(14)

(15)

(16)

In addition, by transforming to action and angle
variables it may be shown that a($) and b(() have
simple Poisson brackets with the Hamiltonian:

with an obvious notation for multiple step func-
tions.

Before considering the quantities (11) as quan-
tum operators we will collect here for compari-
son some of the results of the classical analysis
of Zakharov and Manakov. In this paragraph
only, a(&).and b(g) will be regarded as classical
c-number quantities. By writing both a(g) and

b($) as a Wronskian of two solutions of the classi-
cal version of (6), one may compute the varia-
tional derivatives needed to evaluate the Poisson
brackets defined in (2). In this way Zakharov
and Manakov obtained

{H,a(g)}=0,

{H, b($)}=i( b($) .
(17)

(18)

Equations (17) and (18) are the fundamental results
of the classical theory. They show that, the time
evolution of the scattering data is extremely
simple. The solution to the classical initial-
value problem is completed by using the Qelfand-
Levitan equation to recover the fields Q and Q*
at a later time from the scattering data.

We begin our consideration of the quantum
theory by deriving the commutator of the normal-
ordered Hamiltonian (4) with the operators a($)
and b($) in (11). It is useful to note that all the
Poisson-bracket relations (12)-(18) may be
explicitly verified order by order, using the
series expansions of the various quantities; the
transition to the quantum theory is accomplished
by paying careful attention to the ordering. The
crucial observation here is that the spatial order-
ing of the integration variables (due to the multi-
ple step functions) in (11) leads to a great simpli-
fication in the problem of reordering operator
expressions. For a generic term in (lla) or
(lib) a field (Qe)~ at the point x, will have a non-
vanishing commutator only with the fields Q at
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[H, a(g)] =0,

[H, b($)] =$ b($) .
(19)

(20)

y, and y, . Similarly a field P at y,. has a non-
vanishing commutator only with the fields P* at
x, and x„,. To compute the commutators of
a(g) and b($) with the Hamiltonian we simply
commute H with each term in the series (11a)
or (11b) in turn, and note that the result in each
case may be brought to normal-ordered form
without encountering any nonzero commutators.
Thus the calculation of the commutator of II with

a($) or b(() is identical in structure to the calcula-
tion of the corresponding Poisson brackets, and
it leads to similar results:

Equation (20) shows that eigenstates of H may
be constructed by repeated application of the
operator b to the vacuum state ~0&. Here ~0& is
the state with no particles defined by Q(x) ~0& =0.
Thus we are led to consider the states2

ik, " k„) =-b(k, ) "b(k„)
i
0&

with the property
n

«~a, : .a„)= a,.')ia, "a„).

(21)

(22)

These states have definite particle number n and
for n &3 we have verified explicitly that they are
identical to the known n-particle Bethe wave
functions given by

(23)

a result which we believe to hold for all n.
The result (19) shows that a($) and H may be

diagonalized together and suggests the possibility
that o($) is already diagonal on the states
~k, ~ ~ ~ k„). This is verified by the. calculations
of the Appendix, where it is shown that the
operators a and b satisfy the following commuta-
tion relations among themselves:

[a(]),b(( ')] =- , . b(( ')a(g),

parably simple operator analog. It can be shown
by explicit calculation from the series (lib) and
its Hermitian conjugate that the commutator
[b(g), b*($')] does not vanish even if $c $'. This
illustrates the danger in making any general
statements about the correspondence between
Poisson brackets and commutators.

Using the results (21) and (27), we can con-
struct another operator of particular interest,

ft(() =b($)[a($)] ' . (3o)

[a+((), b((')] =+ ",+, b(g')a((),

[g(g), o(g ')] =[a($), a*(g ')] =0,

[b($), b($')] =o

From (24)-(26) we see that all the a((), a*($)
commute, and are simultaneously diagonalized
by the states (21) with

(25)

(26)

(2't)

Classically, the quantity b(g)/a($) is just the re-
flection coefficient for the Zakharov-Shabat scat-
tering problem. The operator B(g) can be used
to construct the normalized, in and out scattering
states. [Note that the states created by b(g) are
not properly normalized, as can easily be veri-
fied by taking inner products. ] If we choose the
k, variables in a specified order, e.g.,

n

a($) ~k, ~ ~ k„&= [I 1 — . ~k, ~ ~ ~ k„), (28)]-k,. -ie
k, &k2« - k,

then we find that
n.*(])~k, ".k„&=I[[ 1+ "

. ~k, ".k„&.
I

g'& g —k;+i&
(29)

~

@(k„.. . , k„))„=B(k,) ~ ~ B(k„)
~
0)

is a normalized in state, and

(32)

In addition, the relation (27) shows that the states
~k, ~ ~ .k„) a.re symmetric in k, ~ ~ k„as indeed the
Bethe ansatz states (23) are.

It is interesting to compare the commutators
(24)-(27) with the corresponding Poisson brackets
(12) to (15). We see that they are identical in
form, except for the fact that the ordering of the
two operators on the right-hand side of (24)-(26)
must be as shown. On the other hand, the Pois-
son bracket {b($),b*($')], Eq. (16), has no com-

~e(k„. . . , k„)&.„,=H(k„). . .H(k, ) ~0& (33)

[8(x, —x,.) +8(x; —x ) e ''"& '&']
1~~j(i~~g

for the in states (32), and by

(34)

is a normalized out state. These are the states
which evolve from free plane waves by the uni-
tary Moeller wave operators U(0, w~). They can
be written in a form like Eq. (23) with the factor
in curly brackets replaced by
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[e(x, —x,)e '""' '~'+e(x, —x,)]
1cg(f&tf

for the out states (33). Here b, (k,. —kz) is the
two-body phase shift given by

e'2eb, (k.-A )
kq-k, +ie '

(35)

(36)

I

value equation (6). In addition to the operator
[))(x, $) with asymptotic behavior

e''"' as x--~,
E0J

we shall need the operator solution X(x, $) with
the property

The R operators have a very simple commutation
relation which illustrates their relevance to the
two-body scattering process,

R(k')R(k) =e '~' "'R(k)R(k') . (37)

Thus, R is an explicit realization of the opera-
tors introduced by Zamolodchikov in the S-matrix
analysis of certain relativistic theories. " Al-
though it is nonrelativistic and hence simpler,
the nonlinear Schrodinger model is in many res-
pects a paradigm for this class of theories which
includes the sine-Gordon (equivalently massive
Thirring) model, " the O(N) nonlinear o model,
and the Qross-Neveu model. The operator R is
also interesting because, in the classical theory,
it is the reflection coefficient b($)/a($) which
enters as the kernel of the Gelfand-Levitan equa-
tion for the inverse problem associated with the
eigenvalue equation (6). In this paper we have
considered the operator analog of the direct
problem in which the scattering data a($) and

b($) are expressed as functionals of the fields
Q(x) and Q*(x). It is amusing that we have been
led in a natural way to consider the operator
analog of the kernel of the classical inverse
problem. This suggests that the Gelfand- Levitan
analysis (i.e., expressing the field in terms of
the scattering data) may also have an operator
analog. This question together with applications
of these methods to other theories is currently
unde r investigation.

We would like to thank Hugh Bergknoff and
W. A. Bardeen for many helpful discussions.

[e[ 4*1='2' tP,

[C»0]= 2' t[

inc
[xi e*l=-

2 x»

(A3)

ice
[x~ 0]=-

2 x[

where all the fields are evaluated at the same
point x, and we have made the symmetric choice
f 8(x) 5(x) = —,'. Using the above and the differen-
tial equation (6) we may then obtain the fundamen-
tal relation

d (~[X2 ~2X[) (~ ~)(~tx2 ~2X[ (A4)

where g—= [))(x, $) and X'—= X(x, g'). It is also useful
to note that g and X commute,

[0;(x 5)) Xq(» $')1=0. (A5)

From t/r and X we may obtain two more normal-
ordered solutions to the equation (6) given by

(0:N
X(x $) ~' '~8

' as x +x() .
& I)

Like P, X is analytic in the lower half g plane.
Writing the differential equation (6) as an integral
equation, we find that the nonvanishing commuta-
tors of the Jost functions with the elementary
fields Q, &f&* are given by

APPENDIX

In this Appendix we prove the commutation rela-
tions between the operators g, g*, 5, 5* given in
(24)-(27). The proof will follow closely the clas-
sical Poisson-bracket derivation of Zakharov and
Manokov, but with careful attention paid to the
ordering of the various operators. We first in-
troduce the definition and properties of the nor-
mal-ordered operator Jost functions of the eigen-

[g[f

(X2 ')

i Xi)

(A6)

All the results (A3), (A4), and (A5) are still valid
with [j) replaced by g and/or X replaced by X.

With these definitions and preliminaries we
may now prove the following theorem:

i

Theorem 1. Let A denote any of the functions a(g'), a*($'), b(('), b*($'). Then the commutator of a($)
with A may be expressed in the form

[x(\), d]=(dx dx t4(x, ()» X~(x, . () —di(x, ()
X )

Xi(x, ()) .5A 5A
(A7)
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Proof. We first note that the series expansion (lla) for a(g) may be brought to the form

&())= &'j,[ «;~ *'«r~ "')))bi()'i("i())('''(& ()' )
N=

(A8)

%e see that in this expression the fields are "almost" ordered in the same way as their arguments —the
only exceptions being the pairs in square brackets which are reversed. Considering for example the N= 2 terzn
in this expansion we find

[a"'(g), A] —=c' dx, e""~d3),e "'8(x, &y, &x2&y, )[ f&*(x,) Q*(x,)Q(y, )Q(y, ), A]

= c' dx,.e'")dy,.e-'")|l(x, &y, & x, & y, ) {[(g&*(x,), A] (g&+(x, )&g&(y, )cg)(y, .) + @+(x,)cg&(y, )[cg)+(x,), A]y(y, )

where the ordering has been obtained from the naively expected one by noting that the quantity
[[p*(x,),A], )II)(y, )]+[&f&*(x2), [Q(y,), A]] vanishes by virtue of the Jacobi identity. Relabeling the integration
variables and using [@~(x),A] =-5A/&cg&(x) and [cf&(x), A]= 5A/bc)&*(x) we see that (A9) is just the term of
order c in the expansion of the right-hand side of the theorem. By treating each term in the expansion of
a($) in. a similar manner, the theorem is proved.

We may derive a similar theorem for the operator b($):
Theorem 2. Let A denote either a*($') or b($'). Then the commutator of b($) with A is given by

[b($), A] = dx )j),(x, $) X,(x, $) —g, (x, $) X,(x, ]) (A10)

Proof. The proof follows closely that of theorem 1 except that the restriction on the operator A requires
comment. The expansion of b($) analogous to (A9) is given by

&N+1

)())=pc
N

dx, e"*2 g dX, e ' ')8(x) J) &x2& ~ ~ ~ &x„&yg &xg, ))
i=i

xA *(x))[4*(x2)4 (s))][4 *(x2)&(»)7 [4*(x~.)) 4(j)~)]j. (A11)

The essential new point is that the pairs which are
out of order now include the two fields whose ar-
guments are furthest to the right, and a careful
analysis shows that if the field in A whose argu-
ment is furthest to the right is P (rather than Q*)
then the change of integration variables required
to prove the theorem is invalid. This condition
eliminates g and b* from the allowed choices for
A.

Similar theorems may be proved for p* and b*,
but in fact this is not necessary since commuta-
tors involving a* or 5* may be obtained from those
involving p or b by Hermitian conjugation;
theorems 1 and 2 are sufficient to calculate all
commutators among a, a*, b, b* except [b($), b*($')].
To illustrate the- method we will evaluate
[a(g), b($')]. Applying theorem 1 and computing
the variational derivatives bb/5$ and 5b/5$* we
obtain

[)2('6) ) b(4)] 2~c x(4) P2X2X) P241X)X2)

dx(AX2AX) —42X)AX»

(A12)

g~ dx [(~1X2 ~2X1)(P1X2 42X))] ' (A12)

Recalling that a($) is analytic in the lower half
plane we may make the replacement g- $ —i&
and evaluate the contribution at infinity to obtain

[a(&), b(&')]=-, . b(&')a(&) . (A14)

where g = g(x, $) and P' = g(x, g'), etc., and the
second line follows from the first by (A5). Using
(A4) we see that the integrand is a total deriva-
tive

tj') X2tj'2'X) —AX)g)X2
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The other commutators, with the exception of
[b($), b*($')], may be evaluated in a similar man-
ner, and yield the results (24) to (27). Note that
the restriction on the allowed operators A in

theorem 2 is very important, since if we had
erroneously used theorem 2 with A= a to evaluate
[g(g), b(f')] we would have obtained the terms on
the right-hand side of (A14) in the reverse order.
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