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Classification of SU(2) gauge fields: Lorentz-invariant versus gauge-invariant schemes
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Two different and complementary schemes for 'classifying SU(2) gauge fields have recently been suggested.
These are Wang and Yang's classification using the rank of a matrix and Carmeli's classification using the
eigenspinor-eigenvalue equation. In this paper we interrelate the two classification schemes.

I. INTRODUCTION

Recently two new different methods have been
proposed to classify SU(2) gauge fields. The two
methods have led to two classification schemes of
SU(2) gauge fields. One of these schemes, by
Wang and Yang, ' uses the rank of a Lorentz-invar-
iant matrix in order to obtain the classification.
The other scheme, by Carmeli, ' uses the gauge-
invariant eigenspinor-eigenvalue equation for the
SU(2) gauge fields. In this paper we make a com-
parison between the two methods and interrelate
the different types of fields of the two schemes of
classifications.

In Sec. II we define certain tensors and spinors
from the Yang-Mills field strengths. In Sec. III
we construct'the invariants of the SU(2) gauge
fields. In Sec. IV the eigenspinor-eigenvalue
equation for the SU(2} gauge fields is given and a
detailed comparison is made with the method using
the rank of the matrix. In the tables we summar-
ize some of the results obtained.

II. GEOMETRY OF GAUGE FIELDS

Let Fk„„be the gauge field strengths. H~re p. , v

=0, I, 2, 3 are the spacetime indices, and k is the
isospin index taking the values 1, 2, 3. From the
field strengths we may define the four-index ten-
sor

It will be also useful to define another tensor
R,*„„,which is also an SU(2) gauge invariant, by

Rgvoo Fkg v FkPe '

Here *F„„is the dual to the tensor Fkp„

kpv 2( 8) v ll vvk

(2.2)

(2.3)

The tensor R*„,has the same symmetry proper-
ties as those of R „„.From the two tensors
R ii p and R,*„„wemay then def ine the complex
tensor

JWV

R. "=R.v-+&R.v"=-Fk& F P ~

where

Fkp, —Fkp, +i*Fkp, .

(2.4)

(2.5)

The new tensor R„v„also satisfies the same
symmetry properties of R „„and Rg p, .

From the tensor R,v„we may define the Ricci
tensor R ~ =A',~ and the Ricci scalar curvature
R=R

Since the tensor R ~„has the same symmetry
properties (except for the cyclic identity) as those
of the Riemann curvature tensor, we may decom-
pose it as follows'.

&v-.=~v-. + k(fvv&- -&.P- -&.u&-+ g.P")
+ -'. (a,~..—~..z..)& (2.6)

or in the alternative, but equivalent, form

pvPfy kg v kufr ' (2.1)
HV

vvv
= vvvv+ ~a vv o v v vv+&v vv}

The tensor R,„„,which is an SU(2) invariant,
satisfies the symmetry properties

+ A (gvv &vv Nvv&vv)+ ~

Here S„„is the trace-free Ricci tensor,

(2.7)

P VPty V SPY 0 VffP PCWV '

Hence the tensor R„„„is skew symmetric in each
of the pair of indices p v and pa, and is symmetric
under the exchange of these two pairs of indices
with each other. These symmetry properties are
the same as those of the Riemann curvature ten-
sor, or the Weyl conformal tensor, known from
the geometry of curved spacetimes, except that
R,„„does ~ot satisfy the cyclic identity, R„„„
=0, of the Riemann tensor.

(2.8)

which satisfies S„~=0.
Contracting now either of Eq. (2.7) or (2.8}

with respect to the indices p and p, , we find that
the trace of the tensor C„„,vanishes, C',~=0.
Hence Eqs. (2.7) or (2.8) express the fact that the
tensor R a„decomposes into its irreducible com-
ponents.

The above results may easily be put into the
spinor language. The spinor equivalent to the
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Yang-Mills field strength E~B,c& may then be
decomposed,

(2.iS)

A simple calculation, moreover, shows that

kAB'CD" —ACXkB'~ XkAC B'D ~ (2.9) C
~AC B 2 ~AB '

~ /D kAB'CD' L ACXyB'D' XkAC B'D')' (2.io)

Subsequently, the spinor equivalent to the tensors
R,„„and A„*„„may be found. So may the spinor
equivalent to E», . As a result, the spinor equiva-
lent to the tensor R„„„is given by

AB'CD 'EF'GH' EkAB'CD'EkEF'GH' '

Using now Eq. (2.9) we then obtain

AB'CD'EF'GH' = —($ACEGEB.D.EF.H, + EEG rA CF qg, EB,D ~

~A C ~B2VEG~F'H' A C~EG ~B'D'F'H') '

(2.11)

In Eq. (2.11) the two spinors (ABGD and lABG, D,

are defined by'

where XkAC =2~ EkAB cD In the above formulas
the upper-case letters denote ordinary SL(2, C)
spinor indices taking the values 0 and 1. Primed
indices transform with the complex-. conjugate
elements of SL(2, C). The spinors eAG and eB,&
are the skew-symmetric Levi-Civita metric
tensors defined by e„=1. SL(2, C) indices are
raised and lowered by means of the above skew-
symmetric spinors, using the convention Q"

MB
QB and Q eBA

——Q» thus Q Ql arid Q QO,
B 0 1

for an arbitrary spinor Q".
The Yang-Mills spinor X~B is symmetrical in

its two SL(2, C) indices A and 8: X~AH = X,B„.
Hence it has nine complex independent components.

Xkoo & Xk01 Xkl0 &
nd Xkl 1 ' These nine

complex components are equivalent to the original
eighteen real components of the gauge field
strengths Ek „.

We may also find the spinor equivalent to the
tensor *Ek„„the dual to Ek „. We then find

The spinor )ABGD resembles in its properties
the gravitational field spinor XABcD which com-
bines the Weyl conformal spinor and the Ricci
scalar curvature. The difference between the two
spinors being only in their trace structure, the
trace of the gravitational field spinor is X»"
= -R/4, where R is the Ricci scalar curvature,
which is a real quantity. Here, however, the in-
variant P is a comPlex function. The role of P
in gauge fields, nevertheless, seems to be sim-
ilar to that of the cosmological constant of general
relativity theory, even though it is now a complex
function.

The spinor gABGD in Eq. (2.14), on the other
hand, is a totally symmetrical spinor in all of its
four indices and is given by

1
~ABCD ~(~ABCD ~ACBD ~ADBC) ' (2.i6)

It is therefore completely analogous to the Weyl
conf ormal spinor, and has only five independent
complex components: ~o = ~0000 ~l ~0001 ~2 ~0011&

~3 ~0111 ~4 ~1111
The other spinor g»G,D, appearing in Eq. (2.11),

defined by Eq. (2.13), satisfies the same sym-
metries that the trace-free Ricci spinor QABG,D,

satisfies, namely

~A BC'gT ~BA C'D' ~ABD'C' ~ C D'AB

It, therefore, has nine real independent compo-
nents. The spinor g»cD, is, moreover, irre-
ducible. Its physical meaning lies in the fact that
it is proportional to the energy-momentum tensor
of the Yang-Mills field (see details in Ref. 4).
From the spinor R». GD,»,GH, given by Eq. (2.11)

we may define the Ricci spinor RcD,GH, =8 cD,EF,«, .
We then find that

and

~ABCD XihABXACD

~ABC'D' XkABXkC D' P

(2.12)

(2.13)

CD'GH' ~CGD'H' 2( P) CG D'H' '

We also find for the Ricci scalar curvature

R =R "GH, = -2(P+P) .
respectively.

From the definition of the spinor )ABGD we see
that it satisfies the following symmetry proper-
ties:

~ABCD ~BACD ~ABDC ~CDAB '

Hence it can be decomposed into the sum of a
totally symmetric spinor pABcD and a scalar P,

We now find the spinor equivalent to the tensor
R*s„defined by Eq. (2.2). It is given by

""AB'CD'EF'GH' ~ kAB'Q7' ~ kEF'GH' '

Using Eqs. (2.9) and (2.10) we obtain

~ "AB'CD'EF'GH' (4CEG B'D' F'H' EG lA CF'H' BD'

A CtB'D'EG F'H' AC EG~B'D'F'H') '
1

~ABCD ~AB CD 6 ( AC BD AD BC) ' (2.14) (2.17)

Here the scalar P is the trace of the spinorgABGD, The Ricci spinor and Ricci scalar curvature are
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subsequently given by RCD'GH' ~C GD'H' C G D'H'

CD'GH' 2( ) CG D'H' &

R*=2i(P —P),

respectively.
Finally, the spinor equivalent to the complex

tensor 8 „„defined by Eq. (2.4), is given by

. RAB'CD'EF'GH' RAB'CD'EF'GH' + ZRAB'CD'EF'GH' '

%'e then find that

RAB CjyBF gH 2()ACBGEBtgy ACERB DBg) F H (2 18)
I

The Ricci spinor and Ricci scalar curvature are
then given by

respectively.
A fourth spinor that can be constructed out of

the Yang-Mills spinor is given by

XAB CDEF i jkXi,ABXj C DXkEF .
It satisfies the following symmetry:

(2.19)

XABCDEF XBACDEF XABDCEF XABCDFE '

In addition, the spinor X~c»F keeps or changes
its sign, depending upon whether the pairs of in-
dices AI3, CD, EF are an even or an odd permuta-
tion of the apirs of numbers 00, 01(=10), 11, and
zero otherwise. Hence it can be decomposed as
follow. s:

XAB CDBF —~4Q(EAGEBBEDF + EAF EB CEpB + EA CEBFEDB + fABfB CfpF + EA pEBFf CB + EADEBBECF + EAFEB DECB + EABEBp CB) y

(2.20)

where Q is a complex quantity, the trace of the
sPinor XAB cDEF

'

C E A CBED~F
V —XA C E —& «XABCDEF ~ (2.21)

Finally, two more mixed indices spinors, with
unprimed and primed indices, can be defined as
follows:

4AB CDB'F' ij kXiABXj CDXkB'F' t

0 AB CSEE'F' Ei jkX iABX jC'jrXkB'F' ~

(2.22)

(2.23)

The invariants of the SU(2) gauge fields may
now be constructed from the spinors defined in
the last section. Other invariants that occur in
the coupled Yang-Mills and the gravitational or
the electromagnetic fields will also be discussed.

We already have two complex invariants P and

Q defined in the last section by Eqs. (2.15) and
(2.21), respectively. More invariants may be
constructed as follows' ':

R = 4Bcjy + (3.1)

The relationship between them can easily be found.

III. INVARIANTS OF THE YANG-MILLS FIELD

CD EF AB
~AB ~C D IEF (3.6)

Finally, two more real invariants R' and R"
may be defined as follows:

G'H' AB C'D' EFR =&AB & CD«EF & GH (3.7)

n rr pA8 I G'H'PE'F '
& CD

C D~AB & G'H' ~E'F' (3.8)

The reality of the invariants R' and R" may
easily be verified.

The above invariants may also be defined in a
somewhat different way by mearis of the gauge-
invariant, but Lorentz-dependent, 3 ~3 symmet-
rical matrix

It will be noted that the seven invariants P, Q,
S, 7.', I', G, and H are complex functions, whereas
R (not to be confused with the Ricci scalar curva-
ture R) is real. The reality of the invariant R
can easily be seen if we calculate its complex
conjugate:

—A 'B'CDR:gA FBrCD g

CDA'B' AB CQ' R

~ABCD G + &P2

r
AB C DE'F'

4 ABC PB'F'0 t

where the invariant G is given by

(3.2)

(3.3)

~B CD
~i j ~ABCp~i e j (3.9)

where e, is some basis in the spinor space. One
then finds, for instance, that

rjiB CDG =~ABC/ (3.4) P =Tr), S =Tr)',
(3.10}

We may define two more invariants I' and H by
means of

(3.5}
Other invariants can be written in terms of those
of Eq. (3.10). The invariants G and H, for in-
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stance, may be written in terms of S, P, and I' by
means of Eqs. (3.2) and (3.5).

We recall that the number of invariants of the
SU(2) guage fields in terms of real functions is
nine. Hence we obviously have interdependence
relations between the above-defined invariants.
A selection should be made here that is based on

physical grounds just as in the gravitational and .

the electromagnetic cases. It will also be noted
that the two invariants G and H are constructed
from the totally symmetric spinor p»cD in pre-
cisely the same way as the gravitational field
invariants I and J are constructed from the totally
symmetric Weyl conformal spinor P„Ben. The
following five sets of invariants,

terms of the totally symmetric spinor q»cD, the
eigenspinor equation (4.1) may then be written in
the form

QB LCD yryAB (4.2)

f(A )
—= A.

"——', GV —,'H=0, — (4.3)

where the new eigenvalues X' are related to A. by
X'=X —P/3, and P is the field invariant given by
Eq. (2.15).

The classification of the spinor $»c~ is accord-
ingly reduced to the classification of the complete-
ly symmetric spinor q»cD. The eigenvalue
equation obtained from Eq. (4.2) can easily be
shown to be given by

P, Q, R, S, T;
P, T, R, G, H;

P, Ii, R, S, T;
P, S, I", R, R', R

P, G, H, R, R', R";

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

+ A2 + X3 =q~~c~q =G,

Xy + g2 + A3 gAB gcD x/QP& H

(4.4)

where G and H are the two field invariants given
by Eqs. (3.4) and (3.6), respectively. We then
have

Q =E —2PS+2P

We, face a situation here similar to that of gravi-
tation and 'electrodynamics.

IV. LORENTZ-INVARIANT vs GAUGE-INVARIANT

SCHEMES

We now write the eigenspinor-eigenvalue equa-
tion

)AB LCD yyAB (4.1)

for the SU(2} gauge fields. Here $~zc~ is the
gauge-invariant spinor defined by Eq. (2.12}and
Q"s is a symmetrical spinor, the eigenspinor.
Using Eq. (2.14) expressing the spinor $„sc~ in

may be taken, for instance, as the invariants of
the SU(2) gauge fields. Each of the sets of invari-
ants given by Eqs. (3.11) does not form a com-
plete system of invariants by itself in the sense
of the theory of invariants. Therefore, not every
algebraic invariant which is constructed from the
spinor X~B can be expressed as a polynomial in
terms of each of the above sets of invariants.
The invariant Q defined by Eq. (2.21), for instance,
is not a rational function of the set of invariants
P, S, E, R, R', and R" given by Eq. (3.17d).
This fact can easily be seen since such a function
should be of even order in the Yang-Mills spinor
X~s, whereas the invariant. Q is of odd order in

The invariant Q is, nevertheless, alge-
braically dependent on the set of invariants P, S,
E, R, R', and R". In fact, the square of Q may
be written in the form

where A.,', ~,', and X,' are the eigenvalues which
may or may not be distinct.

The spinor q»c» and therefore the spinor
$»c~, can now be classified according to the
possible numbers of distinct eigenvalues and
eigenspinors. The maximum number of eigen-
values is three. Corresponding to each eigen-
value there is at least one eigenspinor. Hence
when we have three distinct eigenvalues, we have
three eigenspinors. This is the general type I
field. Since we have two cases for which P 10
and P =0, we obtain the fields of types IP and Io,
respectively. The symmetrical spinor g»c D will
then have the general form

~ABCD + (APByC5D) r (4.5)

~ABC D + (AB ~C D) & (4.6)

for types IIP and IIo, and where the four spinors

where o~, P~, yc, and 5D are four arbitrary one-
index spinors and parentheses indicate symmetri-
zation, thus giving 24 terms in Eq. (4.5). De-
tailed analysis of Eqs. (4.4) show that in this case
we have G't 6H', in complete analogy to gravita-
tion where I'16J' for Petrov type I and the Weyl
conformal spinor having an identical expression
to that given by Eq. (4.5).

When two of the eigenvalues, let us say A,,' and
A.,', are equal we have two and three distinct
eigenspinors. The classes of fields are now of
types H and D, respectively. Again we have two
cases: Pc0 and P = 0. The spinor g»cD will then
have the form where two of the four one-index
spinors are identical,
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6p

y~+~g P
1$' 3 DISTINCT EIGENVALUES

(PAO, G 86H )

2 DISTINCT E IGENVALUES

Dp (PAO, G =6H AO)

Finally, if Az X2:&,' then we may have one,
two or three eigenspinors. The fields obtained
are of types III, IV, or 0, respectively. The
spinors q» cD will then specialize where three of
the four spinors are identical,

~ABC D + (A+B™CD) & (4 8)
I DISTINCT EIGENVALUE

= Op (PPO, G=H=O)

IEo
G+

gx+go

~+8 Eo

gi+~O
4&~~

+g+ Io

I DISTINCT EIGENVALUE
— Oo (P=O, G = H =0)

2 DISTINCT EIGENVALUES

(P=O, G =6H- AO)

DISTINCT E IGENVALUES

(P=O, G y6H )

are identical in pairs,

(4.7)~ABCD (A+B C

for types DP and Do Equations . (4.4) then show
that G'=6H'0 for these four cases. Again the
analogy with gravitation is remarkable.

FIG. 1. Diagram of classification of SU(2) gauge
fields (Carmeli, Ref. 2). The completely symmetrical
spinor gABcD has identical decomposition to the Weyl
conformal spinor g ABcD for each one of the twelve
classes of fields in the diagram. For types Ip and Io

~ABcD +(Apa&c6D)., for types IIp and IIo:
gABcD

——Q(AQBycnD),. for types Dp and Do: gABcD
= e &AcyBD c5 D), for types IIIp and IIIo:

+ {AoB&c~D) «r tyI s Vp and IVo: nABcD= ~A~B~c~Di
and for types Op and Oo: gABcD

—-0. The invariants 6
and H are given by G = gABcDg and H = gAB
g zz in complete analogy to the two gravitational in-
variants in terms of the Weyl conformal spinor pABcD.

for types IIIP and IIIO fields, where all the four
spinors are identical,

~ABCD +A+B+C+ D & (4.9)

where

+tmzA. + m~X+ m~=0, (4.10)

mz=-P,

m, = ,'(P' - S), -

ms = —s (E —,'PS + —,'P') . —

(4.11a)

(4.11b)

(4.11c)

Here the invariants P, S, and E may. be written

for types IVp and IV0 fields, and q»cD ——0 for the
fields OP and Oo. Equations (4.4) now show that
G =H =0 for these six cases, just as in general
relativity theory.

The results of the above analysis is summar-
ized in Fig. 1. For each case the spinor $»DD
is obtained by adding to q»cD the expression with
the P term according to Eq. (2.14). Notice that
OP is not a zero field since PIO, whereas Oo in-
cludes the zero field since $»DD ——0 in this case.
The analogy with gravitation is most remarkable
since the spinor qABcD and the invariants G and 8
satisfy the same conditions that the Acyl conform-
al spinor (»DD and the gravitational invariants I
and J satisfy.

Using now the expression X' =X —P/3 and Eq.
(3.2) in the eigenvalue equation (4.3), we then ob-
tain for the latter

TABLE I. Case 1 of Wang-Yang (Ref. 1) classification scheme for which the rank of the
matrix & is equal to 3, and its corresponding types of fields in Carmeli's classification
scheme (Ref, 2).

Subcases of
Wang- Yang

scheme
Envariants

P G' H Relations between invariants

Corresponding
Carmel. i

type

1A
18
].C
1D
1E
1&
1t"

0
0
0

0

v'

0
0
v'

v'

6'~ 6H'
G'~ 6H'
C'= 6H'~ 0
C=H=0
C'~ 6H', P'~ —gH
G'~ 6H', P'~ gG/2
G'3&6H and P is not a
root of the polynomial
(4.15).

6'= 6H'~ P'/6'

lo
Io
IIo, Do
HIP, IVP, OP
Ip
Ip
Ip

Hp, Dp
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TABLE II. Case 2 of Wang-Yang classification scheme (Ref. 1) for which the rank of & is
2, and its corresponding types of fields in Carmeli s scheme of classification (Ref. 2).

r

Subcases of
Wang- Yang

scheme

2C

2D
2E
2I'

Invar iants
P G H

0

Relations between invariants

G~& 6H
G=H=0. (=AA,

Rank (=1,
(1 oo)

Rank 4= 2. A = i X i X
~

0 1 i
Q, is complex).

G3& 6H . [3 distinct roots
for the polynomial (4.15)].

Same as above.
Same as above.
G3= 6H2 & 0. [2 distinct

roots for the polynomial
(4.1 5) ].

Corresponding
Carmeli

type

Io

IVo

IP
IP
IIP, DP

P= Tr)= Trh,

S = Trt2 = TrLP,

F= TrP= Tra',

(4.12a)

(4.12b)

(4.12c)

Mills field, then A,,= e,. BX~B, where e, B is an
appropriate basis in spinor space and 4 =AA and

) =AA. their transformation rules are then given
by A'=AG and A'= LA, thus

b'=Gb, G, $'=Ig,
where & is the gauge-invariant symmetrical ma-
trix obtained from the spinor $»cB when expanded
in an appropriate basis in the spin space (see Sec.
III), and 6 is a matrix whose elements are given

AB
g& Xg&BX&

The symmetrical matrix 4 is Lorentz invariant
and has been used by Wang and Yang for classify-
ing the SU(2) gauge fields according to its rank.
One easily finds that

m~ = det) =-—detach = ~~' (9PG —18H —2P ) .

(4.13)

The two matrices 4 and g have a simple presen-
tation. If A,,=E,, + iH,.„where E„and H„are
the "electric" and "magnetic" parts of the Yang-

where G is a three-dimensional orthogonal real
matrix and L is a three-dimensional complex
orthogonal matrix, both with determinants unity.
%e finally notice that the eigenvalues X» A» and
A., of the spinor $»cB satisfy

A.B

AB CD
i 4BCD~

~i ~A 8 tC B 4E

when expressed in terms of the invariants P, S,
and F.

TABLE GI. Cases 3 and 4 of Wang-Yang classification scheme (Ref. 1) .for which the
ranks of & are equal to 1 and 0, respectively, and their corresponding types of fields in
Carmeli's classification scheme (Ref. 2).

Subcases of
Wang- Yang

scheme
Invar iants

P . G H Relations between invariants

Corresponding
Carmel i

type

G3=6H & 0. [2 distinct
roots for the polynomial
(4.15)].

G=H=0
G=H=0

»P, Dp

IIlo, IVo, Oo
IVo, Oo
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TABLE IV. Corresponding cases of Wang and Yang
using the method of the rank of & (cases 1, 2, 3, 4 de-
note the ranks of &=3, 2, 1, 0) vs field types of Car-
me li us ing the e igenspi nor equation.

TABLE V. Types of fields using the eigenspinor equa-
tion and their corresponding cases using the rank of the
matrix & (cases 1, 2, 3, 4 denote ranks of 4 equal to 3,
2, 1, 0).

Wang- Yang
case scheme Carmeli corresponding type

Carmeli type Wang-Yang corresponding case scheme

Ip, Ilp, Dp, Illp, IVp, Op, Io, IIo, Do
Ip, lip, Dp, Io, IVo
IIp, Dp, IIIo, IVo, Oo

IVo, Oo

Ip
Ilp, Dp
IIIp, IVp, Op
Io
Ilo, Do
IIlo
IVo
Oo

1, 2

1 2, 3
1

1, 2
1

3
2, 3, 4

3, 4
In order to compare the classification schemes

using the ranks of the matrices 6 and $ and the
spinor method, we now consider in some detail
the case for which the ranks of. lk and $ are equal
to three, namely their determinants are different
from zero. From Eq. (4.13) we see that the
polynomial

m3(P)= —~7P + 6GP —3H (4.15)

f(z) =z' ——,'Gz —,'H . — (4.16)

This is exactly the polynomial one obtains from
the eigenspinor equation (4.1), as it should be.

From the above it is clear that there e~;ists a
guage in which 4 is realized by a matrix whose
elements are constructed out of the invariants P,
6, and H. A possible presentation of such a
matrix is given by

1
Q3 Q2

Q3 3P Qg (4.17)

of third order in the invariant P should not vanish.
Changing variables from P to z by z = —P/3, we
obtain the polynomial

is case 1 in Wang and Yang's scheme of classifi-
cation. It yields eight subcases (1A —1H) which
are listed in Table I. They correspond to nine
types of fields in Carmeli's classification scheme.
These are IP, IIP, DP, IIIP, IVP, OP, Io, IIo, and
Do. When det4 = 0 and ranks = 2, which is case
2 in Wang and Yang's classification scheme, we
have six subcases (2A —2E). These are listed in
Table II. They correspond to five types of fields
in Carmeli's classification scheme. These are
Io, jVo, IP, IIP, and DP. The results for cases
3 and 4 (ranks of b, are 1 and 0) are listed in
Table III. Summaries of the correspondence be-
tween the two methods are given in Tables IV and
V.

Useful details about these classification schemes
and other related schemes appear in a series of
papers by Anandan, Roskies, and Tod, ' and in
a report by the authors. "
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