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Self-dual propagating wave solutions in Yang-Mills gauge theory
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Self-dual propagating wave solutions to the sourceless field equations for Yang-Mills theory are presented.
The superposition properties of these solutions are investigated.

I. INTRODUCTION elude the Euclidean version of the solutions.

The importance of self-dual solutions of the
Yang-Mills equation of motion in. Euclidean space
%as recognized some time ago. The properties
of the instanton solution of Belavin, Polyakov,
Schwartz, and Tyupkin have been the focus of much
recent investigation, and its physical significance
as the signal of quantum tunneling between topolog-
ically inequivalent vacuums is well established.
Because of the success of the concept of self-dual-
ity in Euclidean space, it would be interesting to
examine how these ideas carry over into Minkow-
ski space. Indeed, some self-dual Minkowski
solutions have already been found, ' and it has
been demonstrated by Rebbi' that there exists a
complex self-dual solution whose real part still
satisfies the Yang-Mills equation of motion and is
gauge equivalent to the solution found by de Alfaro,
Fubini, and Furlan' (dAFF).

Also, in Minkowski &pace we expect, by analogy
with electromagnetism, the existence. of some
form of propagating solutions which could be re-
garded as non-Abelian plane waves. ' In genera, l,
however, the nonlinearity of the equations of mo-
tion for non-Abelian Yang-Mills fields means that
it would not be possible to superpose such solu-
tions as in the electromagnetic case. But by re-
quiring that the fields satisfy the simpler self-
duality condition, some linearization of the equa-
tions of motion may occur. For example, Cer-
vero has shown that there exists a family of com-
plex solutions for which a superposition principle
may be defined, and in particular, that it is pos-
sible to add two complex solutions to obtain the
dAFF solution.

The above considerations motivated us to search
for self-dual solutions of the Minkowski field
equations characterized by a four-vector k„de-
fining the direction of propagation of the solution.
In Sec. II we define our notations, give general
expressions for the field strengths, Lagrangian,
and energy-momentum densities, and exhibit the
self-duality properties of our solutions. In Sec.
III we exhibit the solutions explicitly and discuss
their properties. For completeness, we also in-

II. NOTATION AND GENERAL FORM OF SOLUTIONS

The SU(2) gauge potentials, ' defined as usual by

where 0 are the Pauli matrices, satisfy the field
equations

F~"g' =s'~' 8"a'+[~' a']
2i

8 E "+ [A„,Ii "]= 0.

In order to search for propagating solutions in
Minkowski space, we begin with the ansatz

ji~=fa kg(k x), (3)

where k„= (ko, k) is an arbitrary Minkowski four-
vector and the cr"" are antisymmetric matrices
defined by

+jj [+i j] &~ijkok
4i
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(4)

They satisfy the O(3, I) commutation relations

[&u~ &N]
.
( pK vb uK&p 6+ ph LU vh 6 p)

o'"k k'(f" —2f') = 0, (6)

where the prime denotes differentiation with re-
spect to u=k. x.

The Lagrangian and energy-momentum density
for the potentials (3) are given by

This anzatz is assumed for two reasons.
Firstly, cr „as defined by (4) is the Minkowski
analog of the self-dual antisymmetric tensor ap-
pearing in the instanton solution and arises as a
natural choice for SU(2) gauge groups. The func-
tion f(k ~ x), on the other hand, is motivated by the
form of general plane-wave solutions in electro-
magnetism.

Qn substitution of (3) we find that (2) reduces to
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Z=-'TrF F~
pv

= ——.'k'(f" +f')

(i) f" 2f—'= 0 .
This equation may be integrated once to give

f-f =M,

(15)

(16)

8 „=2 TrE„~Fv —g v2

= (2k k, k, —kga„k4)(f f") .— (8)

The components of the electric and magnetic
fields can be expressed as

E"=Fo4a=i Tr(FO'o')

=(ik'k' N-"k '- e "k k')(f'+f')+i5"k'f'

(9)

where M is an arbitrary positive constant.
We see from (13) that, unless M=0, the field

configuration obtained will not be self-dual, and,
furthermore, since the components of the energy-
momentum tensor of such a solution would be
constant, the energy density integrated over all
space would diverge. Equation (16) may be in-
tegrated to obtain f(u) in terms of Jacobi elliptic
functions. For completeness we note the solu-
tion is given by

~la . Le4Jkyjka &~i jk Tr(yjk a)

= (ie'"k k + k'k'+ 5"k'k )(f'+f') —5"k'f'

(10)

f(u) =M' nc(W2M' (u+ C)
~

—,),
where t" is a constant of integration.

This solution becomes singular whenever

(2n+ 1)u=k x=,g4 E(k) —C, n=0, 1, 2, ...
42M

(17)

The self-duality conditions may be written as

with

+F'"=-'i~'" F '
2 ~8

From (3) we find this corresponds tok

or

(12)

(13)

where K(k) denotes the complete elliptic integral
of the first kind with parameter 2.

Choosing M = 0, (15) may be integrated directly
to give

(18)

where the plus sign corresponds to the self-dual
case and the minus sign to the anti-self-dual case.
The electric and magnetic fields are thus given
explicitly by

(14) E"= i84a=i5"k'f-' for f= 1
C+k ~ x (19)

In addition, we note that upon choosing the minus
sign in (11), k k =k~=0 is also a solution.

It is clear from (9) and (10) that the electric and
magnetic fields are complex. In fact, as is easily
seen from (13), the energy-momentum tensor van-
ishes as a consequence of the self-duality condi-
tion. This is only possible for nonzero F if the
fields can take on complex values. Consequently,
since our solution has nonzero values for the
gauge-eovariant quantities F,„, it cannot be made
real by a complex gauge transformation. We can,
however, obtain an equivalent formulation in
terms of real gauge fields by extending our gauge
group SU(2) to the larger noncompact group SL
(2, C). '

III. DISCUSSION OF SOLUTIONS

We are now in a position to investigate the sol-
utions of (6). We note that the solutions of the
equation of motion fall into two classes. Class
1 is

gf 0 +gglC

=[2ik'k'- i5* (k, '-k k~)0

1—2z'"k&k']f' for f=
C —k ~ x

We note that f is singularonthe surface C+k @=0
where the electric and magnetic fields diverge
quadr atieally.

These solutions may be interpreted as a propa-
gating disturbance characterized by a four-vector
k, . The quantity ko/~k~ determines the phase
speed of the solution. If k„ is spacelike, that is,
if ~k~ &ko, then the solution propagates with a
phase speed less than c. If k is timelike, then
the phase speed is greater than e. The interpre-
tation of a wave with a phase velocity greater than
c would seem to be a difficult one. A conserva-
tive attitude is to neglect such a solution com-.
pletely as unphysical. Solutions with k WO cannot
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be superposed.
The second class is

(ii) k k~=(k ) —(k') =0. (2 I)

where

g&8 —O&9

gi0 ~i 0

A,"=io'~"k„f,(k . x),
A", =io""k„f,(k x),

then the sum Q~& + A.2 is also a solution of the eq-
uation of motion. %e stress that these are gen-
uine non-Abelian waves which nevertheless have
a superposition property. It is clear from (22)
that since the electric and magnetic fields contain
a term which depends on f~, these fields do not
add up linearly when the potentials are super-
posed. This is to be contrasted with the anal-
ogous situation for electromagnetism described
by the Abelian Maxwell equations where such non-
linear terms do not arise.

In the expressions given for A~ and A.~ above,
both potentials have the same k„. In fact, it is
always possible to superpose waves going in the
same direction. That is, if we have

A;=io (k,)„f,(k, x),

A,"=io'"(k,) fq(k, x),
then A", + A2 is also a solution provided that k&'

=k2 ——0 and

(k,) =o.(k,)„, (23)

where o4 is an arbitrary (real) constant.
In the electromagnetic case, the sourceless

Maxwell equations also allow for a solution of the
form A~=&„f(k x) where f is an arbitrary func-
tion, provided that k'k =c~k =0. Our k'=0
solutions are the generalizations of this in the
non- Abelian case.

Vfe also note that an analogous set of self-dual
or anti-self-dual solutions may be constructed
from the ansatz

In this case, f remains completely arbitrary
and, in particuiar, may be a plane wave, exp(ik x).
These solutions have several interesting proper-
ties which are similar to electromagnetic waves.
They are anti-self-dual and their electric and
magnetic fields are given by

Z"= ia"= (ik'k'- i6 "k,'- ~'~'k k')(f'+ f2)

Since k' =
~

k ~, these solutions propagate at the
speed of light. Nevertheless, k is not an energy-
momentum four-vector as in the electromagnetic
case because the components of 0~" all vanish.

Solutions with the same k may also be linearly
superposed. That is, if A., and A.," are solutions
such that

These solutions have the properties that

PV +/V

f'=f'or k'=0

g~PV EP V

The Lagrangian density for these solutions is also
given by (I) and all components of the energy-
momentum tensor vanish.

For completeness we also exhibit the Euclidean-
space version of our solutions. In this case we
begin with the ansatz

A' =i os'"k"f(k ~ x),
where

o"=—[o*' o']
1

(25)

jo0'g = 20'

k. g=k g +k g +k3g3+k4g4

The os~" satisfy the usual O(4) commutation re-
lations.

The Euclidean equation of motion thus reduces
to

os~"k"k k (f"-2f') =0, (26)

where the prime denotes differentiation with re-
spect to v = k ~ x.

As in the Minkowski case, we find that f must
satisfy the differential equation

f" 2f'=0- (2'I)

Z = ——' TrE""E""
2

Note, however, that the analog of the k'= 0 sol-
utions in Euclidean space corresponds to the triv-
ial vacuum solution since all components of k~

must be zero for k to vanish in the Euclidean
metric.

Expressions may be obtained for the Lagrangian
density, energy-momentum tensor, and the topo-
logical quantum number. These are given by

A" = io'"k„f(k x), (24) 3 k4(f 2 +f4) (28)
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euv = 2 Tr(Fu~P i) ~B'av Tr(~ei~n)

= (2k'k "k" '5—~'—k ) (f f"—
) (29)

eu4

16p
d4xf'f'. (30)

This solution is singular on the surface C+k ~ x
=0 and hence the Lagrangian density, energy-
momentum tensor, and topological charge den-
sity are not well defined there.

In conclusion, we remark that our search for

The only self-dual or anti-self-dual solutions of
(27) correspond to f'=sf or

1
Cvk ~ x

propagating wave like solutions of the Yang-Mills
equation, motivated by a simple analogy with elec-
tromagnetism, leads us to consider potentials of
the form (3) or (24). Because of the richer struc-
ture of non-Abelian theories, we find there are
solutions with a propagation four-vector such that
k'= 0, which, since our choice of f(k ~ x) in the

gauge potential is arbitrary, can be chosen to be
perfectly well behaved. These solutions exhibit
some superposition properties and may be re=
garded as the non-Abelian analogs of plane elec-
tromagnetic waves.
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