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Statistical model of inclusive distributions: Formulation of the model

and mean-field approximation
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We formulate a statistical model of inclusive distributions. The source function of the observed particle is

regarded as a random variable on phase space; its distribution is determined by a Lorentz-invariant

probability density. We suggest that the Lorentz invariance of the correlation functions is broken

spontaneously; this may account for the observed anisotropy of the inclusive distributions.

I. INTRODUCTION

Statistical models of particle reactions are use-
ful in that they account for some gross features of
the distributions in a relatively simple manner.
Although explicit constructions differ in many tech-
nical details, the basic physical assumption under-
lying all statistical models is the same. Roughly
speaking, one assumes that dynamical details of
the process in question are so complicated that
they become practically irrelevant. The measur-
able particle distributions 0g the average exhibit
simple features which can be described "statisti-
cally, " i.e. , in terms of some random variables.

In constructing a statistical model of particle re-
actions, two basic issues have to be settled.

(i) One has to determine an appropriate (possibly
multidimensional) random variable on the phase
space, in terms of which particle distributions are
described.

(ii) One has to determine a suitable (i.e. , physi-
cally "reasonable" ) measure on the space of ran-
dom var iables.

Once this is done, particle distributions, corre-
lation functions, etc. can be calculated (in princi-
ple} as appropriate moments of this measure.

One of the latest developments in this direction
has been the model of inclusive reactions proposed
by Scalapino and Sugar' (see also Ref. 2). In ef-
fect, these authors start from the well-known fact
that at sufficiently high energies the inclusive cross
section for a particle c produced in the reaction
g+ b-c+X can be formally written as a source
correlation function, viz. ,

where the expectation value is taken with respect
to the initial state (a+ b). The operator j(z) is the
source operator of particle c, (assumed to be Her-
mitlan), while p(p} is its on-mass-shell Fourier

transform. Scalapino and Sugar' propose to re-
place the quantum-mechanical expectation value
in (1.1) by a statistical one. The quantity p(p) is
to be regarded as a random variable, and the ex-
pectation value oi g(p)P~(p} is to be calculated as
the "equal-p limit" of an "ensemble average, "

(P eP~ etn )

(1 2)

This assumption effectively settles issue (i}: the
random variable chosen to describe inclusive dis-
tributions is the on-shell Fourier transform of the
source function of the observed particle.

Issue (ii} is settled in Ref. 1 for the special case
of spinless observed particles considered on a one-
dimensional projection of the phase space (the
rapidity axis} only. (The restriction to spinless
particles is physically reasonable: Pions make
up some 80%%uo to 90%%uo of all the particles produced. )
A one-dimensional Laudau-Ginzburg weight is
chosen in (1.2), viz. ,

p(P, p*) = exp — dy—1 dg* dp
2 dg

+2 44"+4 ~4'0'~')
a ~ b

where y is the conventional rapidity variable.
The authors of Ref. 1 show that such an assump-

tion for p describes the main qualitative features
of inclusive distributions on the longitudinal phase
space.

In this series of papers we propose to extend the
main idea expressed in Ref. 1 to inclusive distri-
butions on the full phase space. Such an extension
is physically well-motivated, since there exists a
large amount of data describing inclusive distribu-
tions as a function of both rapidities and transverse
momenta. Despite its innocent appearance, how-
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ever, such an extension is highly nontrivial from
the theoretical point of view. As it, turns out, the
problem in question is equivalent to the problem
of solving a Euclidean quantum field theory on a
three-dimensional curved space. Considerable
theoretical efforts notwithstanding, this is still
largely an open problem. Accordingly, we have
to be guided by physical intuition and by results
available on analogous theories in flat space. The
basic purpose of this paper is to give a proper
formulation of the problem and to investigate some
rough qual. itative features of the solutions.

The contents of this paper is therefore organized
as follows. In the next section we list the funda-
mental assumptions of the model, motivated by the
work done in Ref. 1. Section III is mostly peda-
gogical in its nature: We derive some elementary
properties of the phase space (the "playground" of
the model). While such properties are generally
well-known, they are rederived and listed here for
the purpose of future reference. (Perhaps a con-
sistent geometrical. treatment of particle kinemat-
ics adds some unusual flavor to the discussion. }
We conjecture that the remarkable stability of dis-
tributions in transverse momentum (i.e. , their
weak dependence on energy and on the nature of the
colliding particles) is due to intrinsic properties
of the random distribution on phase space (the
"Feynman gas"). In particular, we investigate
whether the Feynman gas can develop an aniso-
tropic "condensate" (Sec. IV). We cannot give a
complete answer; nevertheless, by investigating
the qualitative properties of the random distribu-
tion, it becomes plausible that his is a real. pos-
sibility. The results are discussed in Sec. V.

of p(p) may be restricted to the hyperboloid, H,

Pp -p'= 1, Pp~0 (2.2)

Obviously, (2.2) defines the single-particle phase
space for the emitted particles. In the spirit of
statistical. models, we assume that the space de-
fined by (2.2) is the support of all distributions
considered. Eventually, we impose restrictions
in the center-of-mass system (c.m. s.) of the col-
liding primaries of the form

Q -pa~0 (2.3)

where Q stands for the "c.m. s. energy available
for particle production" and, hence, it is of the
order of magnitude =0 s, for sufficiently high in-
cident energies. However, in this paper, we shall
be dealing mostly with the "infinite-energy limit, "
i.e. , with the space defined by (2.2) alone.

Clearly, (2.2) and (2.3}do not take energy-mo-
mentum conservation into account properly. How-
ever, kinematic restrictions are expected to in-
fluence the shape of the distributions substantially
only near the boundary of the phase space. At suf-
ficiently high energies and "inside" the phase
space, kinematic effects are expected to be small.

We now assume that the generating functional of
inclusive distributions is given by the functional
integral:

Z[j]= JI DQDp* exp(-pR") exp i dV(p*j+ pj~)

(2 4)

where W is an integral of a local "entropy density, "
S: W~ f dVS~ and p is a constant. Following Ref.
1, we conjecture

II. FORMULATION OF THE MODEL S =~2g V /*Vip+ U~(p*p), (2 5)

Following Ref. 1, we consider inclusive produc-
tion of one kind of spinless particles in hadronic
{or semihadronic) reactions. All the following
considerations can be easily extended to more gen-
eral cases, viz. particles carrying spin and/or
intrinsic quantum numbers. Correspondingly, we
assume that the inclusive distributions can be de-
scribed in terms of a Hermitian random variable
p(p) (being the on-shell Fourier transform of a
source function) defined on the single-particle
phase space, po —p = m, where m is the mass of
the observed particle. In what follows, units are
chosen in such a way that 5 = c = m = i. The Her-
miticity of the random variable is equivalent to
the relationship

(2.1)

where the asterisk stands for complex conjuga-
tion. As a consequence, the domain of definition

where V, (1&a& 3) stands for a derivative with re-
spect to independent coordinates on the phase
space. In these formulas, g'~ is the metric tensor
and dV is the invariant volume element on phase
space. Most of the time we shal. l also assume that
U is a quadratic polynomial in p~p, as it is in a
standard Landau-Ginzburg model, although some
of the discussion applies to more general functions
U as well. Obviously, the existence of Z requires
U-+~ as Q~P-~.

III. GEOMETRY OF THE PHASE SPACE

The hyperboloid (2.2} is isomorphic to the sym-
metric space, SO(3, 1)/SO(3). Conveniently, the
standard SO(3) subgroup is chosen to stabilize the
point P, (p, = 1, p= 0). Since the action of SO(3, 1)
is transitive, each coordinatization of (2.2) cor-
responds to a particular "boost convention" and
vice versa. A metric on the hyperbol. oid can be
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chosen as the natural metric induced by the Car-
tan-Killing form on SO(3, 1}. Equivalently, if $'
are a set of three independent boost parameters
(i.e. , coordinates of the homogeneous space), such
that p" = p"(g) satisfies (2.2), the metric can be
read off from the elementary formula for the in-
variant distance:

On calculating ds' from (3.1}we find

dt'
I& =(1+ t}dy +—

( )
+ tdy (3.5)

so that the nonvanishing components of the inverse
metric tensor and the invariant volume element
become

8 p Q v

(3 1) g»= g"=4t(1+t)1+t (3.6)

& p'+p' p'-tp'i
P=o p+o0'yp —

g . 2 p g ~l
~

0 a

p+tp p p

In the last equation 0, and g, stand for a standard
set of Paul. i matrices a0 being the unit matrix.
The I orentz transform of P is given by

(3.2)

P'=APA~, detA = 1.

A. Feynman boost

Choose

A= exp(&yo, ) exp(& tyo, ) exp(2 sinh 't'~'o, ) .
(3.3)

where q„„=diag(-1, +1,+1,+1). From the point of
view of applications to this model, a boost conven-
tion is convenient if it satisfies two criteria.
First, it contains a "preferred direction, " since
eventually we shaB be looking for anisotropic dis-
tributions with (at most) an axial symmetry.
(Thus, for instance a "Wigner boost, " i.e. , one
along a geodesic connecting P, with the desired
point P on the hyperboloid, does not give a con-
venient parametrization. ) Second, we should at-
tempt to obtain as simple a parametrization of the
metric as possible. In particular, we want to ex-
hibit the maximal possible number of cyclic coor-
dinates. [There are two cyclic coordinates on
SO(3, 1)/SO(3). ]

These criteria leave us essentially with two
boost conventions [modulo elements of SO(3), the
stabilizer of P,]. Either we first boost in the plane
transverse to the preferred direction and after-
wards along that direction ("Feynman boost" ), or
we boost in the reverse order (as is done in usual
"null-plane parametrizations'"). We exhibit both

types of boosts below, together with the expres-
sions of the metric tensor. We use the represen-
tation of momenta in terms of 2x2 matrices, so
that for any momentum [not necessarily on the
hyperboloid (2.2}]we have

We choose

B. "Lilhtlike boost"

1 1A = (oo+ 2o'~v~+ 2 as~so'~v~)

l 1/2 0 3+ii/2 0 3 (3 8)2
'

2

where 1 &A, Jf, . . . & 2. The transverse boost [the
first factor in (3.8)] is an element of a Galilean
subgroup of SO(3, 1): It leaves a null ray, p, + p,
= 0, invariant.

The boost (3.8) gives rise to the foHowing para-
metrization of the points on (2.2}:

( (
2E' ~ &'P 2E '

(3.9)

We find the following expression for the invari-
ant distance:

ds'=(1/l )(dl + dv„dv ); (3.10)

hence, this coordinatization brings the metric into
a conformally flat form. The transverse Galilean
velocities are cyclic coordinates. The corpponents
of the inverse metric tensor and the invariant vol-
ume element become

g =
y

=
l3

tl 12 AB /26AB dU=dldv'dv' (3.11)

In this coordinatization, the invariant Laplacian
has the following expression:

dU= 2dydtdy .
Notice, in particular, that the invariant I aplacian
has the simple expression

8 at/)~ 1 a )h 1 a2ib
v'y= 4—t(1+ t)—l+ — +-, . (3.7)St &t] 1+ t ey t ey'

It is easily verified that V' is an elliptic operator
everywhere on the phase space. The rapidity y
and the azimuthal angle y are cyclic coordinates.

This results in the following parametrization of
the momentum components: &'4=I' I———+a~a~0 ~

a 1 arp

~l l el (3.12)

p'=coshy(1+t)' ', p'=sinhy(1+t)' '
p'=v t cosy, p'=v t siny.

The coordinatization (3.9) of the phase space may
not be the most convenient one from the point of
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view of a direct comparison of a theory with ex-
perimental data. However, owing to the simplicity
of the expression of the metric, this coordinate
system is suitable for the formulation of a statis-
tical model of the production of spinning particles.
We briefly outline the construction of such a model.

The random variable describing the inclusive
production of a particle of spin j is the (2j+ 1)-
component source function y{p). Obviously, P
is Hermitian, and it transforms according to the
representation (j) of the stability group of the point
P of the hyperboloid (2.2). It is now straightfor-
ward to generalize expressions {2.4) and (2.5) for
this case. In particular, since the "potential term"
U in (2.5) is local, it simply generalizes to a term
of the form U{P*(p) P(p)). However, the correla-
tion term has to be modified. We have

S,= ,' g"(V-.y)* ~ (~,y)+ U(@* y), (3.13)

where v,p is now the covariant «rivafice of Q,

V,g =(8,+iI"~,J~)P, (3.14)

where a, b, . . . run through the values of 1, 2, I [cf.
(3.9)]. The matrices J,' are the generators of lo-
cal rotations ("Wigner rotations"), and in a local
orthonormal frame they have the standard expres-
sion in terms of angular momentum matrices J„.
The connection between the J„andthe J~ is easily
established by using (3.10). In fact, we can read
off the triad coefjicients by inspection. Define the
one-forms ~ (c.=1,2, l) such that

ecK /of
a a E

so that

~i= "A~l= 5x5Yi

(3.15)

The connection coefficients can be easily read off
either directly or by making use of the transfor-
mation law of a Riemann connection under con-
formal transformations, see, e.g. , Hawking and
Ellis. ' We find

r;,=( 1/I)(5;5t+5c5,' 5„5;) (3.16)

Finally, upon introducing the standard Cartesian
components of the angular momentum operators
by the relations

we find

9$
A@ s++ I AB 84

so that the explicit expression of the entropy den--
sity for a spinning particle reads as follows:

ds = ~+~47 Q7

Clearly, & = e, dh', where the coordinate differ-
entials (dl, du") have been collectively denotai by
dh'. Obviously,

(3.1V)

IV. SPONTANEOUS ANISOTROPY IN THE FEYNMAN GAS

The entropy densities as written down in Sec.
III, are. invariant under the group SO(3, 1). As
long as we approximate the available phase-space
volume by the full hyperboloid (2.2), the generat-
ing functional Z is Lorentz invariant. This is
clearly unphysical. In fact, it immediately fol-
lows that the correlation functions (1.2) are con-
stant. [Outline of proof: Q(p)C*(p)) is a Lorentz
invariant for spinless particles. Since the hyper-
boloid is a symmetric space, we can apply a Lo-
rentz transformation to obtain Q (p)p~(p))
=&4(0)e'(0)), Q E D ]

As mentioned in the Introduction, we conjecture
that the observed anisotropy of inclusive distribu-

tions develops largely as a consequence of a spon-
taneous breakdown of the Lorentz invariance. (Us-
ing the language of statistical mechanics, the
Feynman gas develops an anisotropic condensate. )
The existence of a condensate is characterized by
a (locally) stable minimum of the functional W in-
troduced in Sec. II, viz. , 6S'=0, 6'5'&0. We im-
mediately remark that the condensate need not cor-
respond to an absolute minimum of 8'. In fact,
the colliding primaries define a preferred direc-
tion in the c.m. s. hence the somme of the Feynman '

gas is definitely anisotropic. However, we con-
jecture that the Feynman gas.develops under its
Own rules of dynamics, with the source acting as
a small perturbation only. In such a case, the
main role of a small anisotropic perturbation is
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just to stabilize a certain local minimum of 5'.
For future reference we record that if there ex-
ists a stable condensate 4„then the expression
of the normalized correlation function reads in
the leading ("mean-field" ) approximation

(4.1)

We use Feynman coordinatization of the phase
space, and look for cylindrically symmetric func-
tions. The condition 6$'=0 is then equivalent to
the Euler-Lagrange equation

8 9$ 1 8$ 1 8U
8t 8t 4(t+1) 8y'

(4 2)

whereas the second variation of W reads

O'W= — d VP* ——t(1+ t)—

to a qualitative discussion of the solutions, keep-
ing in mind mainly polynomial functions U, typi-
cally of the Landau-Ginzburg form,

U=Ap*p+ 2B(p*p)', (4 4)

where A can be of either sign; however, neces-
sarily B&0, cf. Sec. II.

One expects that if C, has anything to do with the
observed distributions, it is a relatively slowly
varying function of y far from the boundary of
phase space, whereas it should be a rapidly de-
creasing function of t. This observation allows
us to approximately reduce our problem to a one-
dimensional one. In fact, if we are sufficiently far
away from the boundary of phase space, the de-
pendence on y and t is approximately uncorre-
lated, i.e. , C,=f(t)g(y), where both f and g may
be chosen to be real. Since g is supposed to be
slowly varying, we approximately replace (4.2)
and (4.3) by their averages taken over a sufficient-
ly large rapidity interval, viz. ,

1 8( 8U
4t 80' 84'*84 g.e, —

+ (surface terms) . (4 3)

d t df f Idg 1 18U
dt & dt 4(t+1) gdy' 2 g 8

(4 5)

In Eq. (4.3) g stands for the deviation from the
"condensate" 4„which is the solution of (4.2).
Equation (4.2) is to be solved subject to the bound-
ary conditions 40= 0 on the boundary of phase
space, and, hence, g also has to vanish there. As
a consequence, the surface terms in Eq. (4.3) can
be shown to vanish. For any reasonable potential
(except for one which is linear in 4*4p), Eq. (4.2)
is a nonlinear elliptic partial differential equa-
tion; hence, its solution poses a highly nontrivial
problem. In what follows, we restrict ourselves

and similarly, 8'U/84*84 in (4.3) is replaced by
its average over rapidity.

With this approximate reduction, the linear op-
erator standing in square brackets in (4.3) can also
be reduced to a one-dimensional one. In fact, we
can now separate variables by putting

i(J = P X„„(t)exp[i(my+ ny) ],
m, n

so thai,

2 =W d & dx m' n2 82U
"t&m, n -dt l(t( +t)

dt
+

4t +4(1 t) &mn" 8 m8 Xmn ~

0 + 4 dI agom, n

On substituting further

t=&(coshe —1), X = e I '(sinhe ) '~'p

the expression of the second variation becomes

d2
II'W= —Q J dip"„„—,"+P ), p

fn, n

with

(4.6)
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—
i t(1+ f)—+ f --f-- f'= 0.d( df C A 5

dt I, dt I+1 2 2
(4.8)

%e want to solve this equation for 0 ~ t& with
f(0)&~, f(~)=0; in particular, we are looking
for nonoscillating solutions, since these are ex-
pected to minimize 5' by giving the lowest possible
value to the correlation term, g' V,4*V~4. By
inspection we discover that the singular points of
(4.7} are at f = -1,0,~, hence, we are dealing with
a singular boundary-value problem. Singular
boundary-value problems for a large class of dif-
ferential equations pave been discussed in a recent
paper by Hartman. ' We refrain from reproducing
Hartman's results; rather, we give an intuitive
discussion of the properties of the solutions.
(Needless to say, the properties we discover, at
least for c= 0, are proved in Ref. 5.) First, we
notice that if we want f-0 (t ~), then asymptot-
ically we have the linear equation

d t', df &

dt I(I, dtj 2
(4.9)

This is solved by f = f, with

~ = k [-1~(1+2A)'~'] (4.10)

Hence, for any A& -&, there exists a solution de-
creasing as a power of t.

Experimentally, the observed inclusive distri-
butions are indeed roughly proportional to t ~ with
2& N& 4. Discarding the positive root in (4.10),
we thus need 0&A%4.

In these equations, F stands for the length of the
rapidity interval available. This is of the order of
log@, and it is roughly independent of the trans-
verse momentum. [One may remember that the
boundary of the phase space is given by (1+f)'~'
coshy= Q= s' ~. ] The positivity of O'W is obviously
equivalent to the condition that all the eigenvalues
of the operator (-d'/dz'+ E) are positive. Hence,
in order to decide the stability of any particular
solution of (4.5), one has only to determine the
sign of the lowest eigenvalue of this operator.
[Formally, this is a one-dimensional Schrodinger
equation with boundary conditions p(z = s~) = 0.]

For the sake of definiteness, from now on we
concentrate mainly on functions U of the form
(4.4). We have then with 4,=f(t)g(y),

=Af+ B(g2)f' =Af + bf'—,(
1.8U

Q2p

8/+8/
'~

On introducing the notation (g 'd'g/dy') = 4c, Eq.
(4.5) becomes

In order to discuss the solutions further, we
notice that (4.5) is formally equivalent to the equa-
tion of motion of a nonrelativistic particle in one
dimension with a Lagrangian,

(df &'
I,= .'t(1-+ t)

~

—
(

—V.&«i
Here,

V=- f -- U(f),
e

21+/ 2

(4.11)

U( f) being the rapidity-averaged potential.
The mass. of the fictitious particle is "tixne"-

dependent, m = t(1+ f}. Correspondingly, the en-
ergy changes in time:

2 t(1+() ~

de 8H, df ' 1 C
dt st ' dt 2 (1+ t)'f

(4.12)

Qn choosing A&0 as suggested by the discussion
following Eq. (4.10), we see that at t-~ the par-
ticle has to climb to a maximum of V. Apart per-
haps from a short initial time, energy is dissi-
pated monotonically for either sign of e. This im-
plies that at I;= 0 the particle has to start with some
initial coordinates, f(0) &0, and with initial veloci-
ty determined by the equation of motion itself,
viz. ,

df dV

fso df tag

such that the initial energy is positive. (Since f= 0
is a singular point, we are not free to prescribe
both the coordinate and the velocity there. } HC & 0,
this is clearly impossible with the simple form
(4.4) for U, since with A&0, C & 0, the potential V
is monotonically decreasing from V= 0. One can
contemplate other more complicated forms of U,
for instance, by taking a polynomial which is cubic
in 4*4. In such cases one can always choose the
initial coordinate in such a way that the particle
arrives at the "top of the hill" at f= 0 with exactly
zero energy; hence, the solution f(t) does not os-
cillate. However, all such solutions are unstable:
The operator in (4.6} has at least one nonpositive
eigenvalue. This can be easily verified'. The func-
tion E dips below zero, and one can verify either
by numerical calculation or by means of a WKB
estimate that a negative eigenvalue is present.

The situation is radically different for C& 0,
however. Even with a simple form (4.4), it can
be easily arranged that the solution becomes stable
in the sense that the function E in (4.6} never dips
below zero, and, hence, (4.6) can never develop a
negative eigenvalue. In terms of the fictitious me-
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chanical system (4.11), C & 0 corresponds to a re-
pulsive force, proportional to (1+ t) 'f, which then
decreases with increasing time. At large values
of t, the first term in V becomes ineffective and
the particle eventually stops at the top of the hill,
f=0.

Although we are unable to give any rigorous re-
sult at present, experimentation with various
simple forms of U suggests that the condition c & 0
may be necessary in order to obtain a stable, non-
oscillating solution.

Physically, the condition C& Ohas a very simple
meaning. In fact, we recall that the "constant" is
just the average of the function g 'g» over a suffi-
ciently large rapidity interval, and, hence, it is
practically independent of y. The function g is ex-
pected to be relatively slowly varying; in particu-
lar, it should not have roots: This would give rise
to sharp dips in the distribution (4.1). We may
therefore assume g&0. It is then clear that the
main contribution to c comes from regions on the

y axis, where g is seal/. We obtain C & 0 if g is
convex wherever it is small. In other words, g
must have at least one sufficiently deep minimum
in the rapidity range over which averages are
taken: Otherwise, we cannot obtain a stable con-
densate in the Feynman gas. However, the exis-
tence of one or several dips in rapidity corres-
ponds precisely to the existence of "rapidity clus-
ters, "or in other words, to a multifireball pic-
ture, which seems to be supported by experimental
data.

V. FINAL REMARKS

Although the preceding discussion is not a rigor-
ous one, the emerging physical picture is certainly
suggestive. In particglar, we find a connection be-
tween rapidity clustering and the sharp falloff in
transverse momentum, provided the observed dis-
tributions are dominated by the condensate. The
existence of a condensate, in turn, has already
been suggested by the work of Scalapino and col-
laborators": They compare their model to a
superconducting wire.

We find it also interesting that a power-behaved
inclusive cross section at large transverse mo-
menta is a natural (and almost inevitable) conse-
quence of the model. This does not contradict the
usual explanation of this behavior in tegms of a
quark model: The latter is certainly more funda-
mental. However, it is amusing to recover this
aspect of inclusive distributions from a simple

lo 2

io-'

io-'

t [sev']

FIG. 1. Normalized expectation value of the random
source function in the mean field approximation.

phenomenological picture.
At this point it would be premature to make a

detailed comparison between our calculations and
the observed distributions. However, it is worth
noting that a sample calculation with A= 4, B= 0.2,
C= 1.3 gives a qualitatively fair representation of
the general shape of inclusive distributions (see
Fig. 1). (We have not made a systematic search
for parameter values which give the "best fit. ")
By varying the parameters, one can convince one-
self that the rapid initial falloff in t is due to the
"repulsion" exerted by the term proportional to
c; this confirms one's expectation based on the
qualtitative discussion given in Sec. IV. At higher
values of t, the solution goes smoothly over to a
power behavior, essentially governed by Eq. (4.9).
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