
PH Y SISAL RE VIE% D VOL UME 19, N UMBER 12 15 JUNE 1979

Infrared catastrophe averted by Hertz potential
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A computational scheme for quantum electrodynamics is developed from first principles in which infrared
divergences are not encountered. The gist of the method is that the photon propagator is properly
—ig„„(k' + )'e) ' [(1/2)k s/sk )j„ln( —X 'k' —ie) Her. e X is a parameter which plays the role of the photon

mass, but which cancels out of cross sections for any finite value (X~O is never taken). The subscript w

means weak derivative, so a partial integration on k, with neglect of boundary terms, is always understood
in Feynman integrals. This makes integrals converge which otherwise would be logarithmically divergent. For
sufficiently convergent integrals the partial integration may be undone and the conventional value results
because [(1/2)k a/sk )j ln( —)). 'k' —ie) = 1. It is shown that the above propagator is not merely an artificial
device, but results if the vector potential A" is derived from a Hertz potential II ~ = —II", A" = a„H ",
which is a local field, The real-photon infrared divergences do not occur when the integral over real photons
is obtained from the discontinuity in the k plane of the above propagator. A contribution to the real-photon
integral at strictly zero frequency, resembling a third polarization state of the photon, is isolated and
evaluated explicitly. The S matrix and physical subspaces are defined.

I. INTRODUCTION

Although there is no doubt that coherent states' "
provide a basic understanding of the infrared
problem in quantum electrodynamics, it is re-
markable that the preferred method of calcula. -
tion does not embody this wisdom. Instead, ac-
cording to a, methodic brought to a high degree of
perfection by lennie and. eo-workers" a mass X

is attributed to the photon, so the states are not
coherent but are Fock states, and A, is finally set
equal to zero in cross sections. The greater sim-
plicity of the photon-mass method suggests that it
embodies some truth, not yet manifest in the co-
herent-state method, but implicit somehow in the
straightforward prescription of replacing

(1.la)

by

for the free photon propagator.
In the present work, we describe a method in

which, hopefully, this truth is distilled, without
destroying the coherence of the states. Note that

(k' —Xs+i&) '

= (k'+ ie) '—,'(k"8/Bk") In(-X 'k'+ 1 —ie),
so, with neglect of terms which vanish with X',
the photon propogator with mass becomes

-ig„„(k'+i@)'(,'k'8/Bk') ln( ——A. 'k' —ie). (I.lb)

As a function, this expression agrees with the
usual photon propagator, because (—,'k'8/
Bk') in(-A. 'k —ie) = 1. However, as a distri bu

tion it is different, and the subscript sv is a re-
minder that the weak derivative is taken in the
distribution-theoretic sense. In other words a
partial integration on k with neglect of boundary
terms is always understood, before the Feynman
integration over 0 is performed.

The gist of the method developed in the present
work is that the photon propagator is truly given
by {l.lb). It is understood that )). is a constant
with dimensions of mass which plays the role of
the photon mass, but it is a finite paranteter
zvhich is not seI, equal to zero. It cancels out of
cross sections for every fixed finite value (al-
though not out of the electron self-mass). In this
respect it resembles a renormalization mass.
For a properly convergent integral the partial
integration implicit in (1.1b) may be undone, and
the photon propagator becomes -ig„,(k'+ ie), as
usual. However, for a logarithmically divergent
integral the Euler differential operator --,'(8/
Bk")k" ~ ~ = =,'(k" 8/Bk" + 4) ~ ~ which results
from the implicit partial integration, annihilates
terms that are homogeneous in k of degree -4,
which are precisely the cause of the divergence.
For example, the typical infrared-divergent in-
tegrand is rendered convergent by

' k' (2'+22 2)(2' 22' 2) )

(k'+2p k)s(ks+ 2p' k)

where a power of k has been added at k = 0, and
similarly for the ultraviolet-divergent integrand,
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(1.4)

k'k "(p k+ p' —m')
k [(k+p)' —m']'[(k+ p')' —m']

where a power of k has been removed at k = ~. '

The possibilities which the present approach
may offer in dealing with ultraviolet divergences
have not been explored, although it certainly ren-
ders 5m and Zy S2 finite in lowest order. How-
ever, it does appear that the propagator (l.lb)
averts all threatened virtual infrared divergences
of quantum electrodynamics.

To be consistent with the change in the photon
propagator from (1.1a) to (l.lb), the sum over
real-photon states must be changed from

~ ~
d3k

~ ~ ~ = d k disc(k'+$g) ' ~ ~ ~

2(d
(1.2a)

to

d4k disc((k'+ ig) ~2 (k"8/sk") [ln(-Xmka —ie)]j ~ ~ ~,

(1.3)

calculated in momentum space using Eq. (1.2a)
or (1.2b). According to the reconstruction prin-
ciple, j, and j,' correspond to the same state if
and only if (j„jm)=(j„jm& for all j,. This con-
dition defines an equivalence relation between
currents, and states are identified with the equiva-
lence classes. I et us see how this works out for
the usual photon phase space (1.2a). One finds

(1.2b)

where the discontinuity is taken on the positive
k' axis. Its evaluation in Sec. V is the heart of
the present article. Use of the resulting photon
phase space averts all real infrared divergences.

Observe that changing the photon propagator
and phase space from (1.1a) and (1.2a) to (1.1b)
and (1.2b) changes the very notion of photon and

photon state. A clear physical interpretation of
what these states may be is provided by the re-
construction principle. If A„(x) is the free, in or
out vector potential, the generic one-photon state
is given by A (j)Q = J A„(x)j"(x)d'xQ, where 0 is
the vacuum state and j"(x) is a test function, in-
terpreted as a classical current, and so is real
and conserved. The basic idea of the reconstruc-
tion principle is that states are determined by
their inner products with other states. Consider
the bilinear form on the pair of currents defined
by the inner product,

whe~e (d= ~k( and

( "(k):(») '~' f e" * "'j'(x)d'x.

In this case test function are equivalent if they
have the same Fourier transform on the future
light cone, which is, of course, none other than
the familiar photon wave function depending on
only 3 variables (k), instead of 4 (x'). Because
of current conservation, e„j"=0, the wave func-
tions are transverse, k, (I)" (k) = (Oy'(k) —k ~ p(k) = 0,
which makes (II)"(k) equivalent to p" (k)+ k"n(k) for
any n(k). In this case the reconstruction principle
reduces the three independerit components of
transverse wave function p'(k) to the familiar
two independent photon polarization states, as
it should.

Before the reconstruction principle can be ap-
plied to the new photon phase space (1.2b), the
properties of the classical currents j must be
specified more precisely. If a current carries
a net electric charge

q= j" t, x d'&IO,

then j'(x) cannot be of fast decrease in the time
direction, for then q would go to zero as t-a~,
but instead it is a constant. To replace the hypo-
thesis of fast decrease, we make what may be
called the scattering hypothesis and suppose that
at asymptotic distances in space and time, the
charge is carried by particles (or a fluid) in uni-
form motion at subluminal velocities. More pre-
cisely we specify

lim Rsj~(Rx)

= u"[p.(u)8(x')+ p (u) 8(-x')]8(x2)(x')~ ',
(1.6)

where u" =x"(x') '~' sgn(x') is the unit timelike
four-vector representing the asymptotic four-
velocity of the charge flow. The functions p, (u)
and p (u) represent the asymptotic charge densi-
ties per invariant volume element in velocity
space, with total charge q given by

q= d'M(u') 'p, (M}=f d*u(M') 'p (u),

where u'= (u'+ 1)'~'. The motivation for this hy-
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pothesis is that, the matrix elements of the quan-
tum current operator J~(x) have precisely this
property, '3 so divergences will be averted if A(j)
is well defined for such test functions. The dif-
ference

&ji j2&=2 dk der Inarch(-s/a~)
0

+ d~Ql Ql d F2 Q&

x p, (u, )K(u„uz)p2(u2), (1.8)

where a= 2X ', p, (u), for i= 1, 2, is the charge-
scattering function, just defined, associated with
the flow j& (x); K(u„u, ) is a kernel given in Eq.
(5.35); and the wave function p,.(k), defined in Eq.
(1.5) has the infrared limit

d u u

Unlike (1.4), the inner product (1.8) is finite for
such wave functions. If, now, the Peconstruction
principle is applied to the form (1.8), one finds
that besides the two transverse degrees of polar-
ization described by the familiar wave functions

(k), there is also a scalar wave function p(u)
needed to describe the extended one-photon state.
It is presumably a remnant of the longitudinal
state of massive vector mesons, for, as was dis-
covered early in the history of quantum electro-
dynamics, the wrong result is obtained if the long-
itudinal degree of polarization is dropped before
the photon mass is set equal to zero. ' +le call
the first type of photon, described by the wave
function P"(k), "radiation photon" since it corres-
ponds to familiar radiation, and carries energy
and momentum. We call the second type, des-
cribed by the wave function p(u), "zero-fre-
quency photon" because p(u) lies at asymptotic
infinity and is translationally invariant, so

p(Q) -=p, (u) —p-(Q)

measures the net scattering of electric charge
in the flow j'(x). It is an important quantity which
we call the "charge-scattering function. "

The one-photon inner product (A(j, )Q, A(j, )fl)'
is evaluated in Sec. V using the new phase space
(1.2b) for test functions satisfying the charge-
scattering hypothesis (1.6). The result is

the zero-frequency photon carries no energy or
momentum, although it does have finite angular
momentum.

The one-photon inner product (1.8) is indefinite,
even for conserved currents. This situation is not
unfamiliar in relativistic quantum field theory:
The one-particle Klein-Gordon equation also suf-
fers from an indefinite metric, the cure being
found in the second-quantized or many-particle
theory by expelling the negative-frequency par-
ticles. In our case, where the spectrum extends
down to zero frequency, the cure is a gain found
in the second-quantized or many-photon theory, by
also expelling states which are not coherent at zero
frequency. As shown in Sec.VII, the states which are
coherent at zero frequency, which we call "infrared
coherent, "provide a space of positive metric which
is identified as a physical space.

The organization of the paper is as follows.
Those interested in applications may bypass Secs.
II and III, take (1.1b) as an ansatz, and pick up
the logical development near the end of Sec. IV.
Sections II and III are devoted to showing that the
photon propagator (l.lb) is not an artificial device,
but arises naturally in a theory where the vector
potential A' is derived from the Hertz" potential
A'= B„II", II"'=-II'" which is itself a local field."
The basic reason is dimensional: if A'(x)A'(0)
-x ', then II'(x)ll'(0) -lnp, 'x' and a logarithmic
function and scale-breaking parameter have en-
tered the theory. Because II"" is an antisymmetrie
field, it is convenient, but not essential, to derive
it from another vector potential II,„=B„U„—B„U„.
Regarding A" as the father of the field E,„=B„A„
—B„A„and the Hertz potential II,„as the father
of A and hence the grandfather of the field, E, we
may call II the "grandfather potential" and U the
"great grandfather potential. " In Sec. III, the
free Wightman function (A„(x)U„(0))-g„„ln(- p.'x'
+ibex') is found. The appearance of the logarithm
and the parameter p, with dimensions of mass
signify spontaneous breakdown of scale invariance.
In Sec. IV the photon propagator (l.lb) is obtained
by Fourier transform. In Sec. V the reconstruc-
tion principle is employed to answer the question
"+That is a photon'P" The photon inner product
(1.8) is found, and its kernel K(u„u, ) is evaluated
in the Appendix, where the Lorentz invariance
of (1.8) is also demonstrated. In Sec. VI, the S
matrix is defined and the contribution of the zero-
frequency photons is found exactly. Section VII
is devoted to the physical. subspace and Sec. VIII
contains some concluding remarks. For an ap-
plication of the method we refer the reader to an
accompanying article where the spectral compo-
sition of coherent bremsstrahlung radiation is
calculated nonperturbatively.
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II. GRANDFATHER AND GREAT GRANDFATHER

POTENTIALS

The Maxwell-Dirac Lagrangian density in first-
order form

H„„=B„I„-a„I„.
In fact, on varying the Lagrangian density

Z=Z +Z, +g

(2.6b)

(2.7)

with respect to H, C, I, E, A, II, U, and g in
turn we obtain

+ ,'E'"Jl-„„+P(if+ eg -m)$ (2.1)

does not provide an equation of motion for A . A
conventional remedy is to add a term which breaks
the classical gauge symmetry, A -A„+8 A,
E„„-E,„, P - P exp(ieA), where A = A(x) is an
arbitrary function of space-time. Making a virtue
of necessity, we may tailor the symmetry-break-
ing term to ensure that A is derived from the Hertz,
or grandfather potential II'"= -II"",

B„U„—B„U

e.U=O,

Ilu v Av

8 A.„—BvA =F„„,
e /vP I P

s(yves

B„Iv—B„I„=H„,
8 H""=8"C,

(if+ eg —m)$= 0.

(2.8)

(2.9)

(2.10}

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
A"=8 II"". (2.2)

I„(A"—e, II-'") (2.3)

to 2», where I„and II'" are new fields that are
varied independently, we obtain Eq. (2.2) as an
equation of motion, but II'~ is left undetermined.
A convenient remedy" is to add the further term

2, = --,'H'"[(e, U„- e„U,) Il„„j+C a„U", (2.4)

where Uv, H „=-H„„,and C are again new fields
that are varied independently. Although it seems
that a plethora of new fields are introduced, it
turns out that II„„,A„, and F„„are all derived
from the one-vector field Uv which is the grea. t
grandf ather potential

On dimensional grounds we expect that the free
propagator II'II will have the logarithmic form
-lnp. 'x' and thereby depend on the mass parameter
p, . If we add

so the divergence of Eq. (2.12) reads

e I'=0 (2.17)

Observe that Eq. (2.8) gives U, and fixes II,~ by
constraints, Eq. (2.9}gives U„Eq. (2.10) gives
Ilo' and fixes A' by constraint, Eq. (2.11) gives
A, and fixes E,~ by constraint, Eq. (2.12) gives
P" and fixes I by constraint, Eq. (2.13) gives
I, and fixes H„by constra. int, Eq. (2.14) gives
H"' and C, and Eq. (2.15) gives ( which accounts
for all fields. Apart from P and ( there are thus
ten pair of canonical variables A' and F", I' and
II", U' and H", U' and C, whereas A', F'~, I',
II'&, and H'~ are fixed by constraints.

These 10 pair (20 variables) reduce to the 2

pair (4 variables) which describe physical pho-
tons, as follows. The equation for ( implies con-
servation of the electric current 8„=-eely g,

(2.16)

II„„=B„U„B„U„,
Av 8 Iluv 82Uv

(2.5a)

(2.5b)

and the divergence of Eq. (2.14) reads

8'C = 0. (2.18)

Z, „=e„A„-e„A„=e'rr„„= a'(a. U, —e„U„), (2.5c)
Thus C is a. free massless field. Substitution of
Eqs. (2.12) and (2.17) into Eq. (2.14) gives

and that I„, H„v, and C are free fields which van-
ish on the physical subspace. As further simpli-
fying elements, the vector fields turn out to be
transverse, "

8 Iv= BvC . (2.19)

a U=B.A=e ~ I=O (2,.6a)

and the tensor fields are the curls of the vector
fields

The last three equations describe a free massless
transverse vector field. (If, in the last three
equations, Iv were replaced by A„ they would be
the equations satisfied by the free vector poten-
tial in the Landau gauge). Suppose first that the
fields are classical and that at t=0 the following
eight classical dynamical variables vanish, I '
= H ' = C = 8 F' —J = 0, the last condition ex-
pressing Gauss's law. Then, by the constraints
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I,= H, z
= 0 at t = 0 and, by the equations of motion,

C =I, = 0 at t =0 and by Eq. (2.17), I,=0 at i = 0.
It follows from Eq. (2.18) that C = 0 at all times
and thus from Eq. (2.19), I„=0 at all times, and
hence also H, „=0 for al1. t. Thus the eight clas-
sical variables vanish at all times if they vanish
at t=O. Let their vanishing be imposed as a sub-
sidiary condition. It guarantees the validity of
Maxwell's equations and reduces the degrees of
freedom from 20 to 12. The quantum-mechanical
analog of this condition is the requirement that
physical states be annihilated by the negative-
frequency part of I„,

I&-&(x)C =0, (2.20)

which implies that I„, H, „, and C vanish between
physical states. This condition is covariant since,
by Eq. (2.18) and (2.19), O'O'I„=O, so I„has sup-
port only on the light cone in momentum space.
The vertex of the light cone will be examined in
detail in Sec. 7, and positivity in Sec. VII.

In the following sections we will consider only
states which, in their dependence on photon vari-
ables, are obtained by applying functions of
A(j) = f A, (x)j (x)d4x to the vacuum, where j"(x)
is a transverse vector test function, 8, j"(x}=0.
The subsidiary condition (2.20) will be satisfied
because the commutator [I„(x),A„(j)] is propor-
tional to 8 j=0, in virtue of Eq. (2.30b), below.

A further reduction in degrees of freedom comes
from the restricted gauge invariance of the second
kind, of the Lagrangian Z. Observe that 2, is in-
variant under

a M"=0
p.

BM„=B A,

which i:mply

(2.22 a)

(2.22b)

(2.22c)

[C(x), U'(y)] = -i6'(X —y),

(2.23a)

(2.23b)

the other equal-time commutators of the canoni-
cal variables being zero. Because C, I„and
H„„are free their commutators with all fields
for arbitrary space-time intervals may be found
using the field equations. From C = 8, H" and
O'C=0 we find

[C(x), U. (y)]=-iO, D(x-y) (2.24)

These last three equations again describe a free
massless transverse vector field, like I„. It has
8 independent variables (which may be taken to be
M„M„M„and A). Thus, of the 12 degrees of
freedom which remain after the eight subsidiary
conditions are imposed, another eight describe
a gauge freedom and only four, two pair, are
physically meaningful, as required. Observables,
by definition, must be invariant under the gauge
transformations (2.21).

The ten pair of canonical variables satisfy ten
nonvanishing equal-time canonical commutation
relations,

[E (x) A (y}]=[H (x) I'(y)]
= [H"(x), U~(y)] = -i6&&6'(x —y),

U, -U„+M, ,

& „+8 M„—e„M

. H „H„„,
C C,

(2.21a)

{2.21b)

(2.21c)

(2.21d) D(x) = (2n) '6(x') sgn(x') . (2.25b)

and that C commutes with all other fields.
Here D(x) is the Pauli-Jordan function satisfying

O'D(x) = 0, D(0, X) = 0, D(0,x)= 6'(x), (2.25a)

A.„A +8 A,

I~ I„,
(2.21e)

(2.21f)

provided also O'M„= B, A, and S„D is invariant
under this and

provided the classical vector function M, satis-
fies 8 M" =0, and that 2, is invariant under sub-
stitution (2.21b) and

O'E(x) =D(x), E(0, x) =E(0, x) =0,
with explicit form

(2.26a)

From O'I (x) = O„C(x) we conclude that the com-
mutator of I with II, A, E, I, H, C, and g satis-
fies the wave equation as does [I,(x), U„(y)]
+iO O„E(x-y). Here E(x) is the invariant func-
tion defined by

P- (exp{ieA) .
(2.21g)

(2.21h)

E(x) = (8m) '8(x') sgn(x'),

and the properties

O'O'E (x) =E (0, x) = 0, E(0, x) = 6'(x) .

(2.26b)

(2.26c)

The total Lagrangian density 2 is thus invariant
under the restricted gauge transformations of the
second kind defined by Eqs. (2.21), provided the
gauge functions M„and A satisfy the restrictions

[J'(x), 4(y)] = 86'(x - y)4(y),

we have

(2.27)

From the constraint I'= B,E' —J' and the equal-
time commutator of the charge density
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[I'(x), g(y)] = -e6(x —y)q(y), (2.28)

and, using the canonical commutators and 8 ~ I= 0,

with the property

(B')4G = O. (3.6c)

Finally, from O'U„=A.„, we have

[I.(x),a„(y)]= -ie„e„D(x—y) .

Similarly,

(2.30b)

[I (x), g(y)] = e-a D(x -y)g(y), (2.29)

[I.(x), U„(y)]= i[g..D(x —y) —B.B.Z(x —y)].
(2.30a)

U(x) = U' '(x)+ U"(x),
U"(x) = U'-'(x)',

(3.7a)

(3.7b)

We shall now construct Wightman functions sat-
isfying these commutation relations. They will
be characterized by an invariant decomposition
of U(x) [whose support in momentum space lies
on the light cone, (B')'U(x) = 0] into positive- and
negative-frequency parts

[I„(x),I„(y)]= 0

follows from

(2.30c) and an invariant vacuum state Q, unique to within
a phase, which is annihilated by the negative-
frequency part of U(x),

Av IV+ Jv. (2.31)
U&-)(x)n = O. (3.8)

Benormalization must be effected in such a way
that these commutators of the free fields I„, II„„
= 9, I„—B„I, and C are maintained for the re-
normalized Heisenberg fields. For the remaining
fields a perturbative procedure is necessary.

924 =I
V V (3.1)

and it follows from the commutator (2.30a) that

[W„(x),U„(y)] —i[g„„Z(x—y) —B„B„E(x—y)]

satisfies the wave equation. Here E(x) is the in-
variant function defined by

B'E(x) = F. (x), E(0, x) =F (0, x) = 0, (3.2a)

with solution

E(x)= (64m) 'x'a(x') sgnx'. (3.2b)

From B'U„(y)=A„(y) we obtain

[A„(x),A„(y)]= i[g„„D(x-y) —B„B„E(x—y)],

(3.3)

which, together with the equal-time commutation
relations, gives

III. SPONTANEOUS SCALE BREAKING

To initiate a perturbative procedure, we set the
electric charge to zero, e=o. Equation (2.31)
becomes

As a first step we introduce a decomposition of
the invariant functions into positive- and negative-
frequency parts, starting with G(x):

G(x) = G' '(x)+ G"(x),
C&'(x) =G& &(x)~,

(3.9a)

(3.9b)

E(k)(x) B2G(k)( ) (3.10)

F' '(x) = (128m i) 'x' ln(- p, 'x'+ iex 0), (3.11a)

E&'(x) = E&-&(x}",

p
2 ~ 2e "5/6

(3.11b)

(3.12)

The commutators of U"(x) and U' '(x) are de-
termined to within a polynomial by Eq. (3 5)
natural choice for these commutators is

G' '(x) = (30727('i) '(x')' ln( —(((,'x'+ icx') . (3.9c)

We have chosen an arbitrary scale of length p., '
(reserving p, , for use shortly) in order to make
the logarithm well defined. A change in the value
of p would add to G' '(x) a term proportional to
(x')' and subtract it from G"(x). Such a term,
as indeed any polynomial in (x ) is left indeter-
minate by the separation into positive- and nega-
tive-frequency parts, since it has support at the
origin in momentum space. The decomposition of
G(x} induces a corresponding decomposition of
E(x)= 82G, by

G(x) = (1536(() '(x')38(x ') sgn(x 0), (3.6b)

[&,(x), U„(y)]= i[g,„Z(x-y) —a, a„E(x-y)], (3.4)

and similarly

[U„(x),U„(y)]= i[g,„F(x-y) —B„e„c(x-y)]. (3 5)

Here G(x) is the invariant function defined by

a'G(x) =E(x}, G(0, x) =G(0, %) =0, (3.6a)

[U'-'(x), U'-'(y)] = [U"(x), U"(y)] = O, (3.13a)

[U'. '(.), U!'(y)]=i[g..F' '(x-y) —B.e.c' '( -y)].

(3.13b) .

This completely determines all the Wightman func-
tions of the field U, for the generic Wightman func-
tion or vacuum expectation value
(0, U»(x, ) ~ ~ ~ U„,(x„)Q) is found by commuting all
U' '(x) to the right and all U' (x) to the left. The
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result is the Wightman functions of the generalized
free field with two-point function,

is clear on dimensional grounds that this wi11 hap-
pen in any theory in which A is the derivative of
a higher-order potential.

W.„'v(x -y) =-(n, U„(x)U„(y)n),

W,„v(x)=i[g,„E( '(x) —B„B„G('(x)],

W, „vv(x) = (1287)') '[g„~' ln(-t(, ,'x'+ibex')

(3.14)

(3.15a)

IV. PHOTON PROPAGATOR AND ELIMINATION

OF VIRTUAL INFRARED DIVERGENCES

The time-ordered product follows directly from
the Wightman function (3.17),

—s„s„(24)-'(x')'

xln(- p,,'x'+ i&x')] . (3.15b)

W.„~(x—y) =-(n, A. (x)U„(y)n)

-=s„2w„„"(x—y),

W, „"v(x)=(16v')-'[g, „ln(- p, 'x'+ i&x')

(3.16a)

(3.16b)

—s„s„8 'x'ln(- p, 'x'+ iex')].

The Wightman functions of the other fields are
obtained by differentiatron, in particular

T„„"'(x-y) =(n, r[A„(x)U„(y)]n), (4.1)

T„," (x) =(16s') '[g„„ln(-p'x'+ie)
—&„&,8 'x'ln(-g, 'x'+is)], (4.2)

where IU,,'=e ' 'p.'.
As a preliminary step to finding the momentum-

space propagator, it is convenient to calculate the
Fourier transform

I ()) =-f d xe' '*)n(-g'x'+is)

(3.17)
Here we have introduced the mass p, , related to

1 by

,, „ ln(-p, 'x'+is)
=p ~~ d xe

( v, x +tE)

We rewrite this as

(4.3)

p2e 3/2 (3.18)

U (x)-s 'U, (sx),

rr„„(x)- ll„„(sx),

A„(x)-sA„(sx),
I' „,(x)-s'P„,(sx),

E„(x)- s't„(sx),

e„„(x)- s'H„, (sx),

C(x) - s'C(sx),

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.19e)

(3.19f)

(3.19g)

A representation of the free fields may be ob-
tained from these Wightman functions by the re-
construction theorem" modified, because of lack
of positivity, as effected previously in a model
quantum electrodynamics. " In Sec. 7 this will
be done for the physically relevant subspace ob-
tained by applying functions of A(j) = J A, j'd'x,
a j=0, to the vacuum. Although the field U„does
not appear explicitly in A(j), it is implicit, be-
cause A is the weak derivative A„= O'U„.

The action S= J Zd'x corresponding to the La-
grangian (2.7) (with e =0) is invariant under the
scale transformation

L, (k) = p.'s, ' lim —1(k, v),
p p ~t'

(4.4)

I(l, v) f d'xe' '*(-u,'x'+iE)" '

ej (U-1) r/2 d 4~e'tk~x ~ + g~2~2 &-1

ei (u-1) 7r/2

ds s-v d4 ik.xe-iP x s
1'(1—v)

e'"/' " ds s-"
( )

s' ~ ), exp(ik'/4p, 's)

e j V7I /2 2

dt t'e px[-(e —ik'/4p, ')t],
1 (1 —v) p.

'

(4.5)

with

( )
I'(1+v) (-t)16m'a, '
r(1 —v) (-a,'k' —ie)"" ' (4.6)

a, -=(2q)-' . (4.7)

This allows I.(k) to be written in the alternative
forms~

where v may approach zero from above or below,
and

and thus, so are the field equations. However, the
Wightman functions clearly are not, due to the
ln( —p,'x') dependence. Thus the occurrence of the
parameter p with the dimensions of mass reveals
a spontaneous breakdown of scale invarianee. It

S, ' 1(1+v) 16))' ar(k) =lim —(u(u+1), . . .&.
'. ).+.)p~ p Bp I' (y —p/ y

—gp

or

(4.8)
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4 2 ~

I.(k) =e, )n(-e ia k —ie)),(-k' —ie)
8'"

gk)= k„(( k. ), )n(-e'« 'a, 'k' —ie)),

(4.9a)

(4.9b)

where y = —f,"dt e 'lnt is Euler's constant. If
one effects the operation lim„, s/sv in Eq. (4.8),
one obtains L(k) = 16~ i(-k' —ie) ' which cannot be
the correct Fourier transform of In(-p, 'x -ie),

since it is independent of p,. However, it is a very
convenient representation if used as in analytic
renormalization; namely one integrates first over
k and then effects Iim„,s/Bv. Similarly, in for
mula (4.9) L(k) is understood to be a distribution
and the derivative gets applied to the function it is
integrated over.

With this result we find for the Fourier trans-
form of P' (x), Eq. (4.2),

or

a'e„" (k)= fe" Te "('x*)d'x„,

~U k)kk„. a . I'(1+ v) a,'
-k —ze V~0 Bv F(1 —vj (-a k' —zan) ( 0k'

„v kk, l ~), k
&e (k)= Xe, +

k
' «} —,i, , )n(- —,a k —ie)),-k —ie J sk i -k —ie

(4.10)

(4.11)

(4.12)

where

a =2a.ey-l/2 = ey-1/2/ -1

The subscript I) signifies weak derivative.
Only the photon propagator D„„(k)-=T„,""(k) is required. From A„(x) =O'U„(x), one has D„,(k)

k'T„," (k)-, namely

(4.13)

V 0
(4.14)

or

D, (k)=(-(;e„k'eke„k.)( «) (~, , !n(- a'k*-ie)) . (4.15)

If the operations lim, ,s/sv or s/sk were effected
before integration one would obtain

D),(k)=( 2 . )2 (-g„„k'+k„k,),

which is the standard expression for the photon
propagator in the Landau gauge that, however,
leads to virtual infrared divergences.

For a simple example of the elimination of these
divergences by the propagator (4.15), consider the
on-shell electron vertex function

eu(P')(F, .(P)y" +F„(q)(4m) '[k', y" ]fu(P), (4.16)

where the form factors F,(g) and F ()t)) are func-
tions of the hyperbolic angle g ~ 0 defined by

en

( )=)n1 -i)- —)) [)n(-', a«n) --', ]
n . tanhg

(((t)) —2tt(~/2) 1 t

tanhg 2 ~ tanh(g/2)

(4.18a)

(4.18b)

where

(4.19)

This result holds" for any finite value of the pa-
rameter a. The photon-mass method gives a
charge vertex function of the form

(p' -p)' = —2m'(cosh' —1) . (4.17) F,(X, g) = A(g) + B(p) Ink + 0(A,), (4.20)

In zeroth order, g, =1 and I =0. From the tri-
angle graph, using the propagator (4.15), one finds

where the last term vanishes as X goes to zero.
Only after the last term is dropped do the two ex-
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pressions agree" provided

x '=a/2. (4.21)

V. %HAT IS A PHOTON~

In this section it will be seen how the correct
one-photon states eliminate real infrared diver-
gences. Our main tool will be the reconstruction
principle which resurrects the states buried in
the Wightman functions found in Sec. III. It is not
our purpose to construct a representation of all
the nonphysical degrees of freedom counted in
Sec. II, but to proceed as rapidly as possible to
the physical states.

In this section, as in the last two, A„(x) desig-
nates a free field, in the sense that its commutator
is a c number. Here it should be thought of as the
in or out field A or A'"' and the states we find
will populate the in or out asymptotic state spaces.

Because A„(x) is a free field, it is sufficient to
consider the one-quantum states. The many-quan-
tum states may be obtained as symmetrized pro-
ducts of one-quantum states. The one-quantum
states of interest are spanned, using complex co-
efficients, by vectors of the form

A(j)a, (5.1)

where Q is the vacuum state, unique to within a
phase,

du) fd, (x)jv(x)=d x, ' (5.2)

and j (x) is a real C" test function, which is inter-
preted as an electric current, and is conserved

t

s„j"(x) = 0 .
Because the corresponding charge

q(t) fj'(t, x)d'x=

(5.8)

(5.4)

is a constant, q(t) =q(+~) =q, j"(x) cannot be of fast
decrease in all directions of 'space-time for non-
zero charge. This conclusion holds also if q = 0
but j"(x) describes separation of charge, as in ion-
ization of a neutral atom, with positive and nega-
tive charges ultimately traveling off in different
directions. To allow for these physical situations,

This equality is somewhat misleading because a
is a finite parameter whereas the agreement holds
only after terms which vanish with A. are dropped.
A more precise statement is that the A. -0 limit
of massive vector-. meson theory contains a finite
parameter with dimensions of mass. Its role here
is. dimensional transmutation. ' For the logarithms
which appear in each order of perturbation theory
sum to an anomalous power. lim Z'j" (Zx) =0, x' 0

g-+ oo

(5.5a.)

M"p.(~)= (,),~, , x ~ 0, + x') 0 (5.5b)

exist, where p, (u) may, and usually will, be a dis-
tribution, and u" —= (sgnx')x'(x') '~', defined for
x'& 0, is a four-velocity, namely a unit future four-
vector. The upper and lower signs refer to the
asymptotically distant future and past. The mo-
tivation for this hypothesis is that the matrix ele-
ments of the quantum-mechanical current opera-
tor have this property. "

Upon change of variable, x = vt, Eq. (5.4) gives

q(t) f (t('j "(t, tv)d'v

and so, with Eq. (5.5),

q q(v ) f=', , =ll v, 'p, (u)
2)2

where u~ =(u', u) = (1 —v ) '~'(1, v), or

d Q
R, u p

with u'= (u'+1)'j'. Because (M') 'd'u is the in-
variant volume element on the unit hyperboloid,
p, (u) represents the asymptotic charge density
per invariant volume in velocity space. For ex-
ample, if, at asymptotic times, the charge is car-
ried by an extended particle with asymptotic four-
velocity u& or u, then

p, (I) =qu'5'(u - u~, ) . (5.'l)

The behavior at large x" described by Eq. (5.5)
implies a singularity of a precise nature at the
origin in momentum space. Let

(5.8)

be the Fourier transform of j"(x), satisfying
k.j(k) =0, and consider

!im Vj"(q q) = )im f Vj"(x)v' "'*d x .
T)-+ p I)~P

On making the change of variable x' =qx, one has

the assumption of fast decrease is replaced by
what may be called the charge-scattering hypothe-
sis. Namely, we suppose instead that in asymp-
totically distant regions of space-time, the current
j (x) describes a fluid in uniform rectilinear mo-
tion with material velocity v, less than that of
light, and impact parameter negligible compared
to vt, so the asymptotic motion is given by x= vt.
These conditions are summarized in the require-
ment that the limit
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3

)xmi)je(ate)=f)im —
) je —e" i('x'

T|~ p 0

d'x8(x')(x') '~'e""
0

2 ~

~

3 2 ia k I~

0x u" [8(x')p, (u}+8(-x')p (u)],

where u" =+ xv(x') 'y'. Changing variables accord-
ing to x" =+ flu", one has

lim qj"(qk)
-q~0

u" dR[e' "'"p, (u)+e '~'"p (u)],
d Q p

0

(5.9)

Q E —2k Q &+2kQJ

which gives the form of the singularity at k = 0.
If k lies inside or on the light cone, the denomina-
tors do not vanish, and one has simply

where

eye„(x) =(1e) f )ye„(d)e ' '*d d. (5.16)

For W„„(k) we may use our previous result for
the propagator D„„(k),E(l. (4.14), with

g [(1)(k) D]))y(k)+ D])11(k)— (5.17)

where the discontinuity is evaluated along the
right-hand axis of the k' plane. This gives

W](„(k) = (-g[(„k'+k](k,)

8 F(1+v} a, 8(k' —lk I)x lim —-2 sin(wv) v(v+ 1),1, ', ,k,)„„
u 08V

(5.18)

and thus, using current conservation,

8(j„jg=lim(2w) '—
v~0 BV

Q" d3
lim ]7j"(]7k) =i p(u) —,
g~p Q k Q

where

p(u) -=p+(u) -p (u),

p(u) =lim x'[u j(xu) —u j(-xu)].

(5.10)

(5.11a)

(5.1lb)

-sinwv
( 1}

I'(1+v)
( ))~

)[ I'(1 —v) j '

(5.19a)

where

J (v) —= a()' d 'k
2 , „,j ). *(k)(-g]),)j;(k) .

The quantity p(u) will be very important in the fol-
lowing. It represents the net scattering of elec-
tric charge, per invariant volume element in vel-
ocity space, in the flow j"(x) and will be called
the "charge-scattering function. " It satisfies

(5.19b)

Our immediate goal is to rewrite this so it is
clear that only values of k on the future light cone
contribute. To this end we introduce as variables
of integration

Qp(u), =0,
Q

(5.12) k" =(&(), (d)vk), (1)) 0, 0(v(1,
which represents equality of initial and final total
charge Cor. responding to the example (5.7), one
has

00 1

d(v)=a,*fd)e dmie' dvv*[a, *m ((.-v')] ' "
0 0

x jg (k)(-g[d,)i2(k) ~

p (u) =qu'[5'(u —u~) —5'(u —u,.)],
Qg Q.

lim ]U" (qk) = iq
Q&k Q,. k

(5.13a)

(5.13b)

(5.20)

Assuming v(0 we may integrate by parts on v'
and 5 q

The inner product (A(j,)n, A(j, )n) defines a Her-
mitian symmetric form on the currents (j„jg
=(j„j,) * whose kernel is the two-point Wightman
function

(5.14a)

(j„yg fd xd yje (x)W„=(x y')j(y ), (5.1-4„b)— ",

(5.14c)

In momentum space this reads

(5.15)

1
d(v) = . fdk dm' d [((—v'v)]a''v, '

4v2 0 0

(5.21)

where

(5.22)

For the limit v-0 in E[l. (5.19a) it will be suffi-
cient to put

[ao (d)'(1 —v')] "=1 —v ln[-,'(1 —v')] —v ln4ao'[d)',

(5.23)
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and so

2 = -1"(1) = —f e ' lns ds .
Q

(5.25)

We thus find from Eq. (5.19)
1

(j„jg= ,'(2n) —' dk dv ln[—,'(1 —v')]—G(k)

8—2 dts (nate —G(k) „-,I,0

(5.26)

where

(5.27)

Recall that k" = (&u, (vvk), so the first term has its
suppport at the vertex of the cone and the second
is on the mantle of the cone with + the convention-
al photon frequency.

The function

1

J(v) =-, dk v dv ln[—,'(1 —v')]—G(k)2
0

00 8
dtv(1 —2v)nka„tv] —Q(k) „,I.840

(5.24)

To the same order in v we have

I'(1+ v) sin))v-v(v+1) —=-v'(1+v —2yv),I'(1 —v)

where y is Euler's constant

defined on the mantle ofe the future cone, is the con-
ventional photon wave function. The second term
in Eq. (5.26) is a sesquilinear form on the photon
wave functions given by

8((5„5$-=— f dk dtvlnats
0 (d

(5.29)

If the wave functions were regular at z =0 an in-
tegration by parts would give

de —u,'* k guv 2- k,
0

which is the conventional inner product. They are
not regular at co = 0, for. we have, rather, from
Eq. (5.10),

z t
u" d'u

lim [(d(p" (k)]=
2 ),j, Jt, kp(u), , (5.30)

and the conventional inner product is divergent.
However, the inner product (5.29) is finite.

Because k" = (cu, ~vk), the first term in Eq. (5.26)
depends only on the zero energy and momentum
limit of the currents, and thus, by the asymptotic
limit (5.10), it is bilinear form on the charge de-
fect functions

1

(p„pg =- (2)]) ' dk dvln[-,'(1 —v')]—
. 0 ~V

x [v(v'j,"*(k)

x (-g„,)j;(k)]I.=. , (5.31)

kt
"(k) =- (2m)

'~'j"(k) I,o g ~

= (2s) V' .fe' '*js(s)d s), (s(, (5.28)

(p pd = ' ' p(u)K(u u.)p(u.),dg~ d

Q~ Q2

with kernel

(5.32)

1 1 - ', , 8 v(-u, u, )je( )=—
(

a ),a„dk dv)n(-,'(1 —v')]—(, „-)'( .' -)) .
0

(5.33)

By rotational invariance, K(u„u, ) is a function of
three hyperbolic angles K(~2~»~')

(2 )' t

K(u„u, ) = K(g, $„)ij,)
defined by

(5.34a)

u,'= cosh/„ u,'= cosh]i)„ u, u, = cosh]f, (5.34b)

which may be chosen to be non-negative, and which
form the three sides of a hyperbolic triangle. .The
integral is evaluated in the Appendix, with the re-
sult

where

x
R(q) -=dr

(5.35)

(5.36)
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This explicit expression for K gives a large part
of the radiative corrections . The latter part of
the Appendix is devoted to the Lorentz transfor-
mation properties of (p„pg and (()()„Qg.

The principal result of this section may now be
stated, namely (j»j g —= (A(j,)Q, A(j,)» is given by

(A(j,)~,A(j,)» = &p„p2 (e„ed, (5.3 7)

AU)n = P'"' ~

y" (k))

The second wave function,

(5.38)

de(k)=(2x) '' fee(, [((ielx —(; x)lj"e(x)d'x,

where the two inner products on the right- hand
side are defined in Eqs. (5.32) and (5.29). Accord-
ing to the reconstruction principle, the state A(j)Q
is the equivalence class of test functions, modulo
test functions orthogonal to all test functions. "
Equation (5.37) shows that the equivalence classes,
and thus the states, may be characterized by the
pair of functions p(u) and Q" (k), which are thus the
wave functions of the state A.(j), and we may write

The many -particle sta,te s are obtained from the
one -particle states by the method of second q uan-
ti zation. Let 0 be the vacuum state, unique to
within a phase, and let a~(P) and at(p) be creation
operators for radiation photons and zer o-frequen-
cy photons, where P and p are radiation-photon
and zero-f requency-photon wave functions. They
satisfy

(6.1)a~(())))Q =a, (p)Q = 0,

[a,(4 ), a,(y.)] = &(t)„yg,

[a,(p,), at (p,)]=(p„pg,
where (P„Qg and (p„pg are the inner products
defined previously, Eqs (5.29) and (5.32), and the
remaining commutators vanish.

The free (in or out) vector potential,

(6.2)

(6.3)

from the regularization of infrared divergent in-
tegrals by what is, in structure, a linear substrac-
tion. On the coherent states the regularization is
multiplicative, and hence maintains positivity.

VI. THE S MATRIX

is the familiar photon wave function, although the
inner product (P„(t)g, Eq. (5.29), is a regula. rized
one. Because of transve rsality, the wave func-
tions P„(k) and P„(k)+kg(k) are equivalent, so
g„(k) represents two degrees of polarization, a,s
usual. The wave function p(u), given by Eq. (5.11b)
is the charge-scattering function of the flow j"(x).
It is the wave function of a quantum whose energy-
momentum four -vector is strictly zero, but which
carries four-dimensional angular momentum. It
is a remnant of the third degree of polarization
of massive vector mesons. To distinguish the two

types of photons, we may call the photons described
by P" (k) "radiation photons, " since they are the
familiar q uanta of radiation, and the q uanta de-
scribed by the charge- scattering function "zero-
frequency photons" since they carry no energy or mo-
mentum. The generic one -photon state may thus be
said to be a direct sum of a radiation-photon and

a zero-frequency-photon state.
We have been using the term "state" to designate

any vector in the representation space of the
fields, which is an indefinite-metric space. To ob-
tain physical states which are elements of a posi-
tive-metric space, we turn to the many-particle
space, and seek positive-metric subspaces. How-

ever, we wish to emphasize that the indefiniteness
of the inner product (5.37) does not arise as in the
usual Gupta-Bleuler' formal- sm from the indef-
initeness of the Minkowski metric. [This has been
overcome by the transversality condition k„j"(k)
= 0, which implies k„P"(k) = 0.] Instead it comes

(6.4)

is represented by

A(j) =a„(Q) +a,'(p)+a~(y)+a, (p), (6.5)

where the wave functions are expressed in terms
of j by Eqs. (5.11b) and (5.28). This provides an
invariant decomposition of A(j) into creation and
annihilation parts

A(j) =A'(j) +A (j), (6.6)

A (j) =ay(e) +a,(p)

A (j) = [A (j)], each of which is invariantly de-
composed into radiation-photon and zero-f req uen-
cy-photon parts.

Scattering of electromagnetic radiation by a
given external classical current j"(x) is described
by the scattering operator

d(j)=xexp —( Jde(x)j"(x)d'x (6.8)

which by the usual Wick ordering may be ex-
pressed as

()(j) = C(j) exp[-iA (j)]exp[-iA (j)], . (6.9)
~e'

C(j) =exp ——,
' j"(x)Dq„(x y)j"(y)d'xd'y-

e

(6.10)

To separate out zero-frequency- photon coordinates
we decompose A (j) according to A-(j)
=a&(p) +a,(p), when P and p are expressed in terms



3626 DANIEL ZWAWZIGER 19

U~(p) = exp{-i[a,(p) + a, (p)]} (6.12)

is a pseudounitary operator depending only on the
zero-frequency-photon coordinates. This pro-
vides a factorization of the scattering operator
into a radiation factor and a zero-frequency-pho-
ton factor, each of which is separately pseudo-
unitary,

s(j) =s,(j)U. (p) . (6.13)

of j by Eqs. (5.11b) and (5.28), and similarly for
A'(j), and write

exp[—ia, (p)]exp[-ia, (p)] =e xp[ 2(p, p)]U, (p),
(6.11)

where

S = T exp —i J„A"d'x (6.16)

where the current J& is expressed in terms of the
free Dirac spinor field g,

J)) =-eely)) g . (6.17)

(The generalization to more than one type of
charged particle is clear. ) Wick's theorem for
the A field gives

U, (p) may be ignored and we may identify Sz(j) as
the physical scattering operator. In the photon-
mass formalism, the contribution of U, (p) would
be eliminated in the sum over final undetectable
photons of zero frequency.

Consider now the quantum-electrodynamical
scattering operator

Here

S~(j) = Cz(j ) exp[-ia~()p)] exp[- iaz()p)],

with

(6.14) S=T~ exp --,' J" xa„„x-yJ' y d'xd'y

C,(j)= exp(-,'& p, p&)

xexp ——,
' j" x D» x-y j" y d'xd'y

(6.15)

is a pseudounitary operator depending only on pho-
ton coordinates. The state of the zero-frequency
photons is a matter of supreme indifference be-
cause they carry no momentum or energy, so

xexp —i J Apd x

x exp -i J"A&d x (6.18)

where the time-ordering symbol T& acts only on
the g and g fields. Here the exponentials are ex-
panded in power series and subsequently time
ordered in J. It is convenient to take matrix ele-
ments of S between initial and final charged par-
ticle states, each such matrix element being an
operator on the states of the electromagnetic field,

(p„~,)sip,.~) =()„ef T)Iexp --,' fz" (x)D„(x ))J (y)d'x„d')-'
I

xexp —i J"A&d'x exp -i J"A„d'x p, , e,. (6.19)

wherep, , e,. (pz, e&) represent the momenta and
charges of the initial (final) charged particles.

For these matrix elements, as for the classical
current, we may factor out a pseudounitary opera-
tor depending only on zero-frequency-photon co-
ordinates. These appear only in the factor

exp —i J„A" d'x =exp -iA& J exp -iA, J
(6.21)

where

come contractions with c-number functions, then
the replacements A (J').-a&()t)) and A, (J)-g,(p)
are effected.

We first demonstrate that in the matrix element
of,the T& product

exp[- iA, (Z)] = exp[- ia,(p~,)],

(6.20) pp, (u) = Q e,5'(u —p, /m, )u' (6.22)

and its Hermitian conjugate. Here the notation
means that, after the J's are time ordered and the
matrix element taken so A~(J) and A, (8) have be-

and a is an index that runs over initial and final
particles, with e, = -e, when a refers to an initial
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particle and e, =+e& when a refers to a final
particle, so

p, ,(u) =u' e~53(u p,-/m, ) -ge,.53(u p, /m, .) .
i

(6.23}

Note that A, (J) depends on the current J'(x) only
through the asymptotic charge-density operator

p(u) = lim&3[u ~ J(Au) -u J(-au}], (6.24)
gv OO

where I is a unit future timelike vector. Because
of the T~ product, as A, approaches infinity, J(Xu)
gets moved to the left in the matrix element up
against (Pz, eel and J(-Au) gets moved to the right
up against lp, , e,.). Moreover the current assumes
an asymptotic form in the limit '3

lim &'u ~ J(d)u)
)t ~ ce

= —e Jl ~@
Q[b', (p)b, (p)

—d', Q)d, (t))]5'(u —p/m)u', (6.25)

where b, (P) and d, Q) are annihilation operators of
electrons and positrons. The states lp, , e,) are
eigenstates of this operator with eigenvalue

e,.b'(u —p, /m)u' (6.26)

and likewise for i -f, and Eq. (6.21) is thereby
established. The desired factorization of zero-
frequency-photon variables now follows as for the
classical external current and we have

sip ')=(p. e~l~lp; e). U( .p,.) (6.»)

where

U, [p, .]= exp[- ia'(p, .) —ia(p, ,)] (6.28)

as before, and the scattering operator on radiation
variables is

exldlP e)„=exP —'Pe, ee3{e„e,) Pi , e
l

xereP —' f'4 (x)P, (x——P)d(P)d„xd P

{

xexp(—i A dd xe„xp( —'ifAex d„d x P, , e,, (6.29)

Here we have used Eqs. (5.32) and (6.22) for
(p(, 4)) pp, e)

(p~„p~,)=pe, e ~(„uu). (6.30)
a, b

Again U, (p&, ) is a, pseudounitary operator that may
be dropped as a matter of indifference, "and the
physical scattering operator is identified with

(t '„(k)-=lim (dg "((d, 0), ("l.2)

is expressible in terms of the related zero-fre-
quency-photon wave function

a,(p)y, = 0.
'This states that all zero-f requency-photon wave
functions vanish identically. According to Eq.
(5.30), the residue of a radiation-photon wave
function at zero f requency,

VII. PHYSICAL SUBSPACE

The representation space of the electromagnetic
field, 4, generated from the vacuum by applying
the creation operators of radiation photons a' ((4))

and of zero-frequency photons a,'(p), has an

indefinite metric. However, the old familiar
space of (radiation) photons with square inte-
grable wave functions and no zero-frequency
photons is contained in it as a subspace 5„which
has positive norm. It may be completed in the
norm' to give a physical Hilbert space X,.

A convenient characterization of g„ is provided
by

A, g du
(2 )3/2 0 f P(u) (7.3)

This is the old familiar inner product. It is true
for each variable in a many-photon wave function
in the space defined by Eq. (I.l), which establishes
the assertion.

It is convenient to define the annihilation opera-

If it vanishes, the inner product (5.29) may
be integrated by parts" with the result, for
4(!42 ~{) 4

(p. p.) =*' fdp fdte 4 (4)(-.d..)pl(4) (4 4)
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tor of radiation photons, depending on a single
four-momentum a„"(k), k = co(l, k), and of zero-
frequency photons, depending on a single four-
velocity a, (u), by

a„'(k)u = a, (u)f), = 0,
[~,"(k), u,'(4 )] = 4 '(k),

[a,(u), at(p)] = p(u),

(7.5)

(7.6a)

(7.Gb)

agk) —= lim ea'(u), k),
v-0

s atisf ies'~

(7.7}

the other commutators being zero. [The Hermitian
conjugate quantities, a„(k), a, (u), are not opera-
tors, but operator-valued distributions. ] The
residue of the radiation-photon annihilation opera-
tor at zero frequency, defined by

t

field is in a state of g, . We may learn about the
state of the electromagnetic field associated with
charged particles by producing them from the
scattering of neutral particles. " In this case the
electromagnetic field is in a state of Sg„. We saw,
Eq. (6.27), that for states with well-defined charg-
ed particle momenta, the dependence of the S
matrix on zero-frequency-photon coordinates is
entirely contained in the factor U, (p~, )
= exp[ —ia, (p~, }—ia, (p&, )], so the zero-frequency
photons S&p are in the state

4 p, ——U, (pp, )Qg,

where 0, is the zero-frequency-photon vacuum.
'This is a completely coherent state characterized
by

A u 4u'@"}=(2.)~&2 uo u. }l"("}.~ (7.8)
a, (u)c ~, = P~, (u)c p,

which is the operator expression of, Eq. (7.3) for
every wave function. Thus, Eq. (7.1) implies

= —g ey6 U —
py ply Q 4p e ~ (7.10)

ag(k)so = 0, (7.9)

which is the operator statement that all radiation-
photon residues in &0 vanish.

In case only neutral particles are present it is
reasonable to suppose that the electromagnetic

a',"'(u)4 = —ip'„",„'(u)c, (7.11)

where

This condition may be expressed in operator lan-
guage, for 4cSN„

3

p'q"„'(u) = —e
@ b, (P )b, g) —d, Q)d, Q )]'"'5'(u —p/m)u'

J

(7.12)

(7.13)

is the quantum-mechanical operator representing the charge density of outgoing particles (electrons and

positrons for simplicity) per invariant volume element in velocity space. Its integral gives the total-
charge operator

d3 d3~=f~:"'(.) ."=- 'Qf~'v)~. (~~-~'.(t)~wj-'.

It would be nice if we could adopt

a',"'(u)c = —ipse".'(u)c (7.14)

condition violates transversality in the sectors of
nonvanishing total charge. " For by Eq. (7.8) we
have

as a subsidiary condition defining the physical
subspace in the presence of charged particles. In
fact the last section shows that

d
a„'(k) —k ~ a„(k) =( „„,a, (M). (7.16)

g',"'(u)+fp', ",„'(u) =at'(u)+ipse"„(a), . (7.15)
The left-hand side vanishes by transversality so

so the above condition, Eq. (7.14) which charac-
terizes the states of charged particles produced
from neutrals, is stable under subsequent scat-
terings. (This equality allows us to suppress in or
out labels in the remainder of this section. ) Un-
fortunately, starting from neutrals, we can. only
learn about states of total-charge zero, and this

d Q, a,(u)=0,
Q

(7.17)

and the proposed subsidiary condition (7.14) leads
to QC =0.

One solution of this dilemma" is to generalize
the inf rared-coherence conditions to
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a,(u)4 = —i[p,„(u) —p„(u)]4, (7.18)

where p„(u) is a fixed classical function, or dis-
tribution, whose integral q = fp„(u)(u') 'd'u is an
eigenvalue of the charge operator Q. The quantity
-p„(u) maybe interpreted as the asymptotic charge
density of faraway particles produced in associa-
tion with the particles treated quantum mechani-
cally, whose influence is negligible otherwise.
Alternately, recalling that p(u) = p. (u) —p (u),
Eq. (1.7), we may interpret p„(u) as the asymp-
tot&c charge density of particles in some initial
state, from which the state of interest was pro-
duced by scattering.

A familiar example of the latter occurs in the
standard treatment of radiative corrections ta
scattering and decay processes, which we call the
retarded representation. Here well-defined

particle momenta p,. and no infrared radiation are
attributed fo the initial state 4,

p,'„'(u)4 =Qe,.5'(u —p(/m ()u'4,

a'"(k)4 =a"(u)4 =0

(7.19a)

(7.19b)

so

[a,"(u)+ip,"„(u)]4 = ice,.5'(u —p, /m)4

and by Eq. (7.15)

.(7.20)

[a;"'(u)+i
p,
'„"( u)] 4= ipse;5'(u —p,./m)4 . (7.21)

Thus, on states with well-defined outgoing particle
momenta pz, symbolically 4 = fdp &4 o~o(, we have

a',"'(u)4P' = —i e~5'(u p~/m-~) Qe-(5'(u - p(/m () u'4
~ .

i

From this, we recover the familiar low-frequency bremsstrahlung formula, using Eq. (7.8),
l

+&out k C, out elf ~ e (P( 4, oot

(7.22)

(7.23)

j(o , ( fjio „&le. =.
On eachs~[p, „p]we have

(7.24)

po„(u)(f[p (,p] =pe„5 (u —p„/m„)u (([p„,jj],
n

where fp„(u)(u') 'd'u=+„e„, so

(7.25}

This standard ap'proach does not allow superposi-
tions of states with different incoming charged
particle momenta, or, in other words, no wave
packets of incoming charged particles. " Thus no
localization of incoming charged particles is
possible in the retarded representation. Although
the retarded representation is most convenient
for cross sections, the more general representa-
tion (7.18) must be used if localization is import-
ant.

There remains to show that Eq. (7.18) defines a
subspace(([p„] of non-negative norm. Letd[p„] be
expressed as a direct integral over subspaces
where the (incoming or outgoing) charged particles
have definite momenta p =QJ, symbolically,

If j"(j(} is a. classical current with charge-scatter-
ing function

and

p(u) =g e„5'(u —p„/m„)u' —p„(u),
n

(j ()j= T exp (- i„( j Ad'x),

VIII. CONCLUSION

then U(j) ' is a pseudounitary operator which maps
(([p„,((j] isometrically onto ((o. Thus d[p„] is a
direct sum of positive metric spaces. Hence d

[p„] is a, space of positive norm which may be
completed in norm to a physical. Hilbert space
&[p.(].

Note that a superposition of states with different
eigenvalues p„(u) = p,„(u) —ia, (u), is not, in gener-
al, a state of positive norm, and different func-
tions p„(u) label different superselection sectors. "
These different superselection sectors are pre-
sumably physically equivalent since they differ
only at arbitrarily low frequency or large distance.

a.(M)j( p.„j] = —i (P e„ii' tu —p /m„)u'

—o., (~)(i(o.;,o(. (7.26)

We have presented a method of handling infrared
divergences in quantum electrodynamics which is
very close to the photon-mass method. In fact, a
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term by term comparison of the two methods is
possible, although, in our case, the photon has a
strictly zero mass. In practical calculations our
method may have some advantage. In particular,
the evaluation of the zero-frequency-photon kernel
in the Appendix means that pa, rt of the sum over
final-state photons is effected once and for all.
The virtue of this approach as a practical tool will
be exhibited in an accompanying article where the
spectral composition of coherent bremsstrahlung
radia, tion is calculated nonperturb atively. For
virtual photons, Eq. (4.14) provides a convenient
representation of the photon propagator which
resembles analytic regularization.

The reader will have observed (Sec. VI and the
end of Sec. IV) that/in calculating S-matrix ele-
ments, the charged particles are first put on the
mass shell trivially (by dropping external legs in
Feynman diagrams, as in a theory with massive
photons) before the integrations over virtual pho-
tons are effected. These limits are not inter-
changeable, for the on-shell limit of the off-shell
Green's functions is anything but trivial. The pre-
sent approach bypasses the intricacies of the other
order of limits.

Finally, the author cannot resist speculating
about whether the approach described here to deal
with infrared divergences may also be helpful for
ultraviolet divergences. The basic philosophy is
to suitably extend the free-field theory, so diver-
gences are not subsequently encountered, instead
of applying a subtraction procedure to divergent
graphs which represent the interaction. The
philosophy is implemented by extension of the
free-particle propagator. It is intriguing in this
regard that the photon propagator (1.1b) renders
the electron self-mass ultraviolet finite in lowest
order, for the reason given in the Introduction,
with the result,

5m = —(4m) '3e'[In(mo'/A2) —~]mo. (8.1)

m* = Z exp(-,' ) . (8.2)
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The finite parameter A. cancels out of cross sec-
tions everywhere except in their dependence on the
electron self-mass. In lowest order Z1 +2 is
also finite. " Now the photon propagator (1.1b) does
not, by itself, eliminate all higher-order ultra-
violet divergences. At the very least the electron
propagator must also be extended. However, the
possibility suggests itself that, by a further devel-
opment of the present method, the scale-breaking
mechanism of Sec. III may allow @natural intro-
duction of mass into a theor y with a scale-invar-
iant Lagrangian. Suppose the physical mass
m =m(m„X) were an attractive fixed point m* of
the mass renormalization series, independent of
mp. In this case, if rnp is chosen equal to an*, then
5m=0, and Eq. (8.1) gives

APPENDIX: EVALUATION OF THE ZERO-FREQUENCY-PHOTON KERNEL

We will separate the kernel K(u„u, ) of Eq. (5.33),

K(u„u, ) = —(, d$ J dv ln[ —,'(1 —v')]—
0 1 1

(A1)

into a Lorentz-invariant part K,.(g), where u, u, = cosh(, g) 0 and a frame-dependent partK&(u„u2) ob-
tained from v= l. As will be seen, the frame-dependent part is just such that (p, p)+(&f&, P) is Lorentz in-
variant although the separate terms are not. For this purpose it is convenient to introduce as a factor in
the integrand 1 =limi „e(L—u, 0) where 0'= (1 —v') '/'(I, vk), and integrate by parts on v. This gives

K(u„u, ) =K,(P)+K/(u„u, ), (A2)

-1 0 D1 ~ Q2
Kf(ug u2)

( )3
—,J dk ln(, —u, ~ 0) (, - ~)(, ~)

f'1 2

271 J CO

(A3)

(A4)
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Each of the terms in the last expression is an in-
variant function'~'" of u, and u, .

We first evaluate the invariant kernel K, (]})).

This is effected most conveniently in the frame
where

u, =(1,0, 0, 0), u, =(cosh/, 0, 0, sinhg),

K,.(g)=,& lim dx ln2L
1 1
7f L 1 — x

f
v v~

l5 2 j1-v'1-Pvxf '

(A5)

where x= cos8, P=tanhg, and V= 1 —,I ' —An i.n-
tegration by parts on v' yields

1 1 ~ 1 1 1+x
(2v')'2P, 1 —x' x 1-x' (Alo)

The lower limit of integration is fixed at zero,
since K, is regular at P=0. With P=tanhg, we
have

(A11)

('(])

R(~) d~
tanh

(A12a)

The latter function is ubiquitous in radiative cor-
rection calculations. It may be expressed in terms
of Spence functions, but R(g) is convenient for our
purposes. It has the asymptotic limit

z,.(()=, fdic f'—, da )n[-', (( —u')] —(- ),
(A6)

lim[B(g) —&g'] = v'/l2. (A12b)

K, (g) =
( },~ dvln[~(1 —v )]

Observe that E, satisfies

&E] 1
sP2 2P2 (

where

(A7)

(A8)

Consider next the frame-dependent part Kf(u„
u, ), Eq. (A3). By rotational invariance it is a
function of the three positive hyperbolic angles

and g, Eq. (5.34b). Let v be the unit vector
t = (1, 0, 0, 0, ), so the three unit four-vectors u„
u„and 7' define the vertices of a hyperbolic tri-
angle. Its sides are the three hyperbolic angles
g„(„and P~ 0,

u, ~ r = cosh(„u, ~ v = cosh(„u, ~ u, = cosh]c)

(A13a)

1 1 1 1+P
(2v)'4P' 1 —P' 1 —P

'

which has the solution

(A9)
and they satisfy the triangular inequalities

0, + 4. —0, 0+ 0, 4„P+(,
Equation (A3) may be rewritten as

(A13b)

p W A-1 , Mx —. , ~ k g) og2

27f)' ' ]'-& 5 (u'- u ~ }I)(u'- u 5) '

and we observe that E& is an invariant function ' of the three four-vectors ug Q2 31ld T. We evaluate it in
the frame where u, = (1, 0, 0, 0), v = ( cosh/„0, 0, sinhg, ), and u, = ( cosh(, sinhg sinu, 0, sinhg cosa), and

coen may be expressed in terms of the hyperbolic ngales by r u, = cosh(, = cosh]i) cosh(, —sinh]I) sinhg, cosa,
which is the law of cosines for hyperbolic triangles. 'This gives

K- ' -""j.
f (2 )s2 d cose

0

ln[ cosh/, (1 —P, cos8}]
1 —P( cos& cos8+ sinn sin8 cosQ} ' (A15)

where p = tanhtJr and p, = tanhg, . After integration on (t) we find

1 ln[ cosh(, (1 —P,x)]
(2v)', [(Px —cosa)' —(1 —P')(1 —cos'o')]'f ' ' (A16)

On eliminating cosa from the law of cosines, and introducing as variable of integration y = sinh'p sinhg, x
—cosh/(cosh/ cosh])), —cosh]}),), we find

1 1 ""' ln[(- y —cosh), + cosh( cosh]}),)/ sinh'g]' (2v)'2P ~ (y'+~')"' (A17)
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+ 2 cosh/ cosh(, cosh(, . (A18)

where

y, = a sinh't/r sinhg, —cosh)( cosh/ cosh/, —coshtJr, ),
X' = 1 —cosh'g —cosh'g, —cosh'g, +R[-'(0+ 0, —4.)]

+ R[-'(0+ 4. —0, )] -R(0)] . (A24a)

K(g, g„g,) = (2m) '( tanhg) '

x[R['(0-+ 0, + 4.)] R—['(0-, + P. —0)]

The square root is eliminated by introducing as
new variable of integration u, from y = &(u —A'/u),
with the result

As a special case we have

K(0, P„P,) = (2v) '(tanhg, ) 'P, . (A24b)

1 1 "'du
K?=,— —1n([ —2 (u —A'/u) —cosh),

(2v)'2P „u
+ cosh( cosh(, ]/ sinh'g$,

where

1 1
(2v)' 2P

(A19)

dv
l [5 —av][av+ c]

U 2av sinh'g (A20)

where u, = e'~[ cosh/, —cosh(g —g, )]. Finally, with
u = [ cosh/, —cosh(P —g, )]v, we find

Equation (A24) gives the desired form for the
kernel K(u„g, ) of the inner product (p„p,&. Let
us verify that the inner product &j„j,& =(p„p,&

+&/„Q,& is Lorentz invariant although the separate
terms are not. " Note first that with P~'0'?)
=- A„'g"(A 'k),

&P, , P, & =&/„&f&g+ ~ Jtdk ln(A +A,'. f?')

x y'„*(k)(-g.„)y,"„(i). (A25)

Here we have introduced the residue of the radia-
tion-photon wave function defined by

z, =e'",
Pz~(k) = lim &oQ~z(k) .

~wQ
(A26)

a = 2 sinh 2 (P, + P, —() sinh2 (g+ g, —g, ),
c = 2 sinh-,'(g„+ P, —g) sinh-, (f+ g, —g, ),
b = 2 sinh —,'(P+ g, + g, ) sinh —,'(P+ P, —t/, ).

(A21a)

(A21b)

(A21c)

To proceed further note that SJ'(g, g„g,)/eg is an
elementary integral, with the value

z,f u" d'g
AB(~)

(2 )3/2 J 0 y
P(+) 0

This allows us to write

(A27)

By Eq. (5.30), the radiation-photon residue may be
expressed in terms of the zero-f requency- photon
wave function

BJ—(g, g„g,) =S[2 (g+ g, + g2)] where

(A28)

—S[—,'(g, + g, —P)]

+S[2(4+0, —4.)]
+ S[-'(0+0, —(,)] -4S((), (A22)

cPg, d u2
(P P& =

o o P( )K ( )P( )
Q~ R2

V1, - u, Q~
A( g 2) (2 )s? ~ 0 $ ( gg ) 0 $1 Q2 —u2 ~

where S(g) = g/ tanhg. This determines J(g, g„g,)
to within an additive function of (, and g, . The
latter may be found by evaluating K? (g, + g„g„g,),
with the result

1
?(~& ~» ~? (2 )2t

x(R[?(g, + g + g)] —R[?(g, + g —g)]

+R[-.(4+ 0, —0, )]

+Rhea'+ 0, —4.)]-2R(4)], (A23)

and R is defined by Eq. (A12).
%e thus find for the kernel, K =K, +K& by Eq.

(A11),

x ln(A0+ A', $') . (A29b)

On the other hand, with p (u)= p(A 'u), we have

&Pl t P2 ) (PIN P2& &Pll P2&lL t

because K,.(Au„Au, ) =K,.(u„u, ) and

K~(hu„hu, ) =K?(u„u, ) —K~(u„u, ),
by Eq. (A3). Thus we have

(P' P &+&0;, 0'.&=(P„P &+&4„4 &

(A30)

(A31)

(A32)

and Lorentz invariance is verified.
It is also possible to make a Lorentz-invariant

decomposition into radiation-photon and zero-
frequency-photon parts. Let the decomposition
K =K,.+K& define a similar decomposition of
&p„p,& in«a Lorentz-invariant and a, frame-de-
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pendent part, in virtue of Eq. (5.32),

&P„P.& &-P» P.&~+&ok P.&i

Insertion of the identity

(A33)

and we have used Eq. (A27). Then, with"

&A 1k 42& l &%1k 424 &~1k 42& k (A37)

1n(u'- u ~ k) 1 t, 1 1 1
u' —u, ~ k ku ~ k —k ~ k' ' —u k' u'-u ~ k)

(A34)
into Eq. (A3), gives

the desired Lorentz-invariant decomposition into
zero-f requency-photon and radiation-photon parts
is provided by

(A3 5) &l„.12 &P„—P.& (+ &4„4.& &. (A38)

where

(d „d,)~
=—Idk dk 'd;„"(k )

&& [42s(& ') —0'2s(&)] (A36)

The noncovariant decomposition given in the text,
Eq. (5.37) is more convenient for applications be-
cause of the explicit form of the zero-frequency
photon kernel, Eq. (5.35).
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