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Duality rotations of Maxwell fields residing in curved space-time are studied in the presence of sources,
and it is shown that a general duality rotation transforms the conserved, magnetic-charge-free four-current of
a Maxwell field into a new four-current which is neither conserved nor is free of magnetic charges. The
necessary and sufficient condition for two Maxwell fields, in the presence of source four-currents which are
both conserved and are free of magnetic charges, to go into each other under a duality rotation is obtained.
As duality rotations preserve the electromagnetic energy tensor E,„, this leads to conditions under which a

given E,b, and hence a given metric solution of the Einstein equations for a continuous system having E,b as
a part of it, may possess a multiple (or in particular, a dual) interpretation in terms of the electromagnetic

field. In the case of non-null electromagnetic fields with vanishing, Lorentz force, it is shown that a direct
computation involving the given Maxwell field yields the required duality rotation provided it exists. A
number of examples of duality-connected field pairs, some existing in vacuum and some others inside matter,
are discussed to illustrate the theory developed.

I. INTRODUCTION

The idea of duality rotations of Maxwell fields
(i.e., electromagnetic fields) was introduced into
physics by Rainich, Misner, and Wheeler (RMW)
in the context of the already-unified-field theory. "
In view of the fact that the RMW theory is essen-
tially a theory of source-free electromagnetic
fields, duality rotations have been studied (see
Witten' for an excellent review) under the restric-
tion that they should preserve the source-free na-
ture of the electromagnetic fields. In this connec-
tion, Kitten' has shown that the field obtained
after a nonconstant duality rotation of a source-
free electromagnetic field, in general, does not
satisfy the source-free Maxwell equations. This
clearly shows that the source four-current of an
electromagnetic field is altered by a (nonconstant)
duality rotation, and in this paper we provide an
extension of Witten's discussion by considering the
duality rotations of electromagnetic fields in the
presence of sources also. The motivation for this
discussion has been provided by a paper of Tariq
and Tupper' in which they have shown that, in
some cases, an electrovac metric (see Sec. II for
a definition) may be interpreted as the space-time
curvature produced either by a Maxwell field with-
out sources or by a Maxwell field with sources.
In the same paper, using the spin-coefficient for-
malism of Newman and Penrose, Tariq and Tupper
have also given prescriptions by which a source-
free Maxwell field may be used to generate a Max-
well field with sources. The purpose of this paper
is to bring out relevance of duality rotations to the
the results of Tariq and Tupper and to develop a
complete formalism to obtain all the Maxwell

fields of a given electromagnetic energy tensor
in electrovac as well as nonelectrovac situations.

In the following section, we begin our study of
duality rotations by observing that in general the
duality transform of a conserved, magnetic-
charge-free source four-current is neither con-
served nor is free of magnetic charges. Confining
our attention to a subclass of duality rotations
which produce only conserved, magnetic-charge-
free four-currents, we show that such a duality
rotation must obey a set of partial differential
equations involving the given Maxwell field and its
four-current. These equations which form a set
of necessary and sufficient conditions for the ex-
istence of an "allowed" duality rotation then lead
to some interesting general properties of duality-
rotated Maxwell fields. Next, in Secs. III and IV,
we specialize the formulas of Sec. II to Maxwell
fields with zero Lorentz force and discuss some
examples of duality-connected Maxwell field pairs
with vanishing Lorentz force. Lastly, in Sec. V,
we consider Maxwell fields with nonvanishing Lo-
rentz force and construct an example (in flat .

space-time) of a duality-connected Maxwell field
pair with a nonzero Lorentz force.

Since duality rotations, by definition, preserve
"everything" including the electromagnetic energy
tensor E,b and affect only the electromagnetic field
and its four-current, it follows that it is possible
to replace one Maxwell field of E„by another and
produce different interacting systems which are
all mechanically similar to a given system of
which E„is a part. Thus our discussion provides
effectively a formalism for obtaining all the Max-
well fields of an E,b starting from any one of its
fields (provided the E,, admits more than one such
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19 SOME PROPERTIES OF DUALITY-ROTATED MAX%ELL FIELDS 3605

field) and this formalism is applicable to electro-
vac (Maxwell fields in vacuum) as well as nonelec-
trovac (Maxwell fields in matter) situations.

II. DUALITY ROTATION OF FIELDS WITH SOURCES

For the sake of completeness and future refer-
ence, we first recall some definitions a,nd nota, —

tions. We work in a space-time domain D with
metric g, ~ of signature -+++. As usual, a semi-
colon followed by an index denotes covariant dif-
ferentiation with respect to g„and a comma fol-
lowed by an index denotes pa, rtia. l differentiation.
In D an electromagnetic field f„is defined. The
divergence of f,a gives its four-current j', and the
divergence of the dual field *f,a—= —,

' (-g)'~'&aalu f~
is assumed to vanish identica, lly, i.e., we have

OO e
co .t,

——4' (2. i)
where the complex field tensor cg„ is defined to be

+aa =faa + i *faa

The equation of charge conservation

(2. 2)

(2.3)

is an obvious consequence of (2. 1). The energy
tensor E', of the electroma, gnetic field is a real
symmetric tensor defined a,s

(2.4)

where ~,~ is the complex conjugate of +,~. The
ma. pping

m„and its current j'. For exa,mple, it is well
known' that the two fields have different invariants
related by

E,=f,cos28 —f,sin28,

Il, =f,sin28+ f,cos28,

2f, =f„,*f"'. To see how the current j'is trans-
formed, we take the divergence of the duality-
rotated field W„ to get

a.a&-=4nJ='a'e (4' +i& 8&), 8&=—8
& (2. 12)

t

where we have defined, a,s before, the divergence
of W' to be its four-current 4'. This vector cur-
rent 4', however, will be complex in general and
hence involves four-currents due to magnetic
charges also. Hence the duality-rotated field W"
would be a physically acceptable Maxwell field'
only if 4' is real (which ensures the elimination of
magnetic charges) and divergence-free (which is
the equation of continuity for J'). The equation
J', ,=0, in view of (2. 3) and (2. 12), reduces to

(2.13)

Thus it is sufficient that the scalar field 8 satisfies
the integrability condition

8, ~
—8~, =0

in order that ~' be divergence-free. The reality
of 4' leads to the equa, tions

f"8acos8+ (4'' —*f"8,)sin8= 0,
ge

co,~- W, „=-e co,~ (2. 5) -f' 8,sin8+(4n'j' —af'a8a)cos8=4vJ'. (2. 16)

generated by a real scalar field 8 has been ca,lied
a dua. lity rotation by Misner and wheeler. ' Such
a duality rotation affects only the electromagnetic
field (and hence its four-current) and nothing else.
Both the fields m, „and V„are thus defined over
the same space-time domain D with metric g„.
As in (2.2), we may split the duality-rotated field
W, ~ into

(2. 6)

Then for the real tensors involved, (2. 5} reads

F„=f„cos8 —*f„sin8,
*E„=*f„cos8+f„sin8.

(2.7)

(2.6)

8gE =up' ~ =W' W (2.9)

Even though the duality rotation (2. 5) does not
alter the mechanical properties of the electromag-
netic field such as energy, momentum, and stress,
as is obvious from (2.9), it does change the field

It is obvious that the energy tensor E,„ is unchanged
under a duality rotation, i.e.,

Of these, the former is a first-order partial dif-
ferential equation in 8 involving only the known
quantities f"and j'. Thus, if a solution 8 of
(2. 15), also satisfying (2. 14), exists, then the new
field W'" and its current J' may be obtained from
(2. 5} and (2. 16). Hence in Eqs. (2. 14) and (2. 15)
we have have a, prescription to find a duality rota, -
tion 8 which generates the Maxwell field (&,» Za)
from the Maxwell field (&u„,j,). Observe that this
prescription is quite general and is applicable to
null a,s well as non-null electromagnetic fields. In
the rest of this section we use this prescription to
obta, in some general properties of duality-rotated
Maxwell fields. Later we specialize these results
to the two cases E".,= 0 and E"., 4 0 separately.

For the sake of completeness, we first examine
(2. 15) and (2. 16) for constant duality rotations.
When j'=0, 8= constant is a solution of (2. 15).
This, however, leads to a field with Z'= 0 as is
well known. "On the other hand, when j40, a,r-
bitrary constant duality rotations are not per-
mitted. Only 8= 2nm, where n is zero or an inte-
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ger, satisfies these equations, but it does not lead
to a new field at all.

On inversion, Eqs. (2. 15) and (2. 16) become

respectively with f, *f„,E„, and ~E~, we ob-
tain the following useful relations:

4' j'sin 8 = 4'",8,cos 8

4nZ'cos8 = 4'' - "f"8,,
4''sin8= f'~8-~.

(2. 17)

(2. iS)
+ -', (f,cos8 —f,sin 8)8„

4v *f„j'sin8= -4','8~sin8

(2.aS)

Qj'518 gycb8 (2. 19)

where ~ is a real scalar. In the particular case
when ~f'~8, =0, A. also vanishes, otherwise it is
nonzero. It is to be observed that this condition
for the parallelism of the two currents is indepen-
dent of (2. 17) and (2. 18) only when both currents
are nonzero. If one of the currents is zero, (2. 19)
either follows from (2. 17) and (2. 18) or is trivial-
ly satisfied. Further, if 8,40, the scalar X must
be a solution of

det(*f" —Af ")= 0 . (2.20)

By going over to a locally Galilean coordinate sys-
tem, it is easily seen that all four roots of this
equation are real for non-null fields. For null
fields this equation is satisfied for arbitrary ~.
Hence situations in which both currents are non-
zero and are parallel are not ruled out. This is
satisfying because, as we shall show later, in the
general case of electromagnetic fields inside
charged matter (such as a charged perfect fluid,
for example) admissible duality rotations have to
satisfy (2. 19) also.

In what follows, we need the reciprocal relations
expressing j, in terms of F„, *F,„, J,, and 0.
These relations are obtained by interchanging j,
and Z„changing f„to E,~ and 8 to —8 in (2. 17)
and (2. 18); thus we get

4''cos 8= 4@4' + *E"8»

4@jasine = -E"6„.

(2.21)

(2.22)

From the second of these and (2. 18) it follows that

~.6'=0, j.e'=0, (2.23)

16m'Z'j, sin'8 =4''"0,8~cos 8

+ —,
' (f,cos8-f, sin8)8, 8'. (2.24)

Thus the currents must necessarily be orthogonal
to the gradient of 8. Further, contracting (2. 22)

These equations are convenient for a discussion of
the "parallelism" of the currents 4, and j,. Con-
sider a situation in which the currents are both
nonzero. Then, barring the exceptional events at
which sin8=0, the vector f"8„ is not zero, and
hence it follows from (2. 17) and (2. 18) that Z, and

j, are'parallel, " i.e., are scalar multiples of each
other, if and only if

+ —,
' (f,sin 8+f,cos 8)8, ,

4'„j'sine = 4mB, e„+ —,
' E,e„

4 *F,j'sne=-'E, e .

(2. 26)

(2.27)

(2.aa)

=E,E"+ *E,*F"
ac ac

= 2(E„P'"——,
' F,6', )

and the general identity

wgab 8Q Qab 1 (Q Wars) 6b
ac ac c

(2.29)

(2. 30)

true of a.ll antisymmetric tensors. These ba, sic,
general relations lead to a, number of other in-
teresting results under special situations. The
following is one such result. In the case of a pair
of non-null fields connected by a duality rotation,
we may express 0 entirely in terms of the energy
tensor E„, as is done in the RM% theory, pro-
vided one of the fields is extremal. To see this,
consider, say, f„to be extremal, i.e., let f, =0.
Then using the relation'

E".,= f"j, -
and the algebra. ic property

E,~E'"= -'(E'„,E"') 5d~

(2. 31)

(2. 32)

of the energy tensor in (2, 25), we obtain

(2.33)

which yields the desired relation on (matrix) in-
version. In obtaining this, we have used the rela-
tion

E„,E"'=(16m ) (f,+f2)

= (16m') 'f,' (2. 34)

between the invariants. Other special results
following from (2.25) to (2.28) will be discussed
in Sec. III.

Next we obtain a relation connecting the magni-
tudes of J„j„and 8,. From (2.2), (2. 4), and
(2. 12), it follows that

J,J'= j, j'+ (2w) '(E' 8,8~ —*f'j,8„) . (2. 36)

In deriving these, we have made use of (2. 4) in its
equivalent forms

6pEb f fah+ wf grab
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Using (2.26), this may also be expressed as

J,J'=j,j'+ (167t') '(f, +f,cot8)8, 8', (2. s6)

(2.43) follows from the Einstein equations

(2.44)

8'„J'=~„j'—2iE,&q,

which breaks up into the two real relations

(2. s8)

(2. 39)

+F,J=+f j +'2E 8q . (2.40)

The first of these proves the inveriance of the Lo-
rentz force. Lastly, we note two other stray re-
sults. 4 double contraction of Wa~ with J, and j&
yields

~a&J ~ 0 . abJ

Prom this and (2. 38) it then follows that

E' 8, J~= 0=E'"8,jq . (2.42)

So far, we have discussed some general proper-
ties of duality-rotated Maxwell fields, and it may
be noted that all these results, with the exception
of (2.33) and (2. 37), are valid for all Maxwell
fields with conserved, magnetic-charge-free
four-currents. However, our discussion up to
now has not taken into account that, in general,
Maxwell fields form a part of interacting systems
composed of matter and electromagnetic fields.
The mechanical. properties of such a continuous
system is described by an energy-momentum
tensor ~,~ which is the sum of the Maxwell energy
tensor E„and the material energy tensor T,~.
The'total energy tensor T,„obeys the conservation
law

(2.4s)

and the equations of motion of the interacting sys-
tem are to be obtained from (2.43) and the Max-
well equations. In the special theory of relativity
(STR), where the space-time metric is given
a priori, one does not have to go beyond (2.43)
whereas in the general theory of relativity (GTR),

which is a useful relation connecting the magni-
tudes of the currents. For a null field, this re-
duces to

(2.37)

The inveriance of the Lorentz force under ar-
bitrary duality rotations [not necessarily those
satisfying (2. 14) and (2. 15)] forms another impor-
tant aspect of duality-rotated fields. This follows
from the fact that E", and hence E".„, is invar-
iant under arbitrary duality rotations [see (2. 31)].
This can also be seen directly as follows. Mul-
tiplying (2. 12) by W and using (2.4) and (2.5),
we get

which lie at a deeper level and serve to.determine
the space-time metric. %e now examine the con-
sequence of duality rotation of Maxwell fields in
light of the Eqs. (2.43) and (2. 44). We have seen
that whenever a solution 8 (not necessarily unique)
exists for Eqs. (2. 14) and (2. 15) for a given Max-
well field (f„,j,), the corresponding Maxwell en-
ergy tensor E„possesses more than one physical-
ly admissible Maxwell field. Such an Ea~ may be
said to have a multiP/e interpretation (if there are
just two such Maxwell fields, then the correspond-
ing E„has a dual interPretation). With each Max-
well field of an E,„we may associate the same
material energy tensor T„[we assume that T,~

+ E„obeys (2. 43)] and obtain a distinct interacting
system consisting of matter and electromagnetic
fields. It is evident that all such interacting sys-
tems have the same mechanical properties and
equations of motion, and. belong to the same class
with respect to duality rotations. Here we recall
again that duality rotations, by definition, affect
only the Maxwell fields and their currents, and
nothing else, with the consequence that the mater-
ial energy tensor T,~, all geometrical quantities
such as the space-time metric g„and the Einstein
tensor G,» are left unaffected. Such classes of
interacting systems may be considered both in
STR and in GTR. In GTR, unlike STR, the exis-
tence of such classes of systems is more than a
mere curiosity; all systems belonging to the same
class with respect to duality rotations produce one
and the same space-time curvature through (2.44).
In the special case of systems with T"=0, i.e.,
elect ovac systems, conditions under w'hich a
metric solution of (2.44) hs, s a dual interpretation
in the sense that it may be interpreted as the
space-time curvature produced either by an elec-
tromagnetic field without sources, or by an elec-
tromagnetic field with sources, have been dis-
cussed by Tariq and Tupper' and also by McIntosh. '
Tariq and Tupper do not base their discussion on
duality rotations. McIntosh uses duality rotations
in his discussion, but only in the restricted sense
that it carries a non-null Maxwell field into its
extremal field. He shows that a second Maxwell
field with a real source j, is associated with every
non-null source-free Maxwell field (F„,J', =0) of
an electrovac solution of (2. 44), provided the ex-
tremal field f„ofF„has f'~. ,4 0 and *f'~,.~= 0.
Some of our results, especially (2. 17), (2. 18),
and (2.23), in the special case Z, =O, are contained
in his discussion. However, the purpose of his
discussion being entirely different from ours, he
does not consider the problem of finding the dual-
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ity-rotated counterpart of a. given Maxwell field
under the most general condition. Our discussion
presented above includes and generalizes the re-
sults of Tariq and Tupper and some of the results
:of McIntosh and what is more, yields the corre-
sponding results for nonel e cty o mac sys tems (i.e. ,

'systems with T„WO).
To summarize, we note that the necessary and

sufficient condition for a, given Einstein-Maxwell
metric [i.e., a solution of (2. 44)] to have a dual,
or in general a multiple, interpretation is that
there exist nontrivial solutions of the system of
Eqs. (2. 14) and (2. 15). In some cases (2. 19)
must also be included in the prescriptiori for de-
termining e. For example, in the case of inter-
acting systems such as charged perfect fluids,
the electromagnetic four-current j' and the four-
velocity U' of matter are two timelike vectors re-
lated by

III. SYSTEMS WITH VANISHING LORENTZ FORCE

E' .q
T' .t, =Q, (3.1)

so tha, t the electromagnetic and matter fields do
not interact. Moreover, when the Lorentz force
is zero, the four-current is not totally arbitrary
as is evident from the following results:

Since the Lorentz force is invariant under duality
rotations, Maxwell fields may be classified with
respect to duality rotations into two groups depend-
ing on whether or not the Lorentz force vanishes.
In this section, we consider only the special case
of fields with vanishing Lorentz force.

For a, system consisting of matter and electro-
magnetic fields, the vanishing of the Lorentz
force implies [see (2. 31) and (2.43)]

j'= oU', (2.45)
Rl: For Maxwell fields f„with f, 4 0

where 0 is the inva, riant charge density of the sys-
tem. Since U', being a, purely geometrical quan-

tity determined by the space-time geometry, is
unaltered by dua, lity rotations, the duality-rotated
current J' has to obey a relation similar to (2.45),

This is evident in a local Galilean coordinate sys-
tem in which, say, f„and f» are the only nonzero
components of f,, at the event.

JQ o. g UQ (2.46)
R2: For Maxwell fields with f,= 0 and f, & 0, the

vanishing of f„j"does not place any condition on

where 0' is the new invariant charge density, and
we get into a contradiction unless the duality-ro-
tated current J' is parallel to j '. Thus we have to
demand that 8 has to satisfy (2.19) also, thereby
eliminating those duality rotations which may -sat-
isfy (2. 14) and (2. 15), but fail to produce parallel
four-currents. But we must note that it is not al-
ways necessary to include (2. 19) in the prescrip-
tion for determining e. In the case of electrovac
systems with T„=O, (2. 19) is evidently irrelevant
Even in the case of nonelectrovac systems with

T„c0, (2. 19) is not to be imposed provided one
of the four-currents is either null or spacelike,
as then there cannot be a relation of the type
(2. 45) between the timelike four-velocity field of
matter and the four-current.

Lastly, before passing, we wish to make a re-
mark on the relation of the results obta. ined here
with those of the RM% theory" of non-null elec.--
tromagnetic fields in which the extrema, l Maxwell
root of a non-null E,„ is mapped onto a Maxwell
field with zero current. It must be observed that
the theory developed here does not include the
RMW theory because the extremal Maxwell root
of a non-null E„has, in general, a complex four-
divergence and we have considered only real cur-
rents.

E~8, = (8m) '(f,tan8-f, )8, , (3.2)

which shows that 6„ is an eigenvector of E, belong-

This follows because the field is purely magnetic
in this case and hence there exists a local Galilean
coordinate system in which, say, f» is the only
nonzero component of f,„at the event.

R3: For Maxwell fields with f,= 0 and f, &0,
f„Z = 0~j,j - 0, where the equality holds only
when j~=0.
This follows because the field is purely electric
in this case and in a suitable local Galilean coor-
dinate system f,~ has only f»W 0.

R4: For Maxwell fields with f,= 0 and f,= 0,
i. e., for null fields, f,~j

~ = O~j ~j
~ ~ 0.

This is easily proved by choosing the spatial coor-
dinates such that f"=f" are the only surviving
components of f,~ at the event.

Thus we see tha, t when the Lorentz force van-
ishes, the four-current of the field. can be nonzero
only when the invariant f, also vanishes.

Now we consider the duality rotation of fields
with vanishing Lorentz force. Setting f,~j = 0 in
(2. 25) we get
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tan28= -f,/f, . (3.4)

We shall consider this again a little later. Sub-
stituting (3.2) in (2.24), we see that

J,j'=0. (3.5)

Thus, the currents are orthogonal and hence can
never be simultaneously timelike. As a conse-
quence, in such cases where it is necessary to
have the two currents timelike and parallel, it is
impossible to satisfy (3.5) unless one of the cur-
rents vanishes.

Further, using (3.2) in (2.26), we obtain

4n ~f j '= (f, +f,cot28)8, . (3.6)

This equation can be solved for 8, in the case of
non-null fields. In obtainirig this solution it is
convenient to classify duality-connected Maxwell
field pairs into three types as follows:

Type I:j'+ 0, J'~ 0.
Type II: j'WO, J'= 0, or j'= 0, J'&0.
Type III:j'=0, J'=0.

With this classification, we show below that every
non-null Maxwell field pair with vanishing Lorentz
force must necessarily be of type II.

In the case of type I non-null Maxwell field pairs,
both invariants f, and F, must vanish (see Rl to
R4) which, however, is possible only when sin(28)
= 0 [see (2. 11)]. Similarly for type HI non-null
Maxwell field pairs, asj'=Z'=0, Eqs. (2.25) to
(2. 28) clearly show that 8 = constant is the only
permitted solution. Thus, whenever the Lorentz
force vanishes, non null Maxwell field pairs of
the types I and III can differ at best by trivial con-
stant duality rotations.

For type II non-null Maxwell field pairs with

j '4 0 and J' = 0, Rl to R4 show that f, = 0 which
when substituted in (3.6) yields

8,= 4~y,-'(+f„j') . (3.7)

If this vector field satisfies (2. 14) and (2. 15), then
its integral

8=4@'
~
' * ~j' dx'+ constant (3.6)

is the required duality rotation which maps the
given field (f,„,j,4 0) onto the source-free field

ing to the eigenvalue (8ii) '(f,tan8 —f,). But the
eigenvalues of E," are given by' ~, e, —e, -e where
e= (6v) '(f,'+f,')' ~' and to be consistent we must
have

(3.3)

This is an identity for null fields as well as for
non-null fields with f, =0. However, for fields
with f, + 0, this leads to

(F ~, Z, =O).
On the other hand, for type II non-null Maxwell

field pairs with j'= 0 and J' 0, i.e., when the
given Maxwell field f,„ is source-free and it is re-
quired to find a duality mapping 8 which sends f„
onto a field F„with sources, (3.6) leads to (3.4).
As f„is not null, f, and f, cannot vanish simul-
taneously and this equation (3.4) is determinate
for 8. The 8 obtainedby solving (3.4) would be
the required duality rotation provided its gradient

8.= -', (fi'+f2') '(f2fi, -fif2.) i (3.9)

where f„and f„are respectively the partial de-
rivatives of f, and f, with respect to x', is nonzero
and satisfies (2. 15).

Thus, in the preceding two paragraphs, we have
a very simple prescription for obtaining the dual-
ity-rotated counterpart of a non-null Maxwell field
f„with vanishing Lorentz force. This prescrip-
tion involves a straightforward computation and
checking and does not require a solution. of simul-
taneous partial differential equations as is re-
quired by the general prescription (2. 14) and
(2. 15).

For null Maxwell fields with vanishing Lorentz
force, Eqs. (3.2) and (3.6) reduce to

and

j'=0

E,eq
—0.

(3.10)

(3.11)

These equations, unlike the corresponding ones
for non-null fields, do not lead to an explicit solu-
tion for 8» and one is thus forced to use the gen-
eral prescription (2. 14) and (2. 15) to find 8.
However, in such cases where it is convenient,
(3.11) may first be used to determine a general
solution e~ which may then be checked for consis-
tency through (2. 14) and (2. 15). The other equa-
tion (3.10) is a necessary condition for the exis-
tence of a nontrivial duality rotation of f„and pro-
vides a useful preliminary check in the case of
fieldS with j,40.

Regarding the currents of a null Maxwell field
pair (with zero Lorentz force), we have the rela-
tions [see (2.37), (3.5), and R4]

j,J'= 0, j,j'= J,J' & 0, (3.12)

which show that for type-I pairs, the two (nonzero)
currents are either null vectors with the relation
J,= nj, where n is a scalar, or mutually orthogon-
al spacelike vectors of the same magnitude, and
for type-II pairs the nonzero current must neces-
sarily be null. Here it must be observed that,
unlike in the case of non-null Maxwell field pairs,
all three types I, II, .and III of null Maxwell field
pairs are possible.
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IV. EXAMPLES OF SYSTEMS WITH VANISHING

LORENTZ FORCE
space-time, i.e., if

—00 +
~ +92 +03 —0 (4.6)

Vfe now illustrate the discussion of the preceding
section with a few examples. Of these, examples
1, 2, and 5 deal with electrovac fields (T„=0)
while the other two deal with fields inside matter
(T„v0).

ExmnPle 1. As an example of a nori-null electro-
vac field, we consider the Tariq-Tupper solution'
of (2.44) with T„=0 and E„40. In this interest-
ing solution, the electromagnetic field resides in
a curved space-time domain with the metric

ds'= (dt —2-zdp)'+ r dy'+ (2a r') '(dr +dz'),

(4. 1)

where a is an arbitrary real constant and x'= t,
x'=~, x'=z, x =p. The electromagnetic field
together with its invariants and the four-current
is given by

(4.9)

ds' = U'(-dt'+ dx'+ dy'+ dz')

with x'=t, x'=x, x =y, and x'=z and the null
electromagnetic field f,&

with components

(f011f021fQ3) (ao a1 .1 a1a21 ala3) 1

(f 3 f31 f12)= ~(0 aoa3 aoa ),
where V= (ao' —a, ') '~'U, together form a null
electrovac solution of (2.44)." For purposes of
illustration, we shall now find a duality rotation
of the speciaj. solution with

and if U= U(a&x ) is any function of the invariant
parameter a,x' satisfying

(2U' —UU) & 0,
where U denotes the derivative of U with respect
to a,x', then the conformally flat metric

(1012, (o131 1014)= (+2i/r, 0, 0),

(1034, (o~, (o23) =+2(1, -2iz/r, 0),
((o",(o",o1'4) = +4a'(ir, 2z, 0),

(4.2)

a, =a, =0, a, =a, = 1,
for which only

f12 fol gf23 gf03 U-3

(4. 12)

(4. 13)
(01" 01" QP')= (+4a' 0 0)

&o,3&v =4(f1+if2)=32a', (-g)' '=(2a r) ',
survive. For this source-free (j'= 0) field,
(2. 15) simplifies to

j'= (+2a'/m, 0, 0, 0),
f„j'=0, [(-g)'"1o"],= 411(-g)"'j'.

Using these in prescription (3. 7) we obtain

(4. 3)

(4. 4)

~0= ~. ~

81 + G,tane = 0

(4. 14)

(4. 15)

Using these in (2. 16), we find the duality-rotated
four-current to be

8, =2/r, 8, = 8,= 84=0. (4. 5)

It is easy to check that this vector field satisfies
(2. 14) and (2. 15) so that its integral

8= 2 lnz+ constant (4. 6)

is the required duality rotation. This leads to a
new field (W„,Z, ) with

W,o
= + exp(2 ln2r —2 b)&11,» Z, = 0 (4. 7)

where we have expressed the arbitrary constant
in (4. 6) as (-2b + n'/2) in terms of a new constant
b so that (4. 7) is precisely the source-free elec-
tromagnetic field quoted by Tariq and Tupper.
[Note that the field quoted by Tariq and Tupper
contains misprints; the correct values are given
by (4.7).]

Example 2. Here we consider a null electrovac
solution of (2.44) in a conformally flat space-time.
There exist a number of convenient forms in which
conformally flat null electrovac solutions are dis-
played, but the following" appears to be simple.
"If a, is any constant null vector in the Minkowski

8= 8(t+y)+ constant, (4. 17)

where 8(t+y) is an arbitrary differentiable func-
tion of its argument (t+y). Such a function evi-
dently satisfies (2. 14) also and thus (4. 1V) gen-
erates admissible duality rotations. Regarding
the duality-rotated field I'", obtainable by using
(4. 13) and (4. 17) in (2.7), we note that it is also
source-free [see (4. 16)], and forms with f„a
type-III field pair. Moreover, each choice of a
functional form for 8 in (4. 17) generates its own
I'„, and thus we have a whole family of source-
free null electromagnetic fields F,„corresponding
to the same null energy tensor E,'. In other
words, E', has a multiple interpretation. It is
well known' that a null electromagnetic energy

4nZ' = U'( 8,sin 8 —8,cos 8)(1,0, -1,0) . (4. 16)

This is evidently a null current [see (4. 10)] and

its form suggests that it is sufficient to consider
the solutions of (4. 14) and (4. 15) in the two special
situations in which (i) 8,= 8,=0 and (ii) 8,= 8, =0.
When 6), and 8, vanish, the general solution of
(4. 14) and (4. 15) is given by
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tensor does not determine its electromagnetic
field up to a constant duality rotation. Peres"
has given one such example and the above is
another exa, mple of this type.

On the other hand, when 8,= 8, = 0, (4. 14) fol-
lows trivially and the complete integral of (4. 15)
is given by"

8+@cote=x —b, (4. 18}

where b is an arbitrary constant. Using this, and
6),= 8, = 0, it is easy to see that the integr'ability
condition (2. 14) is satisfied. Thus (4. 18) gen-
erates an admissible duality rotation which when

operating on the f"of (4. 13) produces a new field
F' . lt may be observed that f ' and F'« together
form a type-11 field pair. The null (but nonzero)
four-current J, of the field I'" is already given in
(4. 18). However, as 8 cannot be determined as
an explicit function of (x, z), it is not possible to
display the field I'" and its current J' as explicit
functions of the coordinates.

ExamPle 3. This is an exa,mple of a non-null
field with T„0. The solution considered is that
of Misra and Pa,ndey" and it describes an axially
symmetric stationary solution of (2.44) with
charged incoherent matter and a zero-mass scalar
meson field. This solution is a generalization of
the earlier solution of Som and Raychaudhury" for
a charged dust and includes the effects of an inter-
acting meson field. In signature +2, the metric
and the electromagnetic field a,re given by

ds'= -dt' —(a'r' —1)x'dy'+ e'"(dr'+ dz')

rotated field is given by

E» —Xr cos(P+ 2ez), E» ——-A, sin(P+ 2nz),

F» —nX~'sin(P+2az), Z, =o. (4.27)

We see that the non-null field pair (f„,F„)is of

type II as it should be. In their paper, "Misra,
and Pandey have also given a discussion of the
equilibrium of the electromagnetic field (f„,j,)

with the dust and meson fields ba.sing their argu-
ments essentially on the constant nonzero ratio
(p/a) of the dust and charge densities. It is inter-
esting to-see how the conclusions about equilibria
change if one considers instead of (f„,j,) its dual-
ity-rotated counterpart (F„,J, =0) which has zero
charge density. However, we do not wish to dis-
cuss this aspect here.

Example 4. As an example of a null electromag-
netic field with T,~IO, we consider the Ozsvath"
solution describing a null field in equilibrium with
incoherent matter, and the formulas relevant for
our discussion a,re collected below in signature +2:

ds'= -dt'+ dx'+ a'sin'xdy'+ (cosxdy + dz }', (4.28)

x'=t, x'=x, x'=y, x'=z, (—g)' '=asinx,
a= [(sp+ 1)/4p]'t', p ~ 1 is a constant parameter,

(4. 29)

((uoz, (u~„(uo, ) = e ' "(-ib, ab sinx, o),

(v„,&u„, v») = e ' "(-ib, ab sin-x, ib cosx),
(4. so)

(&u", ~», &u") = e '"(ib, -ba 'csex, ba 'cotx),

(uP', v", ur») = e ' "( ba 'csc-x, ib, 0), -
—2 &x'dtdcp, (4. 19)

x'= t, x'= y, x'=z, x'= y, (—g)'t'= ~e",
(4.2o)

b= ' (g' n')y'+4vt«'1nr, n, X, p, constants (4.21)

f„=X~, f"= -Ae~e ', f '=Ax e
(4.22)

y -=a(z + t), 2b =——[(p + 1)(p —1)/p(3p + 1)]'t',
(4. 31)

(4. 32)(o, v'«=O, j'=0, [(-g)'t a'"] «=0.
A glance at (4. 30) suggests that we try a duality
rota, tion of co„ through 8= p. A direct check
shows that 8= p —z/2 is an allowed duality rota-
tion (of course, there are other possible duality
rotations) and this leads to the new field W, «

= cu,„e'" ' ' with the null four-current

f, =O, 2''= Xue ", - (4. 23) 4nZ'=b cotx(1, 0, 0,—1) . (4. ss)

f.,j '= 0, [(-g)"'~"],,= 4&(-g)"'i' (4.24)

where we have shown only the nonzero terms. As

before 8, may be computed from (3.7) and we get

0, =2n, 8,= 0,=0,=0.
This is evidently integrable and yields

8= P+2az,

(4. 25)

(4.28)

where 13 is a constant of integration. The dua, lity-

Thus we have another example of a null field pair
of type II. However, as we have already re-
marked, the new current J', being null, is not re-
lated to the timelike four-velocity of the dust.

A generalization of the Ozsvath solution dis-
cussed above has been given by Misra, and Narain, '
and even in this ca.se one can find a. duality rota-
tion of the source-free null field leading to a null
field with a null current. In passing we wish to
make a small observation on the solution of Misra
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and Narain. " The arbitrary constant C in their
solution must be set equal to zero, otherwise the
null field quoted would have a complex four-cur-
rent, and would not be source-free as is claimed
therein.

+xaBtple 5. Unlike the previous examples, this
is a null electromagnetic field in special relativity
and we have constructed this example specifically
to obtain a null field pair of type I.

In an otherwise empty domain of the Minkowski
world with the metric

the (duality-invariant) Lorentz force is nonzero
and as such only type-I pairs are possible. As
another consequence of a nonzero Lorentz force,
only systems with a nonzero T„are permitted
[see (2.43)]. Also, no simplification is possible
in the determinntion of 8 as the Lorentz force is
nonzero and one has to use the general prescrip-
tion (2. 14), (2. 15), and (2. 19). [Of course, (2. 19)
is not always necessary. ] Only in the case of null
fields, -as j '=0, do Eqs. (2.25) and (2.26) appear
to put a strong restriction on 6, namely

GS = -dP +dx + dg +d8 (4. 34) det(*f + tan 8f„)= 0 . (5. 1)

where a is an arbitrary differentiable function of
x only. The four-current of this field is given by

4wj' = (a„0,0, a2), a, = da/dx

and it satisfies

For this field, Eq. (2. 15) reduces to

0, +O, =O,

a8,cos & + a8,sin&+ a,sin0 = 0,

(4. 36)

(4. 37)

(4. 38)

(4. 39)

we consider a null electromagnetic field with the
nonzero components

(4. 35)

However, this equation does not determine tan8 at
all [see the remarks following (2. 20)].

To show that Maxwell field pairs with nonzero
Lorentz force are nevertheless possible, we give
an example. In the absence of examples in general
relativity (we have not succeeded in identifying such
examples in GTR, but they would be interesting)
we construct a simple non-null Maxwell field pair
in flat space-time.

Consider a purely electric field of magnitude a
acting along the x axis of an inertial coordinate
system. If we assume a to be an arbitrary dif-
ferentiable function of x and t, then the nonzero
components of the field, together with its invar-
iants and four-current, are given by

which when used in (2. 16) yields the new current

42''= a8,csc8(1,0, 0, 1) . (4. 40)

Since our interest lies only in building model Max-
well field pairs, we consider only the following
special solutions of (4. 38) and (4. 39) corresponding
to some specific choices of the function a(x):

f"=*f"= a,
f, =-a', f, =0,
4' '= (a„-a„0,0), a; =a, ,

16mj',j'=(a, ' —a, ), u&', =4'',
4 ~f„jb = (aa„aa„0,0) .

(5.2)

(5.3)

(5.4)

(5. 5)

(5. 6)
6)o=6), =8.,=0, a=e "= -a,
I

8 = sin '(e"' ), a = constant

8p 8y 83 0, a = e "=-a,
8 =y + P, P= constant,

~g = ~2 = 0) a = constant r al

8= 8(z -t)+y, y= constant.

(4.41)

(4. 42)

(4. 43)

sin 8= k/a, (5.7)

where k is g constant of integration. This satis-
fies (2. 14) and is therefore admissible. The
duality-rotated field and its current are given by

Note that the Lorentz force given by (5. 6) is non-
zero. Substituting from these in (2. 15) and sim-
plifying, we get

It is seen from (4. 36) and (4.40) that these special
duality rotations lead respectively to null Maxwell
field pairs of types I, II, and III. In (4.43) 8 is
any arbitrary differentiable function of (z t)and-
it leads to a whole family of electromagnetic fields
all having the same electromagnetic energy ten-
sor, as in example 2.

V. SYSTEMS WITH NONVANISHING LORENTZ FORCE

For a pair of Maxwell fields connected by a dual-
ity rotation, both currents must be nonzero when

E"= (1 —k'/a') '~'a, F
gb a(a2 t 2)-1/2jb

(5. 8)

(5.9)

Thus the two currents (5.4) and (5.9) are both
nonzero and are parallel, and we have an example
of a (type-I) non-null Maxwell field pair with non-
vanishing Lorentz force. Further, the two cur-
rents are both timelike, null, or spacelike accord-
ing «ao'

As already remarked, a nonzero T„is needed
to keep these electromagnetic fields in equilibrium



SOME PROPERTIES OF DUALITY-ROTATED MAXWELL FIE jDS 36j 3

It is easy to check that this E"and the perfect
Quid distribution with

r '= (q+p)v'v'+ pq", (5.11)

where q' is the Minkowskian metric (4. 34),

U' = 50, p = a'/8w,

and make them satisfy the conservation law (2.43).
It is not difficult to find such a &,„. For simplicity
we consider a to be a function of x only so tha. t
ao 0 Then the two four-currents are timelike
and the energy tensor E"has the nonzero compo-
nents

and p, is any arbitrary function of (x, y, z) indepen-
dent of t, satisfy the conservation law (2. 43).

ACKNOWLEDGMENTS

The work described in this paper forms part of
my Ph. D. thesis submitted to the University of
Mysore. The results of this paper were presented
at the GR8 Conference held at Waterloo, Ontario,
Canada, 1977. I am grateful to my thesis guide
Professor K. N. Srinivasa Rao for numerous
helpful discussions and to Professor B. Sanjeev-
aiah for his kind interest. I must thank
Dr. B. O. J. Tupper for drawing my attention to
the paper of McIntosh and for encouraging me to
enlarge the scope of this investigation by including
systems with T„t0.

~G. Y. Rainich, Trans. Ain. Math. Soc. 2V, 106 (1925).
2C. W. Misner and J.A. Wheeler, Ann. Phys. (N. Y.) 2,

525 (1957).
3L. Witten, in Gravitation: An Introduction to Current

Research, ' edited by L. Witten (W iley, New Yox'k,
1962) Chap 9
L. Witten, Phys. Rev. 115, 206 (1959).

~N. Tariq and B.O. J.Tupper, J. Math. Phys. 17, 292
(1976).

8If need be, one can also retain the magnetic charges
in J, by dropping the reality conditions (2.15) and
(2.16). Then (2.14) would be the only condition on 0.

~J. L. Synge, Relativity: The General Theory (North-
Holland, Amsterdam, 1960), p. 358.

C. B. G. McIntosh, Gen. Relativ. Gravit. 9, 277 (1978).

SJ. L. Synge, Relativity: The Specia/ Theory, second
edition (North-Holland, Amsterdam, 1972), p. 325.

~ A. V. Gopala Rao, Ph.D. thesis, 1978 (unpublished).
~~A. Peres, Phys. Rev. 118, 1105 (1960).

G. A, Korn and T. M. Korn, Mathematical Handbook'

for Scientists and Engineers (McGraw-Hill, New York,
1961), p. 280.

3R. M. Misra and D. B. Pandey, Ann. Phys. (N. Y.) 71,
293 (1972),

~4M. M. Som and A. K. Raychaudhuri, Proc. R. Soc.
London A304, 81 (1968).

~~J. Ozsvath, J.Math. Phys. 6, 1265 (1965).
~6R. M. Misra and Udit Narain, Proc. Natl. Inst. Sci.

India 35A, 771 (1969).


