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General-relativistic treatment of the gravitational coupling between laser beams
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The present paper is an extension of the earlier work of Tolman, Ehrenfest, and Podolsky who investigated
the gravitational interaction between "thin pencils of light. " %'e calculate the gravitational field produced by
a laser pulse traveling with a velocity U & c, and the trajectory of a probe pulse propagating through this
field. The amplitude and phase variations of the probe pulse due to the presence. of the laser pulse are
calculated via the Einstein-Maxwell equations.

I. INTRODUCTION

Some years ago Tolman, Ehrenfest, and Podol-
sky (TEP) investigated the gravitational interac-
tion between "thin pencils of light. " The present
paper is an extension of their investigations moti-
vated in part by the modern-day realization of
high-intensity "thin pencils of light, " i.e., the
high-power laser. In view of precision modern
optics and high-energy laser sources we are
naturally lead to investigate the physical effects
resulting from the gravitational interaction be-
tween intense laser beams.

In their original paper TEP show that "test
rays of light" in the neighborhood of an intense
pulse are not deflected when the test ray (probe
pulse) is moving parallel with the intense pulse.
However, an examination of their calculation
shows that this is due to the fact that both pulses
are moving on the light cone, i.e. , are moving in
egcno. In the present calculation we show that if
our probe and high-power pulses are propagating
with velocities less than the speed of light, inter-
esting interactions between the pulses can occur.
For example, as indicated in Fig. 1, when an in-
tense pulse propagates down a guided wave struc-
ture (which is essentially a hole bored out of a.

dielectric) and the probe pulse propagates in the
dielectric parallel to the optical wave guide, a
finite deflection Dy occurs when the two pulses
propagate in the same direction. Furthermore,
we show that more subtle interactions can occur
requiring the coupled Einstein-Maxwell equations
for their description.

The gravitational field h, „produced by- our high-
power laser pulse is presented in Sec. II. In Sec.
III we investigate the deflection of an optical pulse
traveling through the gravitational field thus pro-
duced. This is essentially a ray-optical problem.
However, in Sec. IV we proceed to calculate asso-
ciated wave-optical phenomena. Using the coupled
Einstein-Maxwell equations we find amplitude and
phase variations of the probe pulse due to the

presence of the high-intensity pulse. Discussion
and numerical estimates are included in Sec. V.

The main thrust of this paper is theoretical.
However, as argued in Sec. V, while the effects
of gravitational coupling between laser pulses are
very small, they are not small beyond the point
of conceivable measurement. In fact, if the next
50 years sees a fraction of the technological de-
velopment that has taken place since the TEP pa-
per 50 years ago, we may well see experiments
along these lines one day.

It is our intention to make this paper as self-
contained as possible since it is hoped that some
members of the quantum optics community may be
amused by these calculations. To this end we have
attempted to carefully define our terms and in-
clude some calculational details in appendices.

II. GRAVITATIONAL FIELD PRODUCED BY
HIGH-POWER LASER PULSE

In this section, we consider the influence of our
intense pulse on the curvature of local spacetime.
That is, we calculate

g,„(r,t) =q„„+h„„(r,t),
where, in our convention, the flat spacetime
metric is given by

0 0 0

(2.1)

0 —1 0 0
Ogv

0 0

0 0 0

(2.2)

and h„„characterizes the contribution to the metric
produced by the high-power laser pulse. Equation
(2.2), of course, implies that

(x', x', x', x ) = (t, x,y, z) .
We choose to display the speed of light in vacgo
explicitly, because the velocities of our high-pow-
er laser pulse and probe pulse are given by v and
zc, respectively. With these three velocities enter-
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CJ k„„=s:(Tn„-st}n„T)

in which the constant z is given by

K=16ttG/c .

(2.3a)

(2.3b)

In Eqs. (2.3a) and (2.3b), G is the gravitational
constant, T =T, and the stress-energy tensorT„„is defined by

T„„=e(eF „"F„„+~4„„F"F,p) . (2 4)

The covariant electromagnetic field tensor in our
notation reads

)

0 Bi E2 F3

Ei 0 B3 -B2

0
(2.5)

&3

and the contravariant counterpart of Eq. (2.5) is
given by the usual expression

FQv gn pg)veF (2.6)

We now proceed to calculate h„„asproduced by
the intense pulse. We assume the pulse propa-
gates in the x direction with a velocity v & c. We
could accomplish this by imagining our pulse to be
traveling through a material medium having an in-

I

ing our problem we find it useful to keep them all
in full view rather than setting c =1.

The small correction h„„dueto the presence of
the laser pulse obeys the linearized Einstein equa-
tion

E,(x, t) =S(r, t) sin(vt -kx),

Bs(x, f}= — — ' sin(vt —kx),
v $(r, t)

(2.7a)

(2.7b)

2-t/2g(r f)a, (x, t}= 1-— cos(vt —kx), (2.7c)

where 8(x, t) denotes the envelope of our pulse
moving with velocity v, and we have ignored spa-
tial variation in the y and z directions. Now, for
a "thin" tightly focused pulse of duration T, we
may write

6 (r, i) =Ep 4[8(v(t+ T) -x}—8(vt -x)]5(y)5(g),

(2.8)

where Fo is the pulse amplitude, A. is the effective
cross-sectional area, and the step function 8(x}
is defined by

1, x&0
8(x) =

0, x&0

As shown in Appendix A, we then find the "pulse-
induced" contribution to the metric to be given by

k„„=k(r,t)m„„,
where

(2.9)

dex of refraction n or, perhaps more realistically,
traveling down a "wave-guide" structure. For the
purposes of this paper let us consider the pulse as
propagating down such a "wave guide" in a trans-
verse electric (TE) configuration. The essential
features of the E and B fields are then summar-
ized by the expressions

v( + ) —(x+)[(u(t+ ')-x)1'+( u'/(e')(y'+z')]'")
vt —x+ [(vt —x)'+ (1 —v'/c')(y'+ z')]' " (2.10)

V

C

V 0

52
0

0

0
(2.11)

0 0 0 0

0 0 0 ~ Intense P()lee+

~ ~ ~ Otgtg

g) Jz

The radiation energy density p appearing in Eq.
(2.10}is defined as

1
p s&e 0 (2.'11a)

vT/[(x-vt) +(1-v /c )(y +z )] «1, (2.11b)

Finally, . we note that for a short pulse such that

I

FIG. 1. Figure illustrating intense laser pulse pro-
pagating with velocity v through dielectric wave guide
{i.e., hole bored in dielectric medium) and parallel-
propagating probe pulse. Probe pulse is deflected by an
amount 6 y as it moves through the medium with velocity u.
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Eq. (2.10}becomes

- (4Gp V/c')
[( — t)'+ (1 — / )(y'+' )]'

where the "volume" of our pulse is given by

V =AvT .
For future reference we note that on the x axis
Eq. (2.12} reduces to

-(4GpV/c )
Ix-vt I

(2.13)

III. DEFLECTION OF PROBE PULSE

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

h» ——0 for v =0, 1,2, 3

in our problem.
Relations (3.3) and (3.5) then yield

(3.6)

d'x' 1 3h(r, t) dx' dx'
dT 2 Bx "dT dT

(3.7)

Writing this out explicitly, using (2.11), we have

Consider now a weak probe pulse traveling in
the x direction with a velocity u and in the vicinity
of our high-. power pulse (see Fig. 1). The probe
pulse follows a trajectory determined by the
gravitational potential due to the intense pulse,
i.e., h„„(r,t) of Eq. (2.9). More explicitly our
probe-pulse obeys the general-relativistic analogy
of Newton's second law, namely,

d X p dx dx~+ =0,0' p dT

where r is a time parameter and (,",}, the Chris-
toffel symbol of the second kind, is defined by

~

~

P 1 t v ~gatv ~g pv ~g'op

0 p 2 Bx Rx Rx

If we consider deflection in the y direction, then
Eq. (1) implies

d x 2 dx dx2+ — =0.
dT 0' p dT dT

The Christoffel symbol appea. ring in Eq. (3.3) can
be calculated from Eqs. (3.2), (2.1), and (2.9) as
follows: To the lowest order in h „wemay write

~ ~

~

~

2 1 22 Bh,,2 Bgg,2 ~h
0' p 2 8x Rx Bx

where we have used the fact that g"" is diagonal.
We may further simplify (3.4) by explicitly taking
h from (2.9), obtaining

2 1 Bh(r, t)
PX2 QP

where we have made use of the fact that

d x 1 8h dx 2Pdx' I8' dx' '
dT 2 Bx dT c dT c dT

P d

d x . 1 &h

dtz
+

2 3„z(I - PP')' =0 (3.10)

where P' =u/c. From (2.12) and (3.10) we find

d y (2GpV/c )(1 —P )y
dtz [( t)z + (1 pz)( z ~ z)]z/z ( PI )

(3.11)
where, for typographic convenience, we have re-
verted to an (x,y, a) notation.

Note that when P =1 the deflection vanishes, '
'that is, it is essential that the intense laser pulse
propagate with a velocity v & c in order for our
probe pulse to "feel" its presence. Under these
conditions an acceleration (deflection) of the probe
pulse is apparent. The magnitude and conditions
for possible observation of this result are dis-
cussed in Sec. V.

IV. AMPLITUDE AND PHASE VARIATIONS CALCULATED
VIA EINSTEIN-MAX' ELL EQUATIONS

The coupled Einstein-Maxwell equations are
used in this section to calculate the amplitude and
phase variations of our probe pulse due to the in-
tense laser pulse. Here we have in mind a physic-
al "setup" such that the high-intensity pulse
(wavelength x„)propagates down a "wave guide"
and the probe pulse (wavelength X~) follows. Note,
however, that the velocity of the probe pulse is
not the same as that of the high-power pulse. In
particular, the probe pulse may be moving with a
speed c. Although the calculation becomes a bit
messy, the strategy is straightforward and pro-
ceeds as follows:

(1) The first (high-power) pulse contributes a
tiny correction to the metric of flat spacetime h„„.

(2) The second (probe) pulse is influenced by
h,„(r,t) as produced by our first pulse. It is well
(if not widely) known that an electromagnetic pulse

where t} = v/c. We now choose the temporal pa-
rameter T to be the time t, as measured in the
laboratory frame. Then the time derivatives of
x' as they appear in (3.8) take on their apparent
physical meaning, and we write Eq. (3.8) as

dx 1 &h Pu Pu 1-p., +-
z 1 2—+ z + z zv =0, (3.9)

dt 2 ~x C C C

where u and zg are the velocities of the probe pulse
in the x and z directions. For the present prob-
lem we may choose w arbitrarily small and neg-
lect the last term in parentheses in (3.9) and write
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moving through curved spacetime reacts just as
if it were propagating through ordinary "matter"
having finite electric and magnetic susceptibility.

(3) The results of propagating through the
"pseudomatter" of point (2}are calculated follow-
ing the usual approach of quantum optics.

We proceed with the calculation as outlined
above. Chore (1) has already been carried out in

. Sec. II. Proceeding with (2), Mwovell equations
for our probe pulse are

The other Maxwell equation (4.1b) implies

Bg, BZ,
Bt'Bx '

Finally, by use of (4.6b) and (4.7) we obtain

(4.7)

(4.8)

and

Bv'Ig I E
-- =0 (4.la}

(4.1b)

Since the probe pulse is well focused and traveling
downthex axis, we maytakey=a =Osothath(x, t) is
given by Eq. (2.13), and (4.8) becomes

c
1 3' 3' 3 13 3 E,(x, t)E (x t)=a ———+— ' ' (4.9)

~ Bt' Bx' ' ' Bt v Bt Bx Ivt x( '

F""= (q"'+ h "}(rI"'+h"')F.,
We assume our probe pulse to be TEM and to
propagate in the x direction, i.e.,

(4.2)

E= E2(r, t), B= 0 (4.3)

0 B3(r, t)

Then from (2.2), (2.9), (2.5), (4.2), and (4.3}we
find, as shown in Appendix B,

where Ig I = I detg I. The metric, and therefore
the influence of the high-power pulse, appear in
the Mmcwel'l equations through Igl andg"" in Eq.
(4.la), since

where

~ =-—,(1 —P)(4G p V/c') . (4.10)

Thus we see that our probe pulse obeys a "driven
wave equation" much as if it were propagating
through an ordinary material medium.

We note that (4.9) describes a probe pulse prop-
agating in free space while experiencing a gravi-
tational interaction with the high-power pulse. If
the probe were propagating in a dielectric medium
with velocity u, then one can sliow that (4.9) and

(4.10) become

-E2/c +yE2 -Ba+yvE22

E2/c' yE2 o-
83 -yv&2 0

where

2 2 I -~ (4GpV/c ) .v Qv 2

cu e

(4.9')

(4.10' }

0

where y =h(l —S)/c .
Substituting (4.4) in (4.1a) and noting that

&Igl =c+O(h'),

we have with p, =2

0

(4.4)
However, for the physical "setup" as described in
the beginning of this section, Eq. (4.9) is appro-
priate.

The physics in (4.9) is made clear by consider-
ing the special case of a plane-wave probe pulse
of the form

3( F'")
~-- ——0, (4.5)

E,(x, t) =E(x, t) cos[kx —&ut + g(x, t)], (4.11)

BE BE ~

Bx Bx0 + i

Writing (4.6a) in terms of E and B from (4.4) we
find, after some simple algebra,

(4.6a)

(4.6b}

which, in view of (4.4), leads to the simple rela-
tion

where E(x, t) and P(x, t) are the envelope and
phase q and

B,(x, t) = ' cos[kx —&ut + y(x, t)] (4.12)
E(x, t)

Following the usual quantum-optical approach8 (as
mentioned in point 3 at the beginning of this sec-
tion), we invoke the slowly varying amplitude and
phase approximation as indicated below
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RE x, t)
«&uE(x, t),

(4.13a}

&P(x t) „()ax

«&uP(x, t) .
(4.13b)

1 8 t Q(4l 1——+—y(x, t) =——I — (1 —p)c Bt Bx ' c 2kv vt —x
(4 ~ 14b)

From (4.14a) we see that the amplitude of our
probe pulse changes due to the gravitational coup-
ling with the high-intensity pulse. Likewise the
phase of the probe pulse as determined by (4.14b)
will differ from its free-space (no high-power
pulse} value (&u/c -k)x. These results are further
discussed in Sec. V, but it should be noted that
such effects vanish when v =c, just as was the
case in the deflection of the probe pulse.

Using (4.13a) and (4.13b), as shown in Appendix 8,
we obtain the following equations for E(x, t) and

y(x, t):

——+—(x, t)= (1-p) 2 E(x, t),
1a Gl I~0(d

4.14a

d y (Ge3E3 V/c )10
dt

(5.3)

In a time Ot a deflection 5y of magnitude

5y -[10 '(Ge3E, 'V/c')Z 'j(&t)' (5.4)

would be observed, and a deflection 5y -10 'g
would be observed in a propagation distance I,
=c5t given by'

I. —[X'c'/(Ge3E, ' V)]'". (5.5)

deflection determined by (5.1). We are interested
not in the precise deflection, but rather in ascer-
taining whether such a deflection could ever be
observed or whether we would have to monitor the
experiment for cosmic distances to see an effect.
With this obj ect in mind, let us further consider the
Gedanken experiment sketched above. The typical
dimensions of our probe and high-power pulses
are taken as X~ and A„,i.e. , the wavelengths of
the probe and high-power pulses, respectively.
Let us assume that we must deflect our probe
pulse by say =10 '~~ in order to detect the deflec-
tion. How far must we propagate in order to ob-
serve this deflection? If we assume A.~-A, „=A.,
that typical distances y are likewise of order X,
and that P =P'-0.9, then we have an acceleration

V. DISCUSSION AND NUMERICAL ESTIMATES

A. Deflection of probe pulse

Consider the acceleration of our probe pulse
when it is traveling in the xy plane with P =P and
at x =et (see Fig. 1). In that case the acceleration
of the probe toward the high-power pulse, as
given by (3.11), becomes

The pulsed lasers presently under development
for fusion applications involve megajoule energies,
with ~ -1p, on a nanosecond time scale. If we
consider our high-energy pulse to be a "mode-
locked" picosecond pulse, then the pulse length
could be of order (10 to 102)A. , and our short-pulse
limit is not wildly unreasonable. In such a case
Eq. (5.5) yields a propagation estimate of

2d S 2GtBeff
(1 p2)3/2

dt
(5.1)

L(X = I p, ) -10 km. (5.6a)

where m, « is the energy in the high-power pulse
divided by c . This is to be compared with the
similar result calculated via simple "Newtonian"
theory

meff
dt 2 (5 3)

It is interesting to note that the general-relativ-
istic result is roughly twice that obtained from
Newtonian theory. The appearance of this factor
of 2 is closely related to the fact that general rel-
ativity predicts a deflection of light in a gravita-
tional field which is twice what a naive Newtonian
calculation yields. Furthermore the acceleration
d y/dt vanishes when P =1.

Let us consider the order of magnitude of the

L(X-10 A)-10 km. (5.6b)

We conclude that based on conceivable, 1p,
and imaginable, 103A, laser parameters experi-
mentally interesting deflections are potentially
attainable in "laboratory" distances. '~

Although this is a large distance, it is not cosmic
and might be realized by bouncing a pulse between
mirrors spaced -1 km apart.

Finally, let us imagine that we have a high-
power UV laser with a photon flux similar to that
of the IR laser described above. Carrying out a
deflection estimate as in the IR case, but now

assuming ~ -103 A, we find a hundredth wave de-
flection in a distance
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B. Gedanken experiment based on Einstein-Maxwell

phase-shift effect

In order to establish order-of-magnitude esti-
mates for the amplitude and phase variations of
Sec. IV, we introduce the variables

techniques. In recent experiments Jacobs and co-
workers have made measurements of length
changes 6L to incredible precision. '3 They make
use of the fact that the eigenfrequencies for a
Fabry-Perot cavity are given by

(5.7a)
v = ac/L, (5.15)

„((,x) =( k (( -k)~)&(k, x),

Bg (k) N(d 1
Bg

' c 2k) p.
(& u)=- -ke- (I 8)-

(5.8)

(5.9)

where we have denoted the separation between
high intensity and probe pulse by

5~ = 'Ut —X = P. o (5.10)

~=t-x/c. (5.7b)

Substituting (5.7a) and (5.7b) into (4.14a) and
(4.14b) we find

where n is the number of half-waves and L is the
cavity length, to write

5v/v =6L/L . (5.16)

Using heterodyne techniques they can measure 5v
to a few hertz, and since, for their IR laser, v
-10~5 Hz, they have a sensitivity

6L/L -10 " (5.17)

Hence, for a 1-m cavity they "see" average dis-
placements of a small fraction of a nuclear diam-
eter. For a UV laser (X-10 A} v-10' Hz, and
recent work has yielded frequency difference mea-
surements of order~4 6v-10 8 Hz, so that we might
reasonably have for a sensitivity

z(x)=z(D)exp f )'(xk(x'),
0

where

(5.11)

Thus the pulse amplitude varies exponentially as
5L/L -10

Let us denote the phase shift as

5(t) =5kL,

(5.18)

(5.19)
(vu) 1-PI'(u)=

k2k p.
(5.12) and further write this in terms of an effective dis-

placement 5L times the wave vector k, that is
Likewise the phase shift obtained is given by

Ilk (x) -=k (x) ——-k )xC

*-a(d 1 —p dx 0

Small variations in amplitude, such as implied
by E(I. (5.11), are essentially unmeasurable. It
is much more reasonable to consider measuring
small phase shifts; therefore, let us consider 5P
in more detail. Taking a from E(I. (4.10), the
phase-shift expression (5.13}may be estimated as

(5.13)

6(t) - —5(GcoEO V)(1 —p) —dx'.
0 C P

(5.14a}

5(t)-(10 '0 m ')x, (5.14b)

a very small change. In fact, if one asks the man
on the street "what is the smallest phase shift
that could be measured, " the usual answer is, "I
can see a 'hundredth-wave' change in length so
6P =2w5L/X -10 ." However, we can gain some
encouragement by considering the precision mea-
surements made possible by modern stable laser

Using the UV laser parameters as discussed above
in E(I. (5.14a), we estimate the phase shift to go
roughly as-

OkL =k5L .
Therefore, we may write

5k =k5L/L,

(5.20)

then for k -10 m ' and taking 5L/L from (5.18),
we have 6k -10 m, and from (5.19) this im-
plies a phase shift

5P -(10 ~ m ')L . (5.21)

Comparing the "measurable" phase shift (5.21)
with the estimated effect (5.14a), we see that a
long interaction length "x" (-10 m) and a short
cavity length "L" (-1 cm) are suggested. This
Gedanken experiment is clearly not an experiment-
al call to arms, but rather an argument that such
experiments are "thinkable. "
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(Al)

We find the stress energy tensor

APPENDIX A: A„„DUETO TE GUIDED WAVE

We first calculate the stress energy tensor for an arbitrary electromagnetic field from (2.4), (2.5), and

(2.6) as well as the expression for F„",
)te+~ =& +"~

T gV

—(E382 -E283}

—(E282 -E282}

+ B)Bz

+B(B3

~
(E 2 + c282} —(E283 -E382)

(E283. E382) [2(E + c 8') —(E2 + c 82 )]

(E382 E283}

+B)Bz

[2(E +c 8 }—(E2 +c 82 }]~

+ B(B3

—(E282 -E282)

+BiB3

+ 8283

[,'(E'+ -c'8'}—(E3'+ c'8,')]~
C ~

Inserting Eqs. (2.7a), (2.7b), (2.7c) into (A2) we find

t —,'$2(r, t) ——~82(r, t) 0 0
2

(A2)

T lkV

Ep

8 (r, t) —~S (r, t) 0
1 g 2 1
2c 2c

0
20,— 8'(r, t)

(AS)

where we have replaced high-frequency terms
such as sinzcot, etc. by —,': By so doing we are
neglecting terms which go as & sin+t, which aver-
age to zero in a short time. We may then write
Eq. (A3) as

T„„=3PPS (r, t)M~„,

where

and therefore T =0.
Hence, Eq. (2.2) becomes

Cl 5~v =VT„„.
From Eqs. (A4), (A5), and (A6) we see that

0 hpp K[ppp8 (x t)]

(A6)

(A7)

0
C

gz
0

o o o o
(A5)

&pi =@so= "ooc

while

-1
h33 (1 -p )hpp

(A8)

(A 9)

0 0 0 ~(1-8)
Next we note that the trace of T„„vanishes,that

ls~

' We then have only to solve one differential equa-
tion in order to obtain hpp, hp&, and h33 That
equation is

CPh(r, t) = «(,'ppb2(r, t)), — (A10)

2

3- z

2PP8'(r, t)—
0 0 0

0

0

where we have defined

h(r, t) =-hpp(r, t) . (All)

For a pulse moving with a speed pin the x direc-
tion we may write h(p, t) =h(x-vt, y, z). For this
function the substitutions of x=x-et changes the
d'Alembertian of Eq. (A10) to



19 GENERAL-RELATIVISTIC TREATMENT OF THE. . . 3589

] B B2 B2 B2 . B B B~

-~~p+9 z+9 z 6 z =(I-&')9 z+9 z+ z ',

c I x y z x By Bz

(A12)

now if we define

This trick, which effectively removes time from
the problem, is well known in electromagnetism.

In view of the above, Eq. (A10} now reads

v'h(x, y, z, F) =(~pA)[e(v(t+ T) -(1-8')' 'x)

x=(1-8')' "x,

we see that (A12) becomes

(A13a)

(A13b)

(A13c)

(A14)

- e(vt -(1-6 )zi x)]6(y)5(g), (A15)

where we have taken 8(r, t) from (2.8) used (A13a),
(A13b}, (A13c) and the radiation energy density
—,'&0E0 is denoted by p. Since (A15) involves only
V (instead of CP), we are relieved of worrying
about time retardation, etc. , and the solution is

"„,[e(v(t + &) —(1 —8')' "x')—e(vt - (I —P')' "x')]5(y ')6(Z')

[( — ')'+ (y -y')'+ ( — ')']' "
1 [v( r)v v] (]xv(v)v-—+xx]+0 3*) ()v +xv)p-")

4& (vt -x)+[(vt -x)'+(1-pz)(yz+gz)]'iz (A16)

Equation (A16) together with (AV), (AS), and (A9)
are concisely summarized in Eq. (2.9).

At this point it is convenient to define the "flat"
space tensor field strength

APPENDIX 8: DERIVATION OF EQS. (4.4)
AND (4.14a) and (4.14b)

From Eq. (4.2) we have

pp» ~ tt ty+ ~PV

From Eqs. (81), (84), (85), and (86) we may
write I'""as

h 5 g h

(86)

(86'}

To lowest order in h we may write

so that

~ ttPh ~ ~

Hence the last two terms in (81) are

while

h"'z}"'F =- 2}"'h gz) 'F 2]' )

(82)

(83)

(84)

(85)

E /c2

-E,/c'

-E,/c'

E,/c' E,/c' E,/c'

Q B3 -B2

-B3 0

0

(Bc)

Taking. h„6from (2.9}, carrying out the matrix
multiplication in Eq. (86), and taking K and 5
from (4.3), we find

Inserting E„from Eq. (2.5) into (86) we obtain the
usual flat-space contravariant field tensor

gQV Q4 V+

c
2 00 340 2 01

4 2 2 3 ll

(
-E2@oo -B3@lo

Q
C4 C2

2 Ol+B g P (88)
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where we have used the fact that for our probe pulse E = (O, E„O)and 5= (0, 0, B,). Finally we recall from
Sec. II:

8 V
ho, —h, h„——,k, k„—4h.c c (89)

Inserting (89) into (88) and using B,=E,/c yields (4.4).
For the convenience of the reader who is not familiar with this type of calculation we now indicate a few

steps in the passage from (4.9) to (4.14). Consider the left-hand side of (4.9). Rewriting we have

8 8 ] 8 8——+—————E(x, f) cos[vt —kx+ (t)(x, f)]c 8t 8x c 8t 8x

] 8 8 4) 8 8——~ — B(x, t) —+2+ ————tr(x, t) stn(rct —kx+ 2)+ ————B(x; t) oos(rct —kx+ 2)} . (B)0)c8t 8t ' c c 8t 8x c 8t 8x

Using the slowly varying phase and amplitude approximation (4.14a), (4.14b) this becomes the left-hand
side of (4.9):~

~

~

8 8 f 8 8——~ —B(x, t) 22 ~ ———.—k stn(rct —kx+k)}. (Bll)c 8t 8x ' c 8t 8x

Likewise

8 82k» ————Q,c 8t 8x

and so we are left with the final form

8 8 I 8 s
2k ——+—E(x, t) sin((dt - kx+ p) + E(x, t) ——k+ ——+—(f) (x, t) cos((k)f —kx+ ([)) )c8t c c 8t 8x

Consider next the right-hand side of Eq. (4.9),

8 ]. 8 8 ].o ———~ — — B(x, t ) cos[rot -kx+ 2 (x, t)]),Sf v sf sx )vt-x)

noting that

] 8 8

v sf+ex ~vt —x~

We have

E(x, f) (Au — ' k ——sin[mt —kx+ P(x, f)]~vt-x~

(812)

(818)

(814)

ZP (d
aE(x, f) 1-——

v c (vt-x)', ~ in[c t —kz+ 2 (x, t)] — con[rot —kz + 2 (x, t)]),[vt —x
f

which is, of course, equal to (812). Equating the coefficients of the sine and cosine terms of (812) and
(815}yields

(
]. 8 8 (pc@ e 1——+—E(x, t}= 1 ——,E(x, f),c st ~x ' 2k c (vt-x)'

(815)

(816a)

where we have invoked the slowly varying phase and amplitude approximation. Continuing to neglect de-
rivatives of E(xt) and 2tk(xt), (814) may be written

'1 s s (2) t'n(2)' v——+—(t)(x, f) =k ——— 1-—cat sx ' c (2kv c Ivt —x (816b)

B. Tolman, P. Ehrenfest, and B. Podolsky, Phys.
Hev. 37, 602 (1931).

2The linearized Einstein equations are clearly devel-
oped in C. MMisne, K. Thorne, and J.Wheeler,

Gravitation (Freeman, San Francisco, 1970), Chap.
18; and H. Adler, M. Bazin, and M. Schiffer, Intro-
duction to General Relativity (Mcoraw-Hill, New
York, 1965), Chap. 8.
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We use MES units throughout.
See, for example, J. Slater, Micros@ave Transmission
(Mcoraw-Hill, New York, 1942); or N. Kapany and
J. Burke, Optical ~aveguides (Academic, New York,
1972).

S. Weinberg, Gravitation and Cosmology (Wiley, New

York, 1972), Sec. 5.1. We note that the parameter ~
in Eq. (3.1) may be taken as the proper time since our
probe photons are "off the light cone, " i.e. , move with
velocity v & c.

6The fact that there is no interaction between coparallel
light rays moving through the vacuum was first pointed
out by Tolman, Ehrenfest, and Podolsky (Ref. 1). See
also A. Lightman, %'. Press, B. Price, and S. Teuk-
olsky, Problem Book in Relativity and Gravitation
(Princeton Univ. Press, Princeton, N.J., 1974),
Problem 13.17.

7C. Moiler, The Theory of Relativity (Oxford Univ.
Press, London, 1972), 2nd edition, Section 10.9.

See, for example, M. Sargent, M. Scully, and
W. Lamb, Laser Physics (Addison-Wesley, Reading,
Mass. , 1974).

Of course, a "thin pencil of light" such as this would
experience a substantial spread due to diffraction in
a short distance if the pulses were in a free space.

Hence, we envision containing our intense pulse in a
multiple mirror configuration or a guided wave struc-
ture. In such a case we might like to have ~& «A, I, .
In some such experiments one might wish to ensure a
"perfect" vacuum within our guided wave structure.
This could be accomplished by using the technique of
Vf. Boreham and J. Hughes as discussed in their
paper contained in the Digest of Technical Papers
presented at the Tenth International Quantum Elec-
tronics Conference, IEEE, Cat. No. 78CH1301, lQES,
1978 (unpublished). Thus we might envision a "precur-
sor" pulse sweeping out the very dilute gas in our
high (but not absolute) vacuum.

f Photon-photon scattering via material or vacuum
polarization would not be a.problem in the present
experiment if we keep the pulses physically separated.

2In this estimate we have taken the group velocity to
be -v, while the phase velocity -c. The appearance
of the factor (1/v) 8/St+8/Bx in (4.9) requires us to
keep these possible distinctions in mind lest this fac-
tor, and thus the phase shift, vanish.
S. F. Jacobs, private communication. See, for ex-
ample, J. Berthold, S. Jacobs, and M. Norton, Appl.
Opt. 15, 1898 (1976).

f4S. Ezekiel, private communication.




