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The field equations for a new theory of gravity are derived from a variational principle when
electromagnetic fields are included in the Lagrangian density £. A static. spherically symmetric solution to
the field equations is obtained, which reduces to the Reissner-Nordstrdm solution when a new gravitational
coupling constant / equals zero. For [ > m + (m> — 4wQ*''? black-hole event horizons are excluded from

physical space-time.

I. INTRODUCTION

A new theory of gravitation' has been form-
ulated on the basis of a nonsymmetrical Her-
mitian g, and T},

In the following, we shall study the consequences
of the new theory when electromagnetic fields are
present and derive the static spherically sym-
metric solution for thefield of a charged particle.
One important result that emerges from the solu-
tion is that if

I>m +(m? - 47Q%)/2,

where @ is the electric charge on the particle,

the charged black-hole event horizons of the type
predicted in Einstein-Maxwell theory are excluded
from physical space-time. Moreover, test parti-
cles are prevented from reaching the essential
singularity at » =0. These results generalize
those obtained in Ref. 1.

II. THE VARIATIONAL PRINCIPLE AND THE
FIELD EQUATIONS

The Lagrangian density which includes contri-
butions from the electromagnetic field F, is
chosen to be!

£=V=g[g"R,W)+41F"F,], (2.1)

where

F™ =g°‘“gB”Faa=—F”" ,

(2.2)
Fu=Ayu=Ayy-
The variational principle requires that
Gf.,cd“x:O. (2.3)

Consider first the variation of the second term in
(2.1) with respect to g” with 5g* vanishing at the
boundaries of integration and A, being kept con-
stant with respect to the variation. We have

8(FMF ,V=g)==2E4,V=g 6g°%
=2V-g 68" (~igp, F*F,,
+g°FogF,,), (2.4
where
Ey==g*°FpF o +18u F Fo, (2.5)

is the Hermitian stress-energy tensor of the elec-
tromagnetic field.

Next consider the variations 64,, the g, remain-
ing constant,

6(F" FyV=g)==4(V=g F") ,04,+4(V=g F"54,) , .
(2.6)

The variations with respect to W;‘,, and g, were
calculated in Ref. 1. The resulting field equations
are

gp+l)—;0=0’ 2.7
gt =0, (2.8)
R, (W)= 3g,R(W)=81E ,, (2.9)

where ¥ =v=g X and
g, =0. (2.10)
Equation (2.2) yields an additional relation
Fu,otFyou+Fou,=0. (2.11)

The equations

Ry, (W) =R(T) +5(W, , =W, ) (2.12)
and

E=g"E, =0 ' (2.13)
allow (2.9) to be written as

Ru)(T) =81E,,), (2.14)

Rip,o(T) =87E . (2.15)

The equation of motion of a charged test particle
takes the form
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@z xt dx® dx® _q (g, dx’
dss e s ds ug Fug ds ’ (2.16)

where . and g are the vanishing small mass and
charge, respectively, of the particle.
III. THE COVARIANT FORM OF MAXWELL’S EQUATIONS

When current density sources are included,
Maxwell’s divergence equation (2.10) becomes

I, =g, (3.1)

where 3* is the electric current-density four-
vector. If we define

Flesvad YoV —FVET), (3.2)
then
- (V-g),
FLE*o=l (=FH o+ F*° e =, ‘ (3.3)

so (3.1) is equivalent to
Flesvd = go, (3.4)

The covariant form of the other set of Maxwell’s
equations (2.11) is

Fu+u-;0+Fy-c-;u+Fa+u+;v=0- (3-5)

IV. STATIC SPHERICALLY SYMMETRIC SOLUTION

In spherical polar coordinates x'=7, x%=0,
x¥%=¢, x*=t, the form of g,, is®

- 0 0 w
0 -2 fsing 0
w=| o —fsind -¥%sin®6 0 (4.1)
—w 0 0 1%
Since we choose the boundary conditions
g(;w)"huv’ gt~ 0as v~ (4.2)

where
Ny =diag(l, -1,-1,-1)

is the Minkowski metric tensor, we have g ,; =0

everywhere.! The contravariant g*” takes the form
s ’ N
- = 2 0 0 =t 2
ay-w ay =w
1
0 -— 0 0
1,2
&= . (4.3)
0 - 1 0
¥2sin®
a ?wz 0 a (iwz
.~ Y 14 J

Equation (2.8) yields the solution

w?=0yK, . (4.4)
where
__k
Kger -5

and k=il? is a purely imaginary constant of inte-
gration. A calculation of the R,(T) has been pre-
sented before.? Since the tensor R ,,; has only one
nonvanishing component R;,, and g5 =0, Eq.
(2.15) is identically fulfilled.
The electric field is static so that
Aj=A,=4;=0, -
(4.6)
F14="F41=A«'1- }

With o =e* and y =¢” (a prime denotes differentia-
tion with respect to 7),

FH=(eMV—w?) 1A,

Fl=V=gF =(eM’ —w?) V242 sinbA] .
Equation (2.10) then yields the result

§*  =sinf[(eM?-w?)"V324;] =0, (4.8)

(4.7)

which gives upon integration
A/ =_Q (e)\+u_w2)112 ! (4 9)
4 ,rZ > .
where @ is a constant of integration.

We must now solve the field equation (2.14).
Since

1 >\Q2 1.2 ?
Eu:‘Ee ,’T; E22=‘27 ,},_4,
(4.10)
o @ - @
E33=%r2s1n26;’7, E44—§e";4-,
we get
My 4
e R, (T)+e "R, (T) =—~ +—§=o, (4.11)

v

where K is given by (4.5). The R,,(T') equation is

7 ’
VN a2y 4K o @°
7,e +re e (e 1) 7‘2.2 87ry4.
(4.12)

Multiplying (4.11) by e™* and substituting the re-
sulting expression for —(v'/7)e~> into (4.12) we
find
Aol 1 (s
A 2 = 9
e (7 72) tz 41r74 . : (4.13)

This can be integrated to give

a:( _%:ﬂ +4ﬂ?2>_1. (4.14)
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By virtue of (4.5), Eq. (4.11) can be written in
the form

7

74
[7\ +v +ln<w)] =0. (4.15)
Hence
74
Aty +1n<m§> =const (4.16)

This gives, since %% =~[% the result

4

.
g (4.17)

where C?is a cons{ant of integration. Using Eq.
(4.4) we get

212
w? =Crf . (4.18)

For 7~ we have w ~ 0 and g¢,)~n,,. Thus from
(4.17) we must have C*=1 and (4.17) and (4.18)
give

1\ 2m  47Q?
7=<1—1—f—4)(1__y_+ ,er>:

(4. 19)

V. PHYSICAL INTERPRETATION OF THE SOLUTION

From Egs. (4.14) and (4.19) we obtain the metric
exterior to a charged particle

ds®= (1 ——l‘;) (l—gﬂ +477—2Qi) dat?
¥ ¥

,',.4

2 -1
—( _2m +47r§9 ) ar? —r3dQ?. (5.1)
v I%
Moreover, from (4.9), (4.14), and (4.19) we find
that

Fm:A;:yiz? . (5.2)

This justifies our identifying @ with the electric
charge on the particle.
The metric (5.1) has three null surfaces

v, =1, ry=m+(m?-47Q*"?,

¥y =m — (m? - 471Q%)/%

where the latter two null surfaces occur only when
m?®>47Q*. When <[, we see that ds*<0 and the
radius 7, =1 defines a sphere inside which space
is Euclidean four-dimensional. This sphere ex~
cludes the essential singularity at » =0 from
physical space-time, as in the case of the vaguum
solution for an uncharged particle with @ =0.!
When [<7,, the line element (5.1) can form black-
hole event horizons at » =7, and v =7, similar to
those that occur in the Reissner-Nordstrom solu-
tion,*** when m®>47Q*. However, when [>7,, the
standard black-hole event horizons are excluded
from physical space-time, that space-time for
which the metric is locally Minkowskian and the
proper time along the path of a test particle re-’
mains real. Test particles moving along paths
determined by the equation of motion (2.16) will
be deflected for »>1, so no particle can reach 7»
as in the uncharged case.} ’

In the present work there has been no attempt
made to unify the gravitational and electromag-
netic fields. In contrast to previous work,’ the
total gravitational field is described by the non-
symmetric metric &y while the electromagnetic
field F,, is treated as a separate field in the same
way as in the Einstein-Maxwell theory.
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