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Static spherically symmetric solution for the field of a charged particle in a theory of gravity
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The field equations for a new theory of gravity are derived from a variational principle when
electromagnetic fields are included in the Lagrangian density R. A static spherically symmetric solution to
the field equations is obtained, which reduces to the Reissner-Nordstrom solution when a new gravitational
coupling constant I equals zero. For 1 & m + (m —4m.Q)" black-hole event horizons are excluded from
physical space-time.

I. INTRODUCTION

A new theory of gravitation' has been form-
ulated on the basis of a nonsymmetrical Her-
mitian g„, and I"„„.

In the following, we shall study the consequences
of the new theory when electromagnetic fields are
present and derive the static spherically sym-
metric solution for the field of a charged particle.
One important result that emerges from the solu-
tion is that if

I& m+(m' —4wQ')'I',

where Q is the electric charge on the particle,
the charged black-hole event horizons of the type
predicted in Einstein-Maxwell theory are excluded
from physical space-time. Moreover, test parti-
cles are prevented from reaching the essential
singularity at r =0. These results generalize
those obtained in Ref. 1.

Epv=-g"FveF pa+4 g~F"FaT (2 6)

is the Hermitian stress-energy tensor of the elec-
tromagnetic field.

Next consider the var iations 5A.„, the g„, r emain-
ing cons tan t,

5(F[ F„„E-g)=-4(4-gFQ „5A.„+4(v'-gF['"5A.) „.
(2.6}

The variations with respect to 8'„, and g„, were
calculated in Ref. 1. The resulting field equations
are

gi +v-:a (2 7)

5(F[ F~V-g) =-2KB„v'-g 5g'"

=2~ g5g (-ag[) F
g'"F.,F„,), (2.4)

where

II. THE VARIATIONAL PRINCIPLE AND THE
FIELD EQUATIONS

The Lagrangian density which includes contri-
butions from the electromagnetic field F„,is
chosen to be'

~
$PV] 0

~V

R„,(W) ——,
'
g„,R(W) =8vZ

where X =v'-g X and

Mpv 0
I

Equation (2.2) yields an additional relation

(2.8)

(2.9)

(2.10)

g =V-g [g~"R„„(W)+4vF+F„„],

where

(2.1)
Fpv, &+Fv a,p+Fap, v

The equations

(2.11)

Fpv ggpgevF Fvp
pe

Fpv =Av. p- A.p, v ~

(2.2)
and

R ~(w} =R„„(I'}+ —,(W„,—W„„) (2.12)

The variational principle requires that

g d~g =0. (2.3)

E -guvE -0
pv

allow (2.9) to be written as

(2. 13)

(2. 14)
Consider first the variation of the second term in
(2.1) with respect to g[ with 5g"' vanishing at the
boundaries of integration and A„being kept con-
stant with respect to the variation. We have

(2.15)

The equation of motion of a charged test particle
takes the form
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'd x
p

dx dx g @g) dx
~as d d 8 va (2. i8) Equation (2.8) yields the solution

w' =nyK, (4.4)
where p and q are the vanishing small mass. and
charge, respectively, of the particle.

III. THE COVARIANT FORM OF MAXWELL'S EQUATIONS

where

K= 2 -4 (4.5)

When current density sources are' included,
Maxwell's divergence equation (2.10) becomes

g. »" =Q»
~ 7J

where Q» is the electric current-density four-
vector. If we define

~[»+V ] l(y»+1l yV 4»
2 2 2

(3.1)

(3 2)

and 0=ii is a purely imaginary constant of inte-
gration. A calculation of the R„„(I'}has been pre-
sented before. ' Since the tensor R&„„,has only one
nonvani. shing component R„~ and g„z = 0, Eq.
(2.15) is identically fulfilled.

The electric field is static so that

A,' =A2 =23 =o',
:1E =-Ji41=+. (4 8)

(g-u.
p~»' -1 =p»' 4.p»' '

;O, O (3.3)
With a =e" and y = e" (a prime denotes differentia-
tion with respect to r),

so (3.1) is equivalent to

~ [Jl+fj ] gP~ p (3.4)

y41 (eX+V ~2)-1~~

Cy41 g A
@41 (eX+ ll ~2)-1/2 r2sing~~

(4.7)

+p+, -; o+F & -o-;~+J'a+p+;v=0 ~ (3.5)

IV. STATIC SPHERICALLY SYMMETRIC SOLUTION

In spherical polar coordinates x' =r, x2 = 8,
x2 = Q, x4 = f, the form of g»„ is'

-(y 0 0 w

The covariant form of the other set of Maxwell's
equations (2.11) is

l

Equation (2.10} then yields the result

=sln8f(e -14/ } r A ] = 0

which gives upon integration

(e 4+!i ~2)1/2

where Q is a constant of integration.
We must now solve the field equation (2.14).

Since

(4.8)

(4.9)

fsin0 0

-fsine -r' sin29 0 (4. i)
E =-—'e — E1 1Q' 1.9'

11 2 4 P 22 2 4

(4.10)

0 0

g( )-q„„y gt-pp]-0 as r-~,

w y

Since we choose the boundary conditions

(4.2)

we get

A2 n2

where
e- R„(r")+e-"R„(i)= +—,=0, (4.11)

q, =diag(l, -1,-1,-1)
is the Minkowski metric tensor, we have g&23] =0
everywhere. ' The contravariant g"' takes the form

wlleI'e K 1s glveI1 by (4.5). Tile R22(I ) equatloI1 ls

v'
g X g 2 ), 4K ),——e +—e —,(e -1)-, e =8II

y r r' r' r' '

0 r2

y 0
Qy —w

-W

ny -m 2
(4.12)

Multiplying (4.11) by e and substituting the re-
sulting expression for (v'/r)e " into -(4.12) we
find

0

w

Qy -%2

1
0 r' sin28

0

0

Q'

Qy ~w 2

(4.3) 1 1

This can be integrated to give

2421 4IIq'l '
1 — +

(4. ia)

(4.14)
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By virtue of (4.5), Eq. (4.11) can be written in
the form

I
r4

A +p+ln 4, =0.r'+k' (4.15)

4

X+p+ln, , = constr4+u'

This gives, since k'=-l4, the result

(4. 16)

2ny 4 ~=C (4.17}

where Q' is a constant of integration. Using Eq.
(4.4) we get

C'k'
ZU r' (4.18)

For r -~ we have w - 0 and g~,~- q„,. Thus from
(4.17) we must have C' =1 and (4. 17) and (4.18)
give

1 4,1 ~ +

iE
ZD =k —.r2 '

(4.19)

ds' = 1-—~ 1- +, dP

2m 4vQ'1- + 2 d rdQ (5.1)

V. PHYSICAL INTERPRETATION OF THE SOLUTION

From Eqs. (4.14) and (4.19) we obtain the metric
exterior to a charged particle

This justifies our identifying Q with the electric
charge on the particle.

The metric (5.1) has three null surfaces

r, =f, r, =m+(m' —4vq'}"',

r, =m —(m'- 4vq')'",

where the latter two null surfaces occur only when
m'&4vQ'. When r& l, we see that ds'&0 and the
radius r, =3 defines a sphere inside which space
is Euclidean four-dimensional. This sphere ex-.

cludes the essential singularity at r =0 from
physical space-time, as in the case of the vaquum
solution for an uncharged particle with Q =0.'
When l&r„ the line element (5.1) can form black-
hole event horizons at r =r, and r =r„similar to
those that occur in the 9,eis sner-Nor dstrom solu-
tion, '~ when m' & 4vrQ' Howe. ver, when / & r„ the
standard black-hole event horizons are excluded
from physical space-time, that space-time for
which the metric is locally Minkowskian and the
proper time along the path of a test particle re-
mains real. Test particles moving along paths
determined by the equation of motion {2.16) will
be deflected for r&l, so no particle can reach r=0,
as in the uncharged case.'

In the present work there has been no attempt
made to unify the gravitational and electromag-
netic fields. In contrast to previous work, ' the
total gravitational field is described by the non-
symmetric metric g&„while the electromagnetic
field I „, is treated as a separate field in the same
way as in the Einstein-Maxwell theory.

Moreover, from (4.9), (4.14), and (4.19) we find
that

(5.2)
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