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Cosmological solution of Bianchi type I in a new theory of gravitation
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%e present a homogeneous, plane-symmetric, matter-free solution to a new theory of gravitation. In the
limit of large t, the solution goes over into the plane-symmetric Kasner metric of general relativity,

I. INTRODUCTION II. THE SOLUTION

Evidence for the present large-scale homogeneity
and isotropy of the universe comes from several
sources, ' yet these observations do not rule out
cosmologies anisotropic in the early stages of the
universe. ' Such anisotropy as is. introduced at the
beginning of time tends to disappear'. as matter
terms become important, and the metric reduces
to an isotropic one at sufficiently large t.

Isotropic and anisotropic models based on Ein-
stein's equations share one common feature: at
t =0, the curvature of space-time becomes infinite
and the density of matter also goes to infinity.
Argument-:s seeking to avoid this singularity usually
invoke quantum effects, but no clear picture of
how such effects are supposed to work has yet been
given. Thus it would be of considerable interest
to find a model with different analytic properties.

We present a homogeneous anisotropic nonstatic
solution of the Einstein-Straus' field equations,
interpreted as a theory of pure gravitation, ' and
discuss the motion of test particles in the metric
and certain analytic properties of the solution.

The theory for this cosmological model and the
notation used herein are described in Ref. 5.

The field equations are
a a

S'I v, n-agar'~. —ao. ~p~ =0

1 (~~ =0,

R„.(w) ——,'g„@(w) =8~7 „„.

(2.1)

(2 2)

(2.3)

The g„„corresponding to a plane-symmetric
homogeneous anisotropic nonstatic space-time
in comoving Cartesian coordinates is

-o (t), 0 0 w(t)

-p(t) f(t)
-f(t) -p(t) 0 (2.4)

-w (t) 0 0 1

with line element

ds' =dt' —o.(dx")' —p[(dx')' + (dx')']. (2.6)

Equation (2.1) can be solved to yield the affine
connections

(2.7)

~(14) 2[(w /+)~ +/+]& ~(34) (24)

I' = I" =-'wA I'4 =w'g+-iv
[, 12] t 133 2 & ll 2 )

(2.6)1(„)=-1()= ND, I~(

I,', = I,', = --,'(fD —PA), r'„„=- ,'(f8+ PD), -
where A =-,' ln(p'+f'), (() =in(1 —o. /w'), and D =(pf —pf)/(p'+f'), with )' =dy/dt. All the other I'~, 's are zero.

We now restrict ourselves to empty space, so that

T„„=O,
and the field equations involving R„,(I') read

R» = (wf -,+—)()+ (w'p+ —,())[A- (w'/2())p - a/2(x]+ w'(A'+D') + 4 w'(t—' = 0,

R» =R» = —
2
—(fD —PA) —,(fD —PA) —ln(—w —n) —,D(fA+PD) =0, —1 8 1

1 w ' cK I Q w ' 1 s (x wR„=-A--.(A +D')-- —y+ —
~

—+—(( --——+—& =0,4 N A &a ot 2 Bt

(2.8)

R~»&= ,'(fA+ pD) —ln-(w—'. —n) —
2
—(fA+ pD) + ,'D(fD —pA) = c, —
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where c is a constant of integration. Equation
(2.2} implies that either so =0 or

P =2A,

which leads immediately to

P'+f'
o. k'+/+f' '

(2 9)

(2.10}

(2.11)

the equation

where 4 is a constant of integration.
As a further simplification, we take f=0 and

consider only the effect of u c0. Then the equa-
tion R&»i =c reduces trivially to zero and we are
left with three equations to satisfy.

The linear combination R»+eR44 =0 yields with
d2x~ „dx dxa
ds' ' ds ds

(3.1)

Using the I'~„given in Eq. (2.6), we find that

III. ANALYSIS OF THE SOLUTION

The solution given in Eq. (2.19) is open in the
plane of symmetry, as expected, and closed in
the direction of anisotropy. Moreover, the solu.
tion has the correct correspondence with the solu-
tion of Einstein's equations' when K-O.

The interesting features of the model occur as t
decreases toward zero. When t(K"', n becomes
negative and the signature of the metric vanishes.
This means that the singularity present at t =0
lies in an unphysical region of space-time. To
gain more understanding of this phenomenon, we

shall study the behavior of world lines.
The test-particle equation of motion is'

2-- — --—lny =0.P P' P'8
p p pet (2.12)

Subtracting from A'44 and integrating, we obtain

d dx
((y gg ) =—P =Oi

ds ds ds

d & dx"

(3.2)

(3.3)

(y)2 = Xy/p' (X = constant) .
The R» equation becomes

2- +-—lny =0.P P s

P Pet

Equations (2.12) and (2.14) give

P Ct4/3

(2.13)

(2. 14)

(2.15)

(3.4)

Thus, the motion is restricted to a straight line.
A first integral of Eq. (3.1) is

where C is a constant and on'e constant of integra-
tion has been set arbitrarily equal to 1.

If X =0, y is a constant, which implies that P =0
from either Eq. (2. 12) or (2.14). Compatibility
with Eq. (2.15) then requires C =0, leading to a
trivial solution.

If XP 0, the solution of Eq. (2.13) is

which yields

dt n q2+u'—= I+P 22+ds (o. —w')' P

~2+„.
P t 8j3 4/3t t

(3.6)

y =Bt "'
and we deduce from Eq. (2.11) that

(2.16)
where P, q, and u are real constants of integration.
It follows that dt/ds is imaginary at

(2.17)
K

,1 + 1/p't'/2 + (/I' +u )/2p2, t

3/8

Finally, (K3/4 (3.'I)

2 y2 t -10/3B
C

(2.18}

g4/3 (2.19)

$U=SKt

Setting B= C = 1 and noticing that jP = -K2( 0 since
ge is pure imaginary, we obtain the solution

2/2(1 ~2t 8/3)

Hence the world lines of test particles are well
behaved everywhere in physical space-time for
t) z2/': The branch point in Eq. (3.6) occurs at

only as P- ~, corresponding to a null ray
moving in the direction of anisotropy x'. The
non-Riemannian 4-geometry, however, is finite
on the surface t =K"', even though the Riemannian
submanifold is singular. In the new theory, the
initial state of this model (empty) universe would
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have different analytic properties than in Einstein's
gravitational theory. A more realistic cosmology,
describing a universe containing matter, will be
considered in a forthcoming paper.
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