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J. W. Moffat
Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada

(Received 5 July 1978)

A new theory of gravity is proposed in which the geometry of space-time is determined by a nonsymmetric
field structure. The theory satisfies the following requirements: (1) general covariance, (2) (weak) principle of
equivalence, (3) the field equations are derivable from a Lagrangian action principle, (4) the theory agrees
with all the classical (weak gravitational field) tests of Einstein's general relativity. The field equations for
the nonsymmetric Hermitian g„. lead to a rigorous static spherically symmetric solution for the gravitational
field in empty space that excludes the essential singularity at r = 0 from physical space-time. It is expected
that the predictions of the theory will differ significantly from Einstein's theory of gravitation for compact
sources or supermassive stars. Matter undergoing gravitational collapse is prevented from forming a black
hole (in physical space-time) of the kind predicted in Einstein's theory, when a new gravitational parameter l
that appears as a constant of integration in the solution satisfies t g 2m.

I. INTRODUCTION

Einstein's 1915 theory of gravitation, ' based on
a Riemannian metric tensor g„„, although experi-
mentally verified with a good degree of accuracy
for comparatively weak gravitational fields, suf-
fers from the consequence that the very notions
of space-time become meaningless at the singu-
larities of collapsed stars and cosmology.

Einstein devoted many years to searching for
an extension of his gravitational theory that would
possess rigorous solutions regular everywhere .

in space-time; one such attempt, which he claimed
was the most natural extension of his theory, was
based on a nonsymmetric tensor field g „.' '

The present author, together with collaborators,
has investigated' ' the nonsymmetric theory with
the identification g„„,-E,„. However, there is
no compelling reason Einstein's original theory' '
should be interpreted as somehow including the
electromagnetic field. Indeed, we show in the
following that a purely gravitational interpretation
leads to a rigorous spherically symmetric static
solution that excludes the essential singularity at
x=0 from physical space-time. Moreover, the
theory can be made to agree with all the classical
tests of general relativity.

We shall base the new theory on the following
postulates:

(I) The laws of physics are invariant under gen-
eral coordinate transformations.

(II) The (weak) principle of equivalence is valid
for the total gravitational field structure.

(III) The field equations are derivable from a
Lagrangian action principle and they are second-
order partial differential equations.

(IV) The geometry of space time, as determined
by the gravitational sources, is non-Riemannian

and described by a nonsymmetric Hermitian tensor
g,„and a nonsymmetric Hermitian connection 1"~„.

(V) The world lines of material test particles
follow the equations of paths"

X ~ AX dX
S2 nB dS dS

+r'

II. THE FIELD STRUCTURE AND THE FIELD EQUATIONS

The geometry of space-time will be determined
by a nonsymmetric tensor g, „which decomposes
into

&g v
=&(p, v&

+ &[p v) & (2.1)

(2.2)

where the order of the indices is important.
The concept of parallel displacement of a vector

A. can be extended to the nonsymmetric field by

6A. ~ =-I'" A dxB,eB

5A„= I', ~A dx,

(2.3)

(2.4)

where I",~ is a (nonsymmetric) Hermitian affine
connection 1"~B=I'B', which decomposes according
to I

eB ( B) fotBj ' (2.5)

As in the symmetrical theory, a curvature ten-
sor may be derived by parallel displacement of a
vector along a boundary of an infinitesimal sur-
face element

where g,„„,is a pure imaginary skew tensor. The

g„ is Hermitian symmetric g, „=g„„and this
replaces the symmetry property of g,„ in Einstein's
gravitational theory (Riemannian geometry). The
contravariant tensor g'" is related to the covari-
ant tensor g,„by the equation
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R:„,(r) = (r:„,—r:„r;,)

The contracted curvature tensor is

R.„(r)=(rB„,—r'.„r:,)

(2.6)

equation (2.20) becomes'

R,„„,(r) =o,
R,„„,.(r)+R,„., „(r}+R„., „(r)=o.

III. CONSERVATION LAWS

(2.21)

(2.22)

(2.7)

The field equations are derived by using the
Palatini method. We define a (non-Hermitian)
connection 5'~, in terms of I'~„by the equation

(2.8)

where

a=a +a*, Z*=-.g'"(W„,„-W„,„), (3.i)
where pe =g'"R„„(1")is Einstein's Lagrangian
density. ' We define the (Hermitian) tensor densi-
ty g~„by

Let us write the Lagrangian density as (we have
set T „=0)

W„=2(W„;—W' ) .
It follows that

(2.9) 1 Bg,*
P.v —"~ Pv —

8 P P. v
7T g

(3.2)

I"
~

=- I'('„,)
—0. (2.1o)

We shall adopt the Einstein notation for covari-
ant differentiation'

If we write

G,„(I')= 8v T+„,

where

(3.3)

and

A"'. =A~ +AP1"~
~fy ~ ty pQ 0

A' ..=A'. +A'r.',
(2.11)

(2.12)

G.„(r ) =R,„(r)--,'g, g(r ), (3.4)

then it can be shown that' the Bianchi identities
give

A, . =A„-A,I'„', (2.13)
Re(g "T,*„..)=O. (3.s)

A~ .,=A, -A, I',P (2.14)

The Lagrangian density of the theory is chosen
to be

(2.is)g =9""[R „(W)—8mT „],
where g""=v-gg'" is the fundamental tensor den-
sity and T„„is the (nonsymmetric) Hermitian en-
ergy-momentum tensor. Moreover, it can be
shown that

We have that

g""R,„(r)=(g"r;, —6'„g'"r,', ) .+ g, ,

where

from which it follows that

Bg' . 8 Rg'
Rgu(r}=8 uv j p 3 uv

g X g p

(3.6)

(3.7)

(3.8)

R „„(W)=R„„(l) + 3 (W„„-W„) (2.16)
If we require that the action

and R„„(W)is a Hermitian contracted curvature
tensor, since R„„(I')is Hermitian and W„ is a
purely imaginary vector field.

From the variational principle

L'= g'd4X

remain invariant under linear transformations of
the form

x' —x" =x' + eg'(x) (3.9)
61.=5 g d4x=0

we get the field equations

(2.17) for arbitrary constant $' and an infinitesimal &,

we find that

g„,„,,—0, (2.18) 5I'=8m' 2 Pip d x=0, (3.10)

g'"") =0,
~V

R „(W)-—', g,P, (W}= 8m T~„,

(2.19)

(2.2o)
where t, , a tensor density only under linear co-
ordinate transformations, is given by

where R(W) =g""R „(W),
These are the equations that we shall use to de-

termine the structure of the Pme gravitational
field. Equation (2.19}can be shown to be equiva-
lent to (2.10). In empty space (T„„=O)the field

8vt =2(G„g "+G„,g"~)

PV 0!

egg 9 p p2
, G

(3.ii)

Thus we have an ordinary divergence conservation
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law

t —0. (3.12)

static solution is then

Callaway" showed that the equations of motion
of a particle derived from the field equations
(2.19), (2.21), and (2.22) do not contain any direct
Lorentz-force contributions F„„v', where v" is
the velocity four-vector: a particle moves as if it
were uncharged. This was a serious criticism of
Einstein's theory when interpreted as a unification
of gravitation and electromagnetism. However,
in cur case, it svorks to our advantage. Since
there is no direct gravitational Lorentz-force
term coupling to moving particles, the principle
of equivalerice is preserved.

ds = 1 — 1 ——
4

-1
dr2 r dQ2 (4 1)

il'
g [14] (4.2)

The metric (4.1) tends to the flat space-time
metric as r- ~ and when l =0 reduces to the
Schwarzschild metric of general relativity. The
tensor component g„4, describes a new long-range
gravitational field that does not affect a material
test particle directly through equations of motion.

The boundary conditions g„„-0 and g,23) 0 asr- ~ can be shown" to lead to g,23] 0. If we also
choose g» ——-r' in order to obtain the flat-space
coordinates at r =~, then the solution (4.1) and

(4.2) is the unique spherically symmetric solution
in the theory.

The metric (4.1) does not have any essential
singularity in physical space-time, because for
r& l the metric does not have the signature of a
physical space-time. When r= l a "surface of
concealment" forms around the origin. No time-
like or null world lines can penetrate this surface
and, therefore, physical space-time in the theory
is free of the essential singularity at r=0. '

From the field euqation R &,4
——0, we find that

n/n = 0 where n = -g» and h = dn/dt. The non-

IV. RIGOROUS SOLUTION OF THE FIELD EQUATIONS

The field equation (2.18) may be solved explicitly
for the 1"',„ in terms of the g, „and its derivatives, "
provided that g=det(g „)c0. The general form of
the g „for a static spherically symmetric field
was given by Papapetrou" and a general solution
derived by Vanstone, "but we shall restrict our-
selves to the solution with the line element'2

(4.3)

g[231 & g[14]
1/2

r'
where h(t) is an arbitrary function of t. By choos-
ing a new time coordinate

t'= h'/2 t dt, (4.4)

we prove the Birkhoff' theorem for our gravita-
tional theory.

V. PROPERTIES OF THE METRIC AND THE EQUATIONS

OF MOTION

dx" dx"
g, „, — =const (5.1)

is an integral of (1.1). This can be proved by
multiplying (1.1) by g[ „,dx'/ds and using (2.18).

There are three distinct solutions of the line ele-
ment (4.1): (1) 1 & 2n[, (2) i = 2m, and (3) 1& 2m
We can envisage three possible changes of signa-
ture depending on the value of /. Denote by Z the
signature of space-time. As r decreases to zero,
g,4 can change sign twice, while g» changes sign
only once at r=2m. For i&2m the signature
changes from Z = -2 to Z = 0 at r = l. For l = 2m
the signature changes from Z=-2 to Z=O. Fin-
ally, for l & 2m the signature changes from Z
=-2 to Z = -4, and r = l is a null surface inside
which space is Euclidean four-dimensional, ex-
cluding the region r& l from physical space-time.
In particular, the essential singularity at r=0 is
no longer part of physica1 space.

If we demand that the surface r= l should be be-
low the Schwarzschild event horizon at r = 2m,
then l & 2m. Qn the other hand, if l & 2m, a col-
lapsing star would never form a black-hole event
horizon of the kind predicted by general relativity;
such an event horizon would be concealed from
view by the null surface r= l. In all cases a star
undergoing gravitational collapse would be pre-
vented from reaching the singular point r=0.

Since we have adopted the Hermitian affine con-
nection I'~ „as the affine connection by means of
which we define the parallel transfer of a vector,
it seems natural to require that (1.1) be the equa-
tion of motion in the theory. Since I' „ is Hermit-
ian, I'1„„=I'1„, it can be shown using Eq. (2.18)
that the length of an arbitrary complex vector is
preserved under parallel transfer. ' The quadratic
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&f&+ —rP =0,J' (6.1)

~ ~ Q ~ ~

t ——xt =0.
Q

If we rewrite the constant of motion (5.1) as

then we get

yt —or —r &fP =E,
r'Q= j,
t=riE,

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

where 8 is the (constant) angular momentum and
E is a constant which we choose to set equal to
.unity. It follows that

1 ——— 1 —™E+— (6.7)

VI. BEHAVIOR OF TEST PARTICLES IN THE METRIC

VfITH l )Zm

%e study the motion of test particles in the
metric (4.1) with the condition that t & 2m with the
notation and evaluation of I'„of Ref. 6. The or-
bits will be chosen to lie in the equatorial plane,
whereby 8=-2'm and 8 -=d8/dr=0. We also choose
ds =Edd, where E is a constant.

Two of the equations (1.1) are, for x' = Q and x'

[(2mr2 t4)'t2 (2mr ' t4)'t2] (6.10)
1

which becomes comPlex for

r& r, =(l'/2m)' ',
corresponding to the repulsion from x=.x, . These
results can be extended without difficulty to the
case of nonradial motion with J0.

For l & 2m the metric contains a "hard sphere"
that deflects all material moving test particles.
The Schwarzschild event horizon at x=2m and

the essential singularity at r =0 are excluded
from physical space-time.

There is a branch point in dr/dt at r = t and at
this point dr/dt =0. A radial null world line
that approaches r=l can be continued smoothly
round the branch point onto the second Biemann
sheet of dr/dt, where t goes into -t. This second
sheet represents a time-reversed submanifold
isometric with our own. In this way it may be
possible to continue analytically radial null world
lines.

VII ~ THE PHYSICAL INTERPRETATION OF THE
PARAMETER l AND SOME ASTROPHYSICAL

PREDICTIONS

The gravitational red-shift of atomic spectral
lines measured by Pound, Rebka, and Snider" "
provides an upper limit for l. The present theory
predicts for this experiment

dh'

[1 t4/ri4 (1 2m/ri)(E+g2/rr2)]1/2 0

(6.8)

where 7', and x, are some initial proper time and
position, respectively.

Consider now the radial motion of a freely falling
material test particle (E = 1) with Z= 0:

(7.1)

where Ro——6.38 x 10' cm, R =Ro+ I3, with h = 2.26
x10' cm, and Mo ——5.98x10"g. The Einstein
prediction is

2PE —— (6.9)
o+, = 2.46xjp ' .
,o' (7.2)

Then x = 0 when

r=r, = (l4/2m)'~2

But since l & 2m, it follows that r, & l and the fall-
ing body comes to rest before it reaches r = i. A
radially moving material test particle is repelled
by the sphere defined by the radius x= l and is
prevented from reaching either x=2m or the es-
sential singularity at x=p. Thus the world lines
of radially moving material test particles are
timelike complete. For radial motion we also
get from (6.8)

The experimental value obtained by Pound and
Snider is"

~C,„,~=(2.45+0.019)X10 ". (7.3)

Denoting by 4C,„,the experimental error, we
get

g&,„',(~z) &+
I
~c.„l+I

c, I-
I
c.„l&'"

1/4
=4.61x10 'R, —o (7 4)

which yields t, & 6.8 km. A similar calculation
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for the gravitational red-shift of spectral lines
emitted from the surface of the sun yields the
upper bound

) ~ 2 x10~ km.
O

The fractional red-shift of the spectral lines
emitted from the surface of any star is predicted
in the new theory to be

In general relativity, z & 0.615,"preventing the
gravitational red-shift from being an explanation
of the large red-shifts observed for quasistellar
radio sources" whose z's can be as large as 2-3.
We can obtain red-shifts 2-3 for reasonable values
of I and thus the quasistellar sources could be
massive objects lying outside our galaxy but not at
large cosmological distances.

of physics encountered in Einstein's theory of
gravity.

Another important feature of the theory is that
a black-hole event horizon and an essential singu-
larity at x=0 can be excluded from the physical
manifold, without contradicting the classical pre-
dictions of Einstein's theory, provided that we
have l )2' and that we limit I to a calculable
maximum value. For strong gravitational fields,
the experimental predictions of the new theory
may be significantly different from Einstein's
theory.

The problem of the predictability of the big-
bang cosmological model has been studied using
the new theory. " It was found that an exact
homogeneous anisotropic solution of the field equa-
tions has analytic properties that exclude the sin-
gularity at the origin of time t=0 from physical
space-time.

VIII. CONCLUSIONS

We have demonstrated that an exact solution of
the theory leads to a space-time in which matter
undergoing gravitational collapse is prevented
from reaching x=0, thus avoiding the breakdown
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