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Nucleon-nucleon scattering is studied in a spontaneously broken gauge field theory with the gauge boson

describing the p meson. Gauge invariance is demonstrated explicitly. An inversion of the Po phase shift (but
no zero) is obtained in a [I/I] scalar Pade approximation.

I. INTRODUCTION

It is well known that vector-meson exchange ( p
and &o) plays an important role in the description
of the nucleon-nucleon force. Field-theoretical
models have been studied which demonstrate this
fact. Pure Born-term approximations for p and w

exchange (see e.g. , Ref. 1) have been performed,
and so have calcu1ations in the framework of the
Bethe-Salpeter equation in ladder approximation. '
In particular, in the latter case a cutoff is intro-
duced in a phenomenological manner. Renormal-
izable field theories avoid such parameters but are
less successful by now in describing the phase
shifts. Here it is hoped that perturbation theory is
summable by means of Pade approximants one
reason for this is that no resonances appear in this
process. The Yukawa model (with only pions ex-
changed) was investigated by various authors. s Be-
yond that, the ar meson was included' in an Abelian
gauge theory with considerable improvement for
the D waves but not for the P waves. Since the p
meson is responsible for bending down the 'P0
phase shift, e.g. , its inclusion is of great impor-
tance.

Renormalizable field- theoretical models that in-
clude spin-1 and isospin-1 particles (p meson)
must be non-Abelian gauge field theories according
to our present knowledge. ' In Sec. II a de Wit-type
model~ of a gauge field theory with spontaneous
symmetry breaking is presented, which is applic-
able to the description of the nucleon-nucleon inter-
action. In Secs. III and IV we explicitly demon-
strate how gauge invariance comes out and how re-
normalization is performed. Since the technical
problems encountered are particularly difficult for
the p meson, we consider only this one ht present.
The ~ can also be treated in a model with spontan-
eous symmetry breaking but will be considered
later. Section V contains the numerical results for
nucleon-nucleon scattering.

The model of Sec. II describes the nucleons, the

pions, and the triplet of p mesons (A&). Scalar
fields Xe, X, (i = 1, 2, 3) serve as a Higgs multiplet.
By the Higgs-Kibble mechanism, the formerly
massless fields, A„' become massive, the fieMs y,.
form a triplet of Goldstone bosons, and A is the
Higgs particle. The Higgs multiplet is introduced
such that isospin is a good quantum number. This
leads in our case to an SU(2)z xSU(2)o (L and G for
local and global, respectively) version of a de Wit-
type model' with the Higgs meson having no direct
coupling to the nucleons. Since the phase shifts
are not very sensitive to the Higgs-meson mass,
it may be chosen as large.

II. THE MODEL

We start' with an SU(2)z &SU(2)o-invariant La-
grangian, where I. and Q stand for local and global
respectively. The transformation properties of the
fields with respect to the SU(2) groups are given in
Table I. Later the scalar fields Xe, X, (i = 1, 2, 3)
shall serve as a Higgs multiplet. Their commuta-
tion relations with the charges Qz and Qo are

[Qi, » Xgl
=

2 &&ysx»» 2 &&r Xo»

2'

Bh, Xe]- 2 X&

1
['Qo~»xr1= 2 &&ysx»»+ 2 &UXo»

(2.1}

g
[Qo Xe1=-

2 X( ~

The SU(2)z &SU(2)o-invariant Lagrangian is

&» v
= s&„4;D"4t-s rrt~'4»'+ s'DaXi&"X;+ sDaXeD" Xe

--. r,rt' (X'e+X
' r}+'sf~"Dl 0 .D&f ~"0-M—PP

& Xl(lt ) 4 2(XO XI ) X34 3 (Xc XJ

—sg. 4r 7 44 (2.2)

where the D„are the covariant derivatives and I'„',
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TABLE I. Transformation properties of the fields with
respect to SU(2)z and SU(2)~.

FieM SU(2)i SU(2),

Pion: @~(x), i=1,2, 3

Nucleon: P(x)

Scalar fields:

go(x), g&(x), i=1,2, 3 2

(2)

FIG. 1. Labeling of momenta for the nucleon-nucleon
8-matrix element. (1) and (2) refer to particles 1 and
2, respectively.

is the field-strength tensor:

i4i= p4i+gA&iiaAiika&

DPX) PX f 2 XoAPj 2 ~igkAPf Xk ~

L pXo epXO 2 Apg Xi y

T
Di&p —

si&i/J
—LgA 2 'IIAi&i &

7 f
Di 4= P4+LgAP 2

(2.3}

of the 't Hooft gauge, and the correspond|ng La-
grangian of the Faddeev-Popov ghosts e,

2 Fp ci i&ci $ A cici gACUl& ciAi&ckp 2 i

2 1 2 1
Co CiCi A —~MA Ca C iiycici Xi& ~

(2.9}

Working in the 't Hooft gauge has the advantage
that there is no A„'-X, propagator in lowest order
and that all unphysical fields get equal, nonvanish-
ing masses. We get

y, (x) =A(x)+ co,

m = —COL. '2
X

(2.4)

By the Higgs-Kibble mechanism, the formerly
massless fields A& become massive, the fields X,
form a triplet of Goldstone bosons, and A is the
Higgs particle. We find

Eqi„=sqA'„—8+„' +gAei~i, Ai„A„.

Assuming that m„' (0, the symmetry is spontane-
ously broken. We put

m 2=m '=$m '.
FP A (2.10)

(2.11)

The propagator of the Yang-Mills boson A„' is

The unphysical pole of the A„' field is also located
at gmA'. Explicitly, we get the same propagator
for the Faddeev-Popov and "would-be" Goldstone
particles

1
mg = 2'~
m~ = (2g)~'c, .

(2.5)
() g„„kk„ 1 1

k'-m ' m ' k'-m ' k'- $

(2.12)
We remark that both SU(2)L and SU(2)G are broken,
but the group SU(2)I, the generators of which are
given by

For $ -~, the unphysical parts of the propagators
vanish (unitary gauge).

I L @G (2.6)
HI. GAUGE INVARIANCE

2 =2,-„„+2~+8„p,
with the gauge-breaking term

(2.7)

(2.8)

remains an exact symmetry. It is interpreted as
the physical isospin group of strong interactions.
The SU(2)z quantum numbers of our fields are I=1
for P„y„A„', I= —, for g, and I=O for A. The total
Lagrangian is

Apart from the mass terms, yielding the propa-
gators (2.11) and (2.12), there are also coupling
terms in the gauge-breaking and Faddeev-Popov
parts of the Lagrangian [see (2.8) and (2.9)] de-
pending explicitly on the gauge parameter $.
Gauge invariance means that the sum of all contri-
buting Feynman graphs yields an 9-matrix ele-
ment, which is independent of t order by order in
perturbation theory. The 8 matrix can be written
as
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FIG. 2. Fourth-order contributions to the nucleon-nucleon scattering. ZN is the renormalization constant of the nu-
cleon. The dotted lines represent the exchanged particles (~ and. p meson, respectively). Circles in the pole terms
stand for self-energy and vertex corrections. Insertions of these at all possible places are not shown.

(2 )""'(p,p. l p. p.)

] ldx, exp[i(p, x, +p,x, —p, x2 —p,x, )]&» '
j=x

&&u(p, )(m- p', ) u(p, )(m —p, )(0lT[p„(x,) p~(x, ) p„(x,) g„(x4)] l0)(m- p, )u(p, )(m-p, )u(p4), (3.1)

where t(1~ are the unnormalized nucleon fields and Z» is the renormalization constant of the nucleon field.
The latter has explicitly to be taken into account because of its gauge dependence. The labeling of the mo-
menta is shown in Fig. 1.

We calculate all fourth-order Feynman graphs contributing in our model as shown in Figs. 2-7, applying
the dimensional regularization procedure of 't Hooft and Veltman. Figure 2 shows the general form of the
fourth-order graphs, and the following figures give the details of the self-energy and vertex corrections.
The fourth-order contribution to the S matrix is (g~=g„, m~=—m„):

(pi pal p2p4) = (2"} &(pl+p3- pa- p3}(-i)lp

&& u(p )r„2' u(p ) u(p )r, ~2 u(p )&"'(q)2(& —1)

+u(p )y„~~ u(p, )u(p, )r~ 2' u(p, Q "~»(

+u(p )r„2' u(p, )u(p, )1',"(p„p„-q) 2' u(p, )&"'(-q)

+u(p, )r„'"(p„p2,q)~ u(pm) u(p, )y,~ u(p4)6»(q} +box terms, (3 2)

4~„=-iAp~G
&2) ~ a),

with

(3.3a)

with ~„"„& and I'„"~ standing for the one-loop approx-
imations of the two-point function [(Ol T(A&A„) l0)]
and three-point function [(0 l T(pgA„} l 0) ], respec-
tively. We have

our analytic calculation (see Appendix A}. We re-
mark that, in general, I'&" is given by 12 invariant
amplitudes. On-shell and between the positive-
energy spinors, however, only 3 remain.

Gauge-dependent graphs contribute only to the
amplitude multiplied with y„'" & y""'. lt reads

II "=A,g '+A.,q q~ (3.3b)
2(Z 1)- ' ' '—+3m +a(g)q2 m 2 N q2 ~ 2

(3.4}

I'„"(pg, p2 q) =&sr~+&2' +&3qp (3.3c)

pp. (pl p2}p a qp (p2 pl}p '
A„A2 and E„E2,E, are the invariant amplitudes

of the p self-energy and the AN vertex function,
respectively. A2 does not contribute to the S ma-
trix because g is sandwiched between the external
spinors, and it turns out that E, =0. For dimen-
sional reasons, E, must be finite, and since there
is no counterpart in the covariant, it must also be
gauge independent by itself. This is confirmed by

where A, (mz') is the mass-renormalization coun-
terterm and B($}comes from the box graphs. If
one wants to study gauge invariance, it is advisable

/ 'L

FIG. 3. Contributions to the self-energy of the nucleon.
Here and in Figs. 4-7, stands for the p, ——stands
for the m.
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a. )
/+ ~~M

b. ) Seagutts

c,) Tadpoles
A /l , A

+ ~~+~~+~~

FIG. 4. Contributions to the self-energy of the p meson. A is the Higgs particle, X the "vrould-be" Goldstone
boson, and c the Faddeev-Popov ghost.

to start with the decomposition of the triangle
graphs T($) and box-graphs B(() as

and

T(g) = T(t =1) t+(]) (3.5a)

(3.5b)

Then because the denominators of the nucleon
propagator cancel (only on-shell) against factors in
the numerator, t($) and 5($) simplify considerably,
as shown in Fig. 8. The remaining t'-dependent
parts are easily seen to drop out (see Appendix A).
It is not necessary to perform the one-dimensional
integrations for that purpose. Finally, we mention
that for the mass counterterm A, (m~') to be gauge
independent, the seagu11. and tadpole graphs of
Figs. 4(b} and 4(c) have to be included.

One reason to perform the calculations with arbi-
trary $ is to have a possibility to test the results.
At first the ] independence was checked analytical-
ly. Then the $-dependent part b(g) of the box
graphs was calculated numerically by evaluating
(A5) and was compared for various $'s with the
second iteration of the Bethe-Salpeter equation—
with the same result. As a further test we verified
analytically the validity of the Slavnov-Taylor

identity for the two-point function of the p meson,
which relates A., +q'A, to a large number of un-
physical amplitudes not appearing in the NN matrix
element.

IV. PHYSICAL PARAMETERS

( gQ) „=S"S"EP'"g (4.1b)

R and U standing for the renormalized and unre-
normalized quantities, respectively. Here (with
the convention of Ref. 9}

rq;(PPp) = (E~ +2mE2 )~ yq +F2 ~ ioq„q"

(4.2a)

(4.2b)

F,"(m&') +2mE, (mz') = 1 (4.3a)

The definition of the renormalized coupling con-
stants follows from

(4.1a)

and

FIG. 5. Contributions to the pNN vertex.
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a)--— /
+

b.) Seagutls

c) Tadpo|es

FIG. 6. Contributions to the self-energy of the pion.

and

(4.3b)

i.e., - our renormalized coupling constants are the
on-shell values of the three-point functions NNp
and NNn, respectively. As usual,

U Zg g
g Z Z I/2 g

N

with

Z 1/2y y Z 1/2y Fv Z lFR

(4 4)

(4 6)

This is a gauge-invariant prescription since in
the subtraction point all momenta are on-shell.
Like real S-matrix elements also on-shell, two-
and three-point functions of renormalized fields
are gauge invariant. So Z,Z„'Z~ ' has to be in-
dependent of (, which has been checked analytical-
ly. In the case of the p meson coupling to two
pions as intermediate states, we have taken the
real parts of the corresponding invariant ampli-
tudes [see e.g. , (4.3a}f as subtraction values.

Finally, we have the following expansions around
q'=mz' and m, , respectively:

A,"(q') ~A/(mp')+(1- Zq)(q'-mp')+A, (q')

(4.6)

and

Ef(q')+2mE2~(q') =Z, '+E,(q')+2mE, (q'),

(4.V)

with E&(mz~) =0 and A, (q')-O((qa-m&2)2} .
If we insert (4.6) and (4.V) into the complete am-

plitude (i.e. , second + fourth order) and utilize
(4.4), all terms that become infinite for n-4 can-
cel, and the amplitude becomes unique. This pro-
cedure amounts to the usual subtractions with no
radiative corrections on the external legs.

V. NUMERICAL RESULTS

Since it is well known that + exchange gives a
strong repulsive contribution to the NN force, we
cannot expect to get proper phase shifts by con-
sidering only the p meson in addition to the pion.
Moreover, the scalar [1/1j Pade approximant has
deficiencies which have not much to do with the un-

derlying model, like the negative sign of the '$0
and a spurious pole in the 'D2 —deficiencies which
can be eliminated by working with matrix Pade ap-
proximants. Therefore, we simply study at pres-
ent the effect of the p meson in a few lower partial
waves, namely '8„'Po, and 'P, . These are shown
in Figs. 9 and 10.

Figure 10(a}shows the 'Po which has been ob-
tained by adjusting gs~ such that at 60 MeV (the
position of the maximum), our phase shift agrees
with the experimental value The re. sult is gz /4v
=9.2, where for the other parameters we have
chosen m ' =0.6V35 (in units of the nucleon mass)

P

and g"„ /4v= 14.2, m, '=0.02213. The slight inver-
sion of the 'P, at roughly the maximum of the
phase shift as shown in Fig. 10(a) is considered our
main result, and it is hoped that the inclusion of the
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I
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I
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FIG. 7. Contributions to the mNN vertex.
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b. )

c.)

FIG. 8. Simplification of the on-shell $-dependent parts [see (3.5a), (3.5b)].

(o will bring further improvement. In the case of
the 'S„ two physical channels ('S, and 'D, ) couple,
and for that reason the calculation of a 2&2 matrix
Pad@' approximant is possible. As shown in pig. 9,
the inclusion of the p meson yields further attrac-,
tion at the higher energies in this partial wave.

The dependence of the phase shifts on the other
parameters, namely X, and m~ Isee (2.2) and (2.5)J
which remain after the subtractions are performed

as described in Sec. III, is extremely small.
Changing ~, from 1 to 10 and mA from 5 m to 10 m

(m is the nucleon mass), respectively, yields
changes in the phase shifts which would not be vis-
ible in the drawings.

To conclude, we want to stress that clearly we
do not regard it as surprising that the inclusion of
the p meson by itself improves the 'P, phase shift,
but rather consider it as important that this has
been achieved in a renormalizable (cutoff-indepen-
dent) model taking into account the fourth order.
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FIG. 9. S1 phase shift; dashed line, only pion ex-
change; solid line, 7t and p exchange. The experimental
data are taken from Ref. 10. FIG. 10. Same as Fig. 9 for the Po and P&.
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APPENDIX A

Here we give in detail the regularized fourth-order contributions to (3.4) and (3.5b) for the p meson ex-
change. The normalization is gz'/4w =1. We have

t' m' 5 ( m' m' m. 'g~'@ -1)=-—-IS+»» I(1+» ~
—I6+» ~ ~ +34t ( m'-4m'j

~ m & m -4m' m'

m'i m'I
x~1+R,(m', mz', m') —ln 2 ~+$ —ging+$ Beg-in v' ]-' (Al)

for the p contribution to the renormalization constant of the nucleon. For the vertex functions, we obtain

m, ') 3/
g 'Z, =-———~R, (m ', m', m')-in, ~+ —~Reg-in

]

2m-
(3 4mn —q2

m4
2 4m' —q'

+J (m~', mz, mn, qn)]-4m& -2m~+2
4

' [+ —g- —ging+ —(Reg-1n

2 2 2 )2"
+

~
R,(m~', gmz', q') —ln 2

—,+ [R,((m~', ]mz', q') —R,(m~', pm~', q')]

1 2 2

mp mp

(m '
—[R,(m ', $m ', q')-R, (m ', gm ', 0)](1—g)'( ' —1~—

&q'
(A2)

m'& m2
g E =-1-— ', 1+R,(m m m ) —in ',

~

— R, (m ~ m~ m2) —ln

+ [R,(m, m', q') -R,(mp', m', m')]~ ——3(2 4m -q
2m' —m 2&

4m —q2 )

4m'- q')

2m2 —m 2 2

+J2(m, ', m, ', m', q')~ -4m, '+12m' —12
4m2 —q2 (A3)

For the self-energy of the p meson, we get
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gz A, = -2 —m2 R,(m, m', q') —ln

17 3 m ' iV 9 m m 1 m.'+m ' —+— ', + —+— ', Beg-ln ', ——Beg- lnP.36 4 m, ' 8 4 m, ' 6

+—~Ei!,(m, m, q') —ln ', + —~R, (m&', mA', q ) —ln
2

——~R, (m~', m ', q') —ln 2 I+ 5IR).(m
' m„', q') —ln

7 I mA' 3 ]' m'& I+m, ' —+ — ', + —(Beg-in, )+ —in
24 24 m~' 8 i i],

"
& 24 mA'

& I'1 1 mA)

+ m„' 5 ', ', [I+Beg- ln ', )-—~R,(m,', m„', q') —ln

mR2) I t m„"l
+(q —m~R) —+ —Reg-ln 2 ~-—~Beg-Int9 4

m2i ng 2

m ''t' nz '
——[R,(m~*, m~', q ) —R, (m, ', m~', D)](1—

Alp j
1 5 1+(q' —m ') ——g+ —)in)- —Beg —ln ' $- R (m ' $m ' q') —ln

P 2 6 2 g
2 pypy2

( 6 24 mp') mp')

[~5 17 q' I (q'
+ [R~(m~', ]mz', q') —R, (m~', mz', q')][ ——

245 mp 2 (mp j
~m ~

+[R,(m, ', gm, ', q')-R, (m, ', gm, ', 0)](I—g)']; —I I 12
(A4)

and for the $-dependent part of the box-graph contributions,

b(g) = [R,(m, ', m, ', q') -R,(m, ', gm, ', q')](—+-
tl, 3 12

+ [R,(my*, (m, ', q ) —R,((mp', (mq', q')](
~

—[R,(m, ', ~m, ', q') -R,(m, ', (m, ', 0)](I—g)'
6q2

~

m 2 (A5)

Here we have used the one-dimensional (R, ) and two-dimensional (j,) integrals as defined in Appendix B.
Beg=2/(4 —n)+const, where yg is the space-time dimension. Furthermore, the mass parameter g defines
the mass scale and makes all arguments of logarithms (see also R, ) dimensionless. Since F, is finite, it
does not contain the Beg term.

The above formulas are written down according to the following lines:
(I) One easily sees that the only p dependence comes from terms like Beg —In(m, '/p'), m, being some

mass (m„= m~, m„mA), and drops out after the subtractions are performed as described in Sec. IV.
(2) The $-dependent parts are separated, i.e., in all expressions (Al), (A2), (A4), (A5) the last lines con-

taining the gauge parameter cancel completely when the invariant amplitudes are inserted into (3.4).
(3) It appears to be convenient to factor out (q'-m, ') in A, as far as possible; in particular, one sees
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that. the whole (-dependent part contains this factor, which drops out after insertion of A, into (3.4), and it
immediately shows that A, (m~') is gauge independent.

APPENDIX 8

From the integration over Feynman parameters, we get functions of the form
1

Rz(J, M, , M2', s) =- dzz in[-sz(1 —z)+M, z+M2 (1 —z)]
0

1 1-y
1Z(IZ, M, , M, , M, , s„s,s)=j dy, d), y, ) [-y(1 —),)s, —y, ()-y, )s

0 0

+ yi y2 (si + sm
—s~) + yi (Mi -Ms ) + y (M~2 -M3~ ) + M3 ]

(»)
In Appendix A we used the abbreviations

R,(M, , M2, s) =R,(0, M, ', M2, s)

J2(Mi, M2, M, , s) = J~(0, 0, M,', M~, Mls, M', M, s) .
ln the course of the calculations of our perturbative results, functions R,(I, M,', M~', s) and

J,(I, J', M,', M, , M,', s„s„s,) with I,&c0 arise. By recursive relations, which are too long to be written
down here, they have been expressed by R, (0, M,', M,', s) and J,(0, 0, M,I, M,', M,', s„s„s,).
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