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A gravitational theory is formulated on the Weitzenbock space-time, characterized by the vanishing
curvature tensor (absolute parallelism) and by the torsion tensor formed of four parallel vector fields. This
theory is called new general relativity, since Einstein in 1928 first gave its original form. New general
relativity has three parameters c;, ¢,, and A, besides the Einstein constant k. In this paper we choose
¢; = 0 = ¢,, leaving open A. We prove, among other things, that (i) a static, spherically symmetric
gravitational field is given by the Schwarzschild metric, that (ii) in the weak-field approximation an
antisymmetric field of zero mass and zero spin exists, besides gravitons, and that (iii) new general relat1v1ty

agrees with all the experiments so far carried out.

I. INTRODUCTION

In 1928 Einstein introduced the notion of absolute
parallelism and tried to unify gravitation and elec-
tromagnetism, using tetrads with 16 degrees of
freedom.! His attempt failed because there was
no Schwarzschild solution in his simplified field
equation.? Later, in 1961 Mgller revived Einstein’s
idea,® and Pellegrini and Plebanski found a La-
grangian formulation for absolute parallelism.*
Recently this formalism was reconsidered by Mgl-
ler.® ]

In 1967, quite independently, Hayashi and Nakano
started to formulate the gauge theory of the space-
time translation group®: This theory was of no
geometrical construction, but it was shown that,
for a static, isotropic gravitational field, a sym-
metric part of their field equations is identical with
the Einstein field equation in general relativity,
and that, in the weak-field approximation, an an-
tisymmetric part describes the propagation of an
antisymmetric field, whose source is related to the
intrinsic spin of spin-3 fundamental particles.®
Miyamoto and Nakano estimated effects of ex-
changing this field in the microscopic system.”

In later years Hayashi further developed the gauge-
theory into a more elaborate framework® and fixed'
the final form in 1973.° Quite recently Hayashi
pointed out the connection between the gauge theory
of the space-time translation group and absolute
parallelism,°

Now we wish to unify these two developments
mentioned above, following the geometry of under-
lying space-time structure. The Riemann-Cartan
space-time U, is a paracompact, Hausdorff, con-
nected C” four-dimensional manifold endowed with
a locally Lorentzian metric g and a linear affine
connection _I"_ which is metri—c—,

Dlguu=a7xguv_rlpt)tgpu—rzxgupzo’ (1-1)
From this equation we get
MK, (1.2)

where the first term denotes the Levi-Civita con-
nection,

{u)‘v} =%g7m(8ugw+ngup—apguy), (1'3)
and the second stands for the contortion tensor,
Kr=3(Th, = T A, = T2 (1.4)

with the torsion tensor
T:,,(0)=T7,-T},. (1.5)

In terms of the affine connection the curvature
tensor is given by

(T)=9,T2 —8,I'? +T2 T2

v ou ALT ov

vuu r:vrgu' (1'6)

The Riemann-Cartan space-time has both the
curvature tensor and the torsion tensor. From this
space-time follow two very interesting models of
space-time. One is the well-known Riemann
space-time V,, which is obtained from the U, by
setting the torsion tensor to be identically vanish-
ing. From (1.2) follows the Levi-Civita connection.
It is well known that general relativity is the theory
of gravitation on this space-time, and that it as-
cribes gravitation to the Riemann-Christoffel
curvature tensor formed of the Levi-Civita con-
nection.

Another interesting model is the Weitzenbock
space-time A,,'* which is obtained from the U, by
setting the curvature tensor to be identically
vanishing,

R?,,(T*)=0. (1.7)

Or, to put it equivalently,'? the Weitzenbock space-
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time is obtained by requiring the U, to admit abso-

lute parallelism, i.e., to have a quadruplet (speci-
fied by =0,1,2,3) of linearly independent parallel
vector fields, b={b,}={b,*}, which is defined by

D¥b,r=0,b, +T*p,#=0. (1.8)

Solving this equation we find the nonsymmetric
affine connection,

rtbzbklaubku ’ (1.9)
and the torsion tensor,

TLT*)=b,%0, 0%, — 8,0",). (1.10)

Here b*={p"}={b",} is also a quadruplet of parallel
vector fielas, which is inverse to b. It is straight-
forward to see that the curvature tensor indeed
vanishes identically [see (1.7)]. See Fig. 1 for
reduction of the Riemann-Cartan space-time.

We will give the name, new general relativity,
to the theory of gravitation on the Weitzenbock
space-time, since Einstein in 1928, after invent-
ing general relativity, considered absolute paral-
lelism for the first time, and the main conse-
quences of the present theory will be analogous
to those of general relativity so far as macroscopic
phenomena are concerned. New general relativity
attributes gravitation to the torsion tensor formed
of the parallel vector fields.

As is well known, general relativity is formulated
by the following fundamental assumptions, which
we will compare with those of new general rela-
tivity: (A) Underlying space-time is the Riemann
space-time, which has the metric tensor as the
basic structure. All physical laws are expressed

Riemann-Cartan Space-Time

Riemann Space-Time Weitzenbdck Space-Time

Va Ay
R_O\\ /T—o

Minkowski Space-Time

Uy

FIG. 1. The reduction of space-time is made in two
particular cases: One is the Riemann space-time V,
with a curvature tensor only (R), and the other the
Weitzenbock space-time A, with a torsion tensor alone
(7).
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by equations that are covariant or form invariant
under the group of general coordinate transforma-
tions. (B) The equivalence principle. (C) Gravi-
tational field equations are derivable from the ac-
tion principle. (D) The field equations are partial
differential equations in the field variables of not
higher than the second order. (E) The gravitational
field is exhaustively described by the metric tensor
alone.

In new general relativity the fundamental as-
sumptions are as follows: (A’) Underlying space-
time is the Weitzenbock space-time, which has a
quadruplet of the parallel vector fields as the fun-
damental structure. These parallel vector fields
give rise to the metric tensor as a by-product. All
physical laws are expressed by equations that are
covariant or form invariant under the group of
general coordinate transformations: (B’) The
equivalence principle is valid only in classical
physics. (C’) and (D’) are the same as (C) and (D),
but at this time we start from the microscopic ac-
tion principle. (E’) The gravitational field is ex-
clusively described by a quadruplet of the parallel
vector fields. As is closely related to (E’), we
need to assume: (F’) All physical laws are ex-
pressed by equations that are covariant or form
invariant under the group of global Lorentz trans-
tormations. When general relativity is extended
to the domain of microscopic system, one must
use tetrads and has to assume: (F) All physical -
laws are expressed by equations that are covariant

" or form invariant under the group of local Lorentz

transformations.

. We shall formulate new general relativity in the
following manner: In Sec. II geometry of the
WeitzenbOck space-time is described in some de-
tail, with emphasis on spinor wave functions de-
fined in this space-time. In Sec. III microscopic
matter Lagrangians are considered, such as of the
electromagnetic field, of spin-} fundamental parti-
cles and so forth. Their equations of motion are
derived and then approximated by the WKB method
to yield, in the classical limit, the geodesics of
the metric g,'® along which point particles and
light rays are defined to move. In Sec. IV a gravi-
tational Lagrangian is constructed by the require-
ment of invariance under (1) the group of general
coordinate transformations, (2) the group of global
Lorentz transformations (3) the parity operation,
and by the demand that (4) the Lagrangian be quad-
ratic in the torsion tensor. Gravitational field
equations are derived, with three unknown param-
eters, c¢;, ¢,, and c;. In Sec. V a static, spheri-
cally symmetric field outside a massive neutral
body is determined, with two parameters, ¢, and
¢,; in this case a term proportional to ¢, is van-
ishing identically. In Sec. VI comparison with all
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the experiments so far carried out is made;
firstly, we clarify how the equivalence principle is
violated in microscopic systems only, and second-
ly, upper bounds for the parameters, c, and c,,
are obtained. In Sec. VII the free parameters, c,
and c,, are classified into two classes with ¢, ar-
bitrary; c¢,=0=c, and ¢,#0#c,. (Other cases are
forbidden.) The rest of the present paper con-
cerns with the former choice of frée parameters,
and hence the static, isotropic field is given by

the Schwarzschild solution. In this case new gen-
eral relativity has only one free parameter,
A=9/(4c,), besides the Einstein gravitational con-
stant x. In Sec. VIII the group of local Lorentz
transformations, which we do not assume, is seen
to emerge as the dynamical symmetry group for a
static, isotropic field. This new situation demands
the extension of absolute parallelism. In Sec. IX,
as microscopic applications, the weak-field ap-
proximation to gravitational field equations is per-
formed. In Sec. X the coupling of an antisymmetric
field to matter is discussed; it propagates in
vacuum, mediating a long-range, spin-spin force
among spin-3 fundamental particles with a coupling
strength f—, which is estimated by precise ex-
perimental values of quantum electrodynamics. In
Sec. XI the Birkhoff theorem, that a spherically
symmetric gravitational field in empty space must
be static, with a metric given by the Schwarzschild
solution, is proved in new general relativity. In
Sec. XII we draw conclusions.

In our conventions the middle part of the Greek
alphabet, u,v,2,..., refersto0, 1, 2, and 3,
while the initial part, «,B,7,..., denotes 1, 2,
and 3. In a similar way the middle part of the
Latin alphabet, ¢,j,%k,..., means 0, 1, 2, and 3,
while the initial part, a,b,c,..., denotes 1, 2,
and 3.

1. GEOMETRY OF THE WEITZENBOCK SPACE-TIME

The space-time M is assumed to be a paracom-
pact, Hausdorff, connected C* four-dimensional
manifold with a locally Lorentzian metric g. Let
U be a local coordinate neighborhood of p € M with
local coordinates ¥={x*}, then we can introduce
the coordinate basis E={E, }={(8/6x"),} with n=0,
1, 2, and 3, and the dual basis E*= {E“} {(ax*),}.
Every vector V at p can be written as V= VYE,.

In particular the metric tensor gis written as

g=guu£“®£", (2.1)

where the metric components are simply the inner
product of the ¢oordinate basis vectors,

uuzg(Eu)_E_u)=g(£u:£u)- (2-2)

These components are used to raise and lower

Greek indices.

By definition there exists a global system of
four orthonormal vector fields b(p)={b,(p)}, such
that

g(gi:éj)=g(_b_j’gi):nij’ (2.3)

where n=(n;,;)=diag(-1,+1,+1,+1). Thus the vec-
tor fields, b(p)={b(p)}, are expressed in the old
basis by

b;=b,"E,; (2.4a)

equivalently, a global system of four orthonormal
vector fields b*(p)={b*(p)}, which are dual to
b(p)=1{b (p)}, is written in the old basis by

bi=bi,E*. (2.4b)
Conversely, it follows that

E,=b'.b,, (2.4¢)

E*=b bt (2.4d)

Here the coefficients, {b;*} or {p?,}, are 16 func-
tions, and must staisfy

b b, =8",, (2.5a)

biunijbj =8uv s b guvb 771] (2'5b)

It should be remarked that Latin indices of b={b,}
and b*= {b } mean that they are Lorentz vectors;
b is ‘the covariant vector and b* is the contravar-
iant vector. From (2.4) it follows that for any
vector V= VHE, =V? 2 ; the components satisfy

bA“‘bj =6j-,

Vh=p Vi, Vispi VH, (2.6)

This rule of converting Greek to Latin indices and
vice versa is applied to any tensor of higher rank.
Now, in the Weitzenbock space-time the cova-

riant derivative, denoted by D*, defines absolute
parallelism with respect to the global system of
the four orthonormal vector fields b. By definition
D* satisfies

D 2,.=0 " (2.7a)
or in the coefficient form,

D¥b}=3,b2+T*p . =0, (2.70)
From (2.4), (2.5), and (2.7) we find

D}E,=THE, (2.8)
with the affine connection of absolute parallelism,

TH=br8,b%,=-b",0,b}. (2.9)

Here the global system of the four orthonormal
vector fields is called a quadruplet of the parallel
vector fields, or simply the parallel vector fields.
For a vector field V(x)=Vi(x)b,=V*(x)E,, the co-
variant derivative is given by -
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D*V =(D}V)E’®b,=(D}V*)E'®E,,  (2.10)
where

D*vi=9 V!, (2.11)

D}v* =38, V*+T ¥V, (2.12)

Thus, for the components V* with respect to a
quadruplet of the parallel vector fields, the co-
variant derivative coincides with the usual deriva-
tive.

In the Weitzenbock space-time absolute paral-
lelism of vectors at different points of M is defined
in the following way: Consider a vector V(p)
=Vib,(p) at p and a vector W(g)=W'b,(g) at g,
where the point ¢ can be arbitrarily separated
from p. The parallelism of V and W is manifest:
If their components are equaTwith?ach other,

vi=wi, (2.13)

then the two vectors, V(p) and W(g), are parallel
with each other and of equal length.

In passing we make the remark that Latin indices
are used to denote components with respect to a
quadruplet of the parallel vector fields, and are
raised and lowered by the Minkowski metric ten-
sor, {n;;} or {n*'}.

The affine connection, I'*={I'*}}  is not sym-
metric with respect to the exchange of lower two
indices. The torsion tensor is given by

I, =TR_TR=pMo,bi, —0,b%). (2.19)

The curvature tensor formed of I'* identically
-vanishes [see (1.7)], since parallel transfer of a
vector is path independent owing to absolute paral-
lelism. Thus the Weitzenbock space-time is
characterized by the torsion tensor alone, and re-
duces to the Minkowski space-time provided the
torsion tensor vanishes globally. See Fig. 1 for
reduction of the Riemann-Cartan space-time. In
the Minkowski space-time the pavallel vector
fields, which define absolute parallelism, coincide
with the coordinate basis of a Cartesian coovdinate
system.

When a quadruplet of the parallel vector fields b
is subject to a global, proper, orthochronous -
Lorentz transformation,

b;=A%bj, (2.15a)
Aj infmAmn ZMNin s detA=1 ’
A% =1, 8,A%,=0, (2.15b)

new absolute parallelism defined by new parallel
vector fields b’ is equivalent to the original one.
So geometry of the WeitzenbSck space-time is in-
variant under the global, proper, orthochronous
Lorentz group, L'={A=(47,)e GL(4,R), A';m, A",
=1, detA=1, A° >1, 8, A’,=0}. In conformity
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with this invariance of underlying geometry, we
demand that physical laws should be invariant un-
der the action of L. We call this the global Lo-
rentz invariance.

In the Weitzenbock space-time, spinors are in-
troduced as quantities which transform like two-
valued representations of the proper, orthochro-
nous Lorentz group L'.'* Most elementary spi-
nors are four kinds of two-component spinors,
i.e., contravariant spinor {5“}, covariant spinor
{X,4}, dotted contravariant spinor {4}, and dotted
covariant spinor {x;} for A=1 and 2. Dotted spi-
nors transform like the complex conjugate of
undotted spinors. A spinor of higher rank is a
quantity which transforms like a direct product
of two-component spinors. A vector V=V, is
identified with a mixed spinor of second rank with
components VA5,

VAB=x AByi (2.16)

where {Z 48} is a set of Hermitian 2 X 2 matrices
satisfying

ZiAB<A52?D+ZI‘&€GAéZiéD=—nij€BD, (2.17)
where
0 1\~
(qc')=< >=(<A°). (2.18)
-10

One of the simplest choices, which we take in this
paper, is

(Zo;m =—I/‘/§, (EaAB)=Ga/\/§’ (2.19)

where {0,, 0,,0,} is a set of the Pauli matrices.

The four-component Dirac spinor @ is defined
by a direct sum of a covariant spinor and a dotted
contravariant spinor, and is written as a single
column matrix

X1

X2 | _ /X
o=l X =(%)

g <£>

Eé

The vconjugate Dirac spinor } is obtained from
by

(2.20)

?b=¢’(0 I) =(&, £,%i,x3) - (2.21)

I0

Now we extend the definition of absolute paralle-
lism to include spinors. Consider a spinor at p,
say a contravariant two-component spinor {5“( iy
and another spinor at g of the same type, say,
{t4(¢)}. If components of these spinors are equal,
i.e., t4(p)=t4(g), then two spinors are defined to
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be parallel and of the same magnitude. From
(2.16) it follows that absolute parallelism of spi-
nors implies absolute parallelism of vectors and
tensors: In fact, for two vectors V at point p and
W at another point ¢, equality of sginor compo-
nents, V42(p)=W42(q), implies V(p)=W(q), be-
cause {Z iAB} is independent of space-time posi-
tion.

When a spinor at point p is parallel transferred
to another point ¢, its components are kept un-
changed owing to absolute parallelism. There-
fore, the covariant devivative D} of spinovs coin-
cides with the usual derivative 9.

Finally, we make the following important re~
mark: The parallel vector fields b are different
from the so-called tetrad fields e by an arbitrary,
position-dependent Lorentz trané—formation, which
is called a local Lorentz transformation.

III. MATTER LAGRANGIJAN AND EQUATIONS OF MOTION
FOR TEST PARTICLES

A. Matter Lagrangian

In new general relativity we do not identify the
six extra degrees of freedom of the parallel vec-
tor fields with the electromagnetic field strength,
since we now know that such an attempt failed.?
Instead, we take the electromagnetic potential
A={A,} as the dynamical variable independent of
the parallel vector fields. The matter part of the
action is then represented as a sum of the action
of fundamental particles and fields, i.e., of the
electromagnetic field and several kinds of spin-3
fundamental particles;

L= [a%V=gL,

=fd4x\/i§<Lem+; L;;'>+Lm>, (3.1)
where g is
g=det(g,,)=-[det(s?,)]2<0, (3.2)

and L, , represents nongravitational interactions
among fundamental particles and fields. Here the
index ¢ in the second term labels spin-3 funda-
mental particles such as quarks, electrons,
muons, electron-neutrinos, muon-neutrinos, etc.,
all of which can be aescribed in fairly good ap-
proximation by spinor wave functions obeying the
Dirac equation. If there exist other fundamental
fields besides the electromagnetic field, their
action must be added to (3.1): Gauge fields for
internal symmetry of fundamental particles, if
they exist, can be included in (3.1) in a similar
manner to the electromagnetic field.

The gauge invariance of the electromagnetic

interaction shall be assumed to hold in new general
relativity, because this invariance plays the fun-
damental role in quantum electrodynamics. The

electromagnetic Lagrangian density L, is then

given by

Lem:_%gugnguqua’ (3‘3)
with

Fuv:auAv"avAu’ (3-4)

which is of the same form as the electromagnetic
Lagrangian density used in general relativity.

Apsolute parallelism is applied to spinor wave
functions of fundamental spin-3 particles, and the
Dirac Lagrangian density L, is given by*® '

Ly=3ilb *[§y DYy - DLy y]-myy. (3.5a)

In this paper we use the unit, Z=c=1, but through-
out this section we write 7 explicity for convenience
of taking the semiclassical limit. For spinors

the covariant derivative D% coincides with the
usual derivative

D*p=19,9. (3.6a)

If we use the covariant derivative V, of general
relativity,

vV, =0,+3i8;;,S¥)y, (3.6b)
with respect to the Ricci rotation coefficients
{Aiju}’

8= b, 8= =3 (T = Tiip= Thij) (3.7
then L, of (3.5a) can be rewritten as

Ly=3ilib [Jy ™V .- (v.9)r*]

~3ha Py y Ry -mPy, - (3.5b)

where {a"} is the axial-vector part of the torsion
tensor,

au- - bkuak=_l.6_€uvpaT

(3.8)

voo *

This covariant derivative V,, when applied to ten-
sors whose indices are written in Greek, becomes
the usual covariant derivative with respect to the
Levi-Civita connection (1.3). Here the completely
antisymmetric tensors, ¢={¢*"*} and e*={¢,, .},
with respect to the coordinate basis are defined
byls

Hve = (1/\[—?)5‘“’"“ ,
euvm=\/.——g5

where 6={6""} and 6*={5,,,,} are the completely
antisymmetric tensor densities of weight —1 and
+1, respectively, with normalizations 6°%*=+1
and §y;,;=—1. So the completely antisymmetric
tensors with respect to the parallel vector fields
are defined by

(3.9)

wvpo 9
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F €tjrrm = blubju bma brlq€ Kvpo ,

(3.10)
€ijmn = b1“‘171‘1)brr:‘7br10€ wypo ?
where @@ @@= 11 and €41 (2) (= ~1 Wwith
Lorentz (Latin) indices in parentheses.
Variation of L, with respect to A, gives
8,(V—g F*)=V—gi", (3.11)
where the electromagnetic current is defined by
Ty 3.12
7= EZ; int* (3.12)

Equation (3.11) is just the Maxwell equation in
general relativity, and hence the law of electro-
magnetism is entirely free from the influence of
absolute parallelism. In space-time with a given
background metric g, electromagnetic waves
propagate in the same manner as in general rela-
tivity: In the short-wavelength limit, in particu-
lar, light rays propagate along the null geodesics
of the metric g.

The Dirac eauation is derived from L, by taking
variation with respect to 7,

[i7p, Ay *(D%+%v,) —m]p=0, (3.13a)
or equivalently,
(@7, y*V , — 2ha,y " —m)yp=0, (3.13b)

where {v u} is the vector part of the torsion tensor,
v,=TX,, (3.14)

and only the gravitational interaction is included.

B. Equations of motion for massive Dirac particles

We shall derive fwo equations of motion for a
freely falling Dirac particle, i.e., the equation of
orbit and the equation of spin precession,'” by
applying the WKB approximation method'® to the
Dirac equation (3.13).

The particle of spin § is usually represented by
a four-component spinor wave function obeying the
first-order Dirac equation. However, it is well
known that it can equally well be described by a
two-component spinor wave function obeying a
second-order wave equation.!® So there are two
equivalent ways to take the classical limit for the
particle of spin 3, in accordance with which a
wave equation is considered; a first-order wave
equation or a second-order one.

For our present purpose of deriving the spin
equation in addition to the orbit equation, it is
much more convenient to start from a second-
order wave equation rather than from the Dirac
equation (3.13). We thus introduce a two-com-
ponent spinor wave function ¢ by*°

o=3(1+7v%p. (3.15)

Then, by means of the Dirac equation (3.13), this
can be “solved” with respect to ¥,

p=[1+ @@/ mnb, v *D*+3v )] ¢, (3.16)

and so we find that ¢ satisfies the second-order
wave equation,

[inb *y (DY +3v,) —m ]
x [t 'y ¥(D¥ +5v,)+m] =0, (3.17)

to which we apply the WKB approximation method.
We seek a semiclassical solution of (3.17) with
the following form:

s=exp(2-5) b0, (3.18)

by assuming that 7 is very small compared to S.
Using (3.18) in (3.17) and then putting each order
of (%/7) to zero, we find (up to the first order)

#/i)°: g"*3,5)(8,8)+m?=0, (3.19)
m/iy: {2g*(2,8)(D¥+3v,)
-b,;"b,/[D¥(3,8) |y v ¢o=0.
The last equation is rewritten as
{26"(8,9)9,+£"[,(3,5)]
+31€ 1 ;™ (8,8)a"S o =0 (3.20D)
with help of the relation between D} and Vv,
Dfo=(V,+3iK,;;,S )¢y,
"DX(5,5)=V,(8,8) —K*,,3,S,

(3.20a)

(3.21)

with {K;,,} and {K,,,} being the contortion tensor
defined by

Kijv= bilbj“KMw
= %b ilbju(va =Ty~ Tvxu)
=—A,,. (3.22)

The applicability condition of the semiclassical
solution (3.18) is that when it is used in (3.17) the
terms of order (%/;)° are much larger than those
of order (%/i)*. Estimating |8 ,SI/% ~1/(wave-
length)=1/), D*¢,~ ¢,/w with w the width of the
wave packet, and | D¥(8,S)|~%/\L with L being the
distance over which the parallel vector fields
{bku} vary considerably, we obtain the following in-
equality:

L>x, w>2. (3.23)

Equation (3.19) is the Hamilton-Jacobi equation
which describes the motion of freely falling parti-
cles in general relativity.?* The complete solution
S(x; @, , @y, @) with three free parameters, «,, o,,
and o, determines the classical orbit by

N

'a—a—a'—‘ Bu(= const), (a=1,2, 3). (3.24)



3530 KENJI HAYASHI AND TAKESHI SHIRAFU]JI 19

When the trajectory x*(7) defined by (3.24) is
parametrized by the proper time 7, it satisfies
the geodesic equation,

v
d—;_r— = % g"v8,S=U"* (four-velocity) , (3.25)
dx* dx*
de Hap 2 20, (3.26)

Given the solution S(x; a,, a,, a;) of (3.19), Eq.
(3.20) can be solved to define the spinor wave
function ¢, in terms of S. By virtue of (3.16), the
semiclassical expression for the Dirac spinor
wave function in terms of S and ¢, is given by

Y= exp( )lPo, (3.27)

= (1- 25 5,070)o,
=(1-0,"U,¥"¢,. (3.28)

The probability current, j*=0b,"Jy*), then takes
the following form in the semiclassical approxi-
mation:

j*=pU", ' (3.29)
where p is defined by
p==2b,"U,$:v*¢,. (3.30)

Equation (3.20b) of ¢, ensures that ] satisfies the
continuity equation,

1 "
v, " “V=z 8,(V=g j*)=0. (3.31)

The expression (3.29) for the probability current
shows that, in the semiclassical approximation,
the probability may be regarded as following along
the classical trajectory.

We can form a wave packet by superposing the
solutions of (3.27) with different values of param-
eters, a=(a,, a,, a):

¥x) = f pla)d3a exp[% S(x; a)] bolx; @), (3.32a)

where p(a) is a weight function with a “sharp
peak” of width Aa at a=a=(a,, a,,®,). Here a
sharp peak means that the following conditions
are satisfied: (1) The ratio Z/A« is negligibly
small compared to the macroscopic scale, and
(2) the ratio 7#/(Aa)? satisfies the inequality

13 9%S

D m——
(Aaf dada,

Since #,(x; @) is not highly oscillating with respect
to @, it follows from the inequality (3.32b) that
Eq. (3.32a) can be rewritten as

(3.32b)

Px)= exp[% S(x; 5)] Polox; @)

fp(ad aexp[ Z (a, - a]

(3.32¢)

In the integral of (3.32c) compensation takes place
almost everywhere except in the space-time re-
gion satisfying

aS n
*B-E; A_a . (3.33a).
According to the condition (1) stated above, the
right-hand side of (3.33a) is negligibly small com-
pared to the macroscopic scale. Therefore, in the
macroscopic scale, the wave packet (3.32¢) has
nonvanishing amplitude only along a world line
x*(7) defined by

aS

53, =0, (3.33b)

Here 7 is the proper time along the world line.
The wave packet thus propagates along a classical
trajectory x*(7) satisfying the geodesic equation
(3.26).

Now we turn our consideration to the motion of
spin for a spin-3 particle described by the spinor
wave function (3.32¢). The spin polarization is
described by the spinor wave function y(x(7); @),
since other two factors of (3.32c) are scalar func-
tions which have nothing to do with intrinsic spin
polarization. We introduce a new spinor wave
function p{x(7); @) by

, 1
%:75— Yo - (3.34a)
Then it is normalized like
b, “ Py By =U* (four-velocity) , (3.34p)

and accordingly it can be taken as the normalized

spinor wave function which describes spin polari-

zation, From (3.20a)~(3.20b) and (3.28)-(3.31),

it follows after a little algebra that the normalized
spinor wave function g satisfies

(% +iU*K ;8" >zp5= (3.352)

or equivalently,

(;T i’ € iimbuU"a "S”)z/) =0, (3.35b)
where D*/d7 and V/dT mean covariant differentia-
tion along a classical trajectory x*(7), D*/dr
=U"D* and V/dT=U"v,, respectively. Equations
(3.35) describe the temporal change of the spin
state as a spin-3 particle moves along a classical
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trajectory x*(7). The second term of (3.35b)

represents the effect of absolute parallelism on

the spin precession in new general relativity.
We define the spin vector {S*} by

b= 5 b Py Sr Ry,

which has only three independent components, be-
cause (3.28) and (3.34a) give

(3.36a)

U“s,=0. (3.36b)
It follows from (3.35) that {S*} satisfies

D*

D su=_uom s, , | (3.37a)
or equivalently,

v 3 )

——S"—‘——Eeu”koapSo., (3.37b)

dar

These are the classical equations of spin preces-
sion in new general relativity. The right-hand
side of (3.3'Tb) represents the effect of absolute
parallelism. When the axial-vector part of the
torsion tensor vanishes, (3.37b) reduces to the
equation of spin precession in general relativity.
For a nonrelativistic particle in a weak gravita-
tional field,?* (3.3'7b) becomes
£§ = —%5 X § ’

I (3.38)

where S and % are the space components of {S “
and {a¢"}, respectively.

C. Equations of motion for neutrinos and antineutrinos

Neutrinos and antineutrinos are described by
two-component spinor wave functions which are
obtained from (four-component) Dirac spinor
wave functions of (2.20) by putting x=0 for neu-
trinos and £=0 for antineutrinos, respectively.
We shall consider only antineutrinos, since neu-
trinos can be treated in a similar manner. For
antineutrinos, the Dirac equation (3.13a) becomes
the Weyl equation for a right-handed massless

particle,?
b oM (D¥+ 5 v,)x=0. (3.39)

The semiclassical solution, x=exp(iS/7i)x0, must
satisfy

bku(a us)GkX():O ’ (3~40)
and hence we get
det(b,*8,So*) = -g"*(8,5)(8,5) =0, (3.41)

which is just the Hamilton-Jacobi equation for a
massless particle in general relativity. The class-
ical trajectory x“(o) defined by (3.24) satisfies

the following equations:

"3
%’—;— =g"9,S=p" (four-momentum), (3.42)
dz H“ d A d v
L g, 0

where o is the affine parameter along the tra-
jectory: The normalization of ¢ is fixed by (3.42).

The four momentum {p*} is null, due to (3.41).
The current {j*=b,"x"0"} is also null, because x
is a two-componént spinor. Since these two null
vectors, {p“} and {j*}, are orthogonal with each
other by virtue of (3.40), they must be proportional
to one another,

i*=pp*, (3.44)

where p is a positive-definite scalar function. We
can apply the same argument as for the massive
case, to show that antineutrinos move along the
classical trajectory satisfying (3.43) in the short-
wavelength limit,

We take xo/w/E as the normalized spinor wave
function for antineutrinos. The spin vector (3.36a)
then becomes

B 1 wyt By, 1 PRI T3
S _E’;bk XOGXO_%] =2p", (3-45)
showing that antineutrinos are of helicity +% as
they should. Therefore, the classical equations
of motion for neutvinos and antineutvinos in new
geneval velativity ave the same as those in gene -
ral relativity.

IV. GRAVITATIONAL LAGRANGIAN IN VACUUM

We shall construct a gravitational Lagrangian
density in vacuum,

10=f d*xVgLg. (4.1)

For this purpose we enumerate the basic postu-
lates which the above action must obey:

(1) Invariance under the group of general co-
ordinate transformations; for arbitrary change of
coordinates the parallel vector fields transform
like

b’ (x") = (8x"*/8x")b, (%) . (4.2)

(2) Invariance under the group of global, pro-
per, orthochronous Lorentz transformations L!;
for its element A =(A7,) with A‘nA=7, detA=1,
A% =1, and 8,A4=0, the parallel vector fields
change like

i) =A% M(x). (4.3)

(3) L, be invariant under the parity operation;
by parity operation we mean the Lorentz transfor-
mation, bg,—~be and b, ~—-b(,, where Lorentz
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indices are enclosed by parentheses.

(4) L be quadratic terms in the torsion tensor,
besides a cosmological term.

Now, the torsion tensor is given by

T'}uvz bkx(av bku -9 ubkp) ’ (4.4)

which is reducible with respect to the group of
global Lorentz transformations. It is convenient
to perform an irreducible decomposition, from
which we can construct a gravitational Lagrangian
density. The torsion tensor is decomposed into
three irreducible parts under this group?*%

thuu= % (TMLV+ Tuxv)+ % (gu).vu+guuvh)

—~3&u00 > (4.5)
va=Th s (4.6)
t=t €T, (4.7)

where €*={¢,,} is the completely antisymmetric
tensor, introduced in (3.9). In fact, let p(m,n) be
an irreducible representation of the proper ortho-
chronous Lorentz group, where 2m and 2n take
non-negative integer numbers.?** Then the tensor
{t,,,} transforms according to p(3,%)®p(3, 3) of 16
dimensions (the Young table [21] minus traces),
the vector {»,} according to p(3,3) of 4 dimen-
sions, and finally the axial-vector {a“} according
to p(3,3) of 4 dimensions (the Young table [111]).
The torsion tensor is conversely written in terms
of the three irreducibles,

T)mv=§ (truy = tavn) +3 (&ruv, - &000)
+€pup®’ (4.8)

The tensor {t“,} has the following properties de-
rived from the defining equation (4.5):

T RO (4.9)
& =0=8"1t,,, (4.10)
t).uv+tuu).+tvxu=0' (4.11)

The above postulates of (1) to (4) require that
the most general Lagrangian density be of the
form

Lg=a,(t™t,,,) +a,(v"v,) +as(a’a,) +ay, (4.12)

where a,, a,, and g, are free parameters, while
a, is a cosmological term. .

In Appendix A we will treat a case of lifting up
the postulate of (3), by adding to (4.12) parity-
violating terms like (v“a,) and (e ,,,, £**"4,*). In
the rest of this paper we shall neglect the cosmo-
logical term, so we have the gravitational action of

Io= [ a*x/=gLs

-—‘-fd‘*x\/:f[al(t"““thw)+a2(v“v“)
+ag(a*a,)]. (4.13)

Next we observe the identity

Jauw=g (Y

=fd‘*x\f;g;[—%(t“"tm)%(v“vu)—%(a“au)],

(4.14)

where R({ }) denotes the Riemann scalar curva-
ture. It is given by the contraction of the Ricci
tensor, which is again the contraction of the Rie-
mann-Christoffel curvature tensor:

R?ouv({ }) =9 u{opu} - av{opu} +{lpu-} {olv} - {)ﬂ;} {07&“} ’

(4.15)
R, =R .}, (4.16)
R{PD=g"Rr,(}. (4.17)

Here the symbol {#} denotes the Levi-Civita con-
nection (1.3) of the Riemann space-time. Since
the Weitzenbock space-time has the vanishing of

‘the curvature tensor [see (1.7)], the identity of

(4.14) should be taken as purely mathematical.
Using k=87G/c*=87G with G the Newton gravi-
tational constant, we finally rewrite the gravita-
tional action in the following form:

o= [ @' V=g (5m BA D+ ei0**1,.)

+cz(v“vu)+cg(a“a“)>. (4.18)

Comparing (4.13) with (4.18), we find that the
parameters are effectively (under integration
symbol) related to each other by

1

C,=a;+ 5 Co=0ay — 5—
1 1 3K’ 2 2 3K’

(4.19)
Cy=as+ ZE .

It should be mentioned that one of the free param-

- eters, c¢,, c,, and ¢;, must be nonzero; other-

wise, the left-hand side of a gravitational field
equation would become symmetric, while the
right-hand side, the energy-momentum tensor of
spin-% fundamental particles, would become non-
symmetric. This is a contradiction.

It is easy to derive a gravitational field equa-
tion. For the sake of completeness we write down
a gravitational field equation when matter is
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present, by adding to the vacuum gravitational
action a matter action I,;, which satisfies the
postulates of (1) to (4),

I=Ig+1,, (4.20)
I= f d*xV=zL,. (4.21)

From this action follows the following field equa-
tion, by taking variation with respect to the

parallel vector fields b*, and then multiplying with
nkjbju:

G*({ 1)+ 2kDFF*" 4 2¢0, F*"* + 2k H™
) —Kkg"L’=xT* . (4.22)

Here the first term denotes the Einstein tensor of
general relativity,

¢ h=r*{ N -3"R{D), (4.23)
and the tensor {F*“*} stands for

FMUX= C (tuv) tl-‘).ll)+ c (gﬂv A gll-l,uu)

2ty

~Lege
= _F"w, (4.24)

The fourth term {H*"} is defined by
H"=T®'Fv 3 T"F! =H"™, (4.25)

which is shown to be symmetric upon inserting the
irreducible decomposition (4.8) of the torsion ten-
sor. Finally, L’ is given by

L’ =¢,(*, ) + c,(v"v,) + c5(a a,) . (4.26)
A source term is, as usual, defined by
5 f dxV=gL,= fd4x~/-g T,“5b%,
= f Vg TEh, . (4.27)
Therefore, an energy-momentum tensor is given
by :
V=g T,,==Tb',6V=gL,/5b,",

(4.28a)
or equivalently,
V=g T*=n*b,*sV_gL,/0b",. (4.28p)

For instance, the energy-momentum tensor of the
electromagnetic field and the Dirac field is calcu-
lated from the above formulas with (3.3) and (3.5)
to be

Tu=FuFpug®+g,, Loy, (4.29)
~3ib"[37,0,0 - (3,9) vdl+gu.Ly
==3ib" [P 7V uh = (V,9)7,9]
+ 5 ooy DKL DYV

-3a 975", (4.30a)

+guu(LD

with the Dirac Lagrangian LEF used in general

relativity
LGR 1 ‘lbk“[lP % kvuw (V“w) v k(’)] milp . (4.30b)

It is useful to split the gravitational field equa-
tion into the symmetric and antisymmetric parts:

G ({ )+ 2kDFFUM 1 2y F B9 4 2 HMY
—kg"L' =T ™, (4.31)

2D} Ft#h 4 2y, FLuvit= Tl (4.32)

where
FWm_L(puny preay
FUsv o L(Fuvk _ frery (4.33)

TW=1(T™ 4+ TVH),

T = L(THv _ Tvw),

Furthermore, it is often useful to rewrite the
field equation in Latin indices:

Gi( })+ 8,(V=g Fi™) 4+ 2kHY — kn¥L’ = kT ,
(4.34)
where
¢ h=v'p',6*( D,
Fijl=biubquuvx, (4.35)

Hii= biubj,,H“" , T = biubj,,T‘w .
Finally the symmetric and antisymmetric parts of
the gravitational field equation are derived as fol-
lows: ’

GH({ })+ 3,(V=g FUM 1 2¢H' _ ynIL'= kT 479,

(4.36)
29 (\/_F[u]h) T[w] (4.37)

V. THE STATIC, ISOTROPIC GRAVITATIONAL FIELD
IN VACUUM

Let us consider a static, isotropic gravitational
field produced by a static, spherical body, assum-
ing that the spin of constituent particles of a body,
if it exists, can be completely neglected. The
state of a central body then does not change under
space inversion, besides time reversal and space
rotation. Therefore, it is possible to find a set of
coordinates, x°=#, x*, x%, and x 3, such that the
parallel vector fields b =1{b,} ={b,*} are form invar-
iant under time reversal, space inversion, and

space rotation,
t==t, boy==Dd

(time reversal), (5.1a)
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x%==2x% bay==Dbg
(space inversion) , (5.1b)
x%=Repx®, bay=Rud )
(space rotation) (5.1¢)

where, to avoid confusion, Latin indices in b, are
enclosed in parentheses, and R=(R,.) = (R,;) is a

position-independent 3 X3 orthogonal matrix
RR!=R'R=I, detR=1. (5.1d)

Then, as is shown in Appendix B, by using the free-

dom to redefine the radius
ro_ Q(T)xa, r= (xaxa)1/2 ,

we can assume, without loss of generality, that
the parallel vector fields b={5,}={b," (x)} have a
diagonal form,

Do)’ =C(), by
b(tl)a =D(’i’)5f )

= O:b(a)o,
(5.2)

with two unknown functions of 7, C, and D. The in-
variant distance ds® is then expressed in the iso-

TAKESHI SHIRAFU]JI

tropic form,

ds® =g, dx"dx”
=1;,;0' b7 dx " dx?
=—A(#)dt? + B(v)dx%dx™ , (5.3a)

where the metric coefficients, A and B, are re-
lated to C and D by

A=1/C?, B=1/D",

The set of coordinates {x"} is therefore the iso-
tropic coordinate system.

We write the gravitational field equation (4.22)
as

(5.3b)

I""=kT"" , (5.4a)
where {I""} is defined by
1*v=G**( }) + 2k D FHv> +2k0,
+2kH"*Y - kg*VL'. (5.4b)

For a static, isotropic gravitational field with
(5.2), {I""} is given by

A () a0 ) 2 c1-002) () 58015, 6
Pe=0= (5.5b)
-t -l (5] -0 ool o]
- 8 s -2 () 2 1m0 ) - o)
-0-s0f®)E)-5(2)).

where the parameter € is a constant defined by

k(c, +c¢5)
€=

5.6
1+k(c, +4c,) (5.6)

and a prime means differentiation with respect to
7. It is shown in Appendix C that the constant
[1+&(c, +4c,)] is a nonzero number.

There is no appearance of the parameter c;, but
only the parameters, ¢, and c,, owing to a static,
isotropic gravitational field. In other words, we
can say nothing about the parameter ¢, in this
case. Now we proceed to study a solution of the
field equation (5.4) with (5.5) for the following
three cases: (A) the Newtonian limit, (B) the post-
Newtonian approximation, and (C) an exact solu-
tion in vacuum.

A. The Newtonian limit

We assume that a central gravitating body is a
nonrelativistic system with all the components of
T%8 being negligibly small compared to 7°°; T°
> |T%8|~0. Then the gravitational field is weak;
the metric coefficients, A and B, are nearly unity,
A=~1=~ B, and terms quadratic in A’ and B’ can be
ignored in the field equation (5.4) with (5.5). We
then find that the gravitational field equation in the
Newtonian limit is given by

—[1+k(c, +4c,)]{e€A”+ (1 = 2¢)B”
+ %[EA'+ (1-2€)B’] {=kT*,

(5.7a)



(1-2€)A’"+B'=0. (5.o)

The external solution satisfying the boundary con-
dition,

limA(r)=1LmB(r)=1 » | (5.8)
is
) ) Gm
Al)=1- (I-e)A-4e)[T+k(c, +4c)] » 7
(5.9a)
) _ 2(1-2¢) Gm
B0 =l oA - a0 rnte, v 4] 7
(5.9b)

with m the total mass of the source,

m=f T°°(x)d3x=41rfrzT°°(?)dr. (5.10)

It was found in Sec. III that the trajectory of a
test particle is determined by the geodesic equa-
tion (3.26), which reduces for a nonrelativistic
particle to
a’x* 1 8

at® =2 5@ Soo¥)

- 1 _§_< 91%.)
T T (1-e)1-4e)[1+k(c, +4c,)] ax®\ ¥ /)
(5.11a)

Here the solution (5.92) is used in the final step.
We demand that the trajectory of a nonrelativistic
test particle, specified by x*(¢), obeys. the Newton
equation of motion

dx® 9
_EZ—:—E;EQ"' , (5.11b)

where ¢ is a gravitational potential, which takes
the form

p==GCGm/r (5.11c)

for a gravitational field around a spherical body |
with mass m. Accordingly, the parameters, c,
and ¢,, must satisfy the condition
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FIG. 2. The curve of (5.12b): €;=kc; and Ta=KCy.
52=—431/(1+961).

(1-€)(1=4e)[1+x(c, +4c,)]=1, (5.12a)

which we shall assume hereafter. This condition
is called the Newton approximation condition. In
terms of ¢, =kc, and T,=«kc,, the Newton approxi-
mation condition reads as

(5.12b)

From this follow the two cases, ¢; =0=c, and c,
+0+#c,. See Fig. 2 for the curve specified by
(5.12b). Now, combining (5.6) and (5.12b), we find

€ -
3(1-€)’ 27 3(1-4¢)°
Since € is observable in solar-system experi-

ments, as will be shown in Sec. VI, we draw the
curves of (5.12¢) versus € in Fig. 3.

4¢,+7,+9¢,C,=0.

C, =~ T, (5.12¢)

B. Vacuum solution in the post-Newtonian approximation

The field equation (5.4) with (5.5) can be re-
written in vacuum as follows,

(5.13a)
(5.13b)

(5.13c)
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LI,

\N

FIG. 3. The curves of (5.12c): The solid curve is for
©4, and the dashed curve is for ©,.

In the spatial region far outside the Schwarz-
schild radius, i.e., > GM,the metric coefficients,
A(7) and B(7), can be expanded in a small param-
eter (GM/7),

2
A(y)=1_2g-l— +26<—GZ—”> RN (5.14a)
v v
] .
50) =142y 2 coo( Voo (5.14b)

where M is the gravitational mass of a central
gravitating body, and B, v, and & are.expansion
parameters to be determined by the field equa-
tion. Using (5.14) in (5.13), and putting each order
of (GM/7) equal to zero, we find that the param-
eters, B, y, and 3, are given by

B=1-¢/2, y=1-2¢,

6=3(1-3e+%€%).

(5.15)

It is to be noticed that the Newton approximation
condition (5.12a) is not used to derive (5.15), al-
though the above results are consistent with
(5.12a).

C. Exact vacuum solution

The gravitational field studied in the previous
two subsections is weak. Now we derive an exact
salution of the vacuum field equation (5.13), which
allows us to study a strong gravitational field in
new general relativity.

After slight modification of [2x(5.13b) - (5.13c)]
we obtain ) :

Ziir [1'3((1 - 26)%‘1‘ +%)]
+”§(%' +%’> ((1 - 25)‘%' +—§~/)=0. (5.16)

This equation can be integrated to give

(1—26)% +% =(AB)‘1/2-7]:—13-, (5.17a)

with £, an integration constant, which can be fixed
by using (5.14) with (5.15) in (5.17a):
fi=1=€)(1-4e)(GM)®.

Inthe same way we get from [3 x (5.13b) — (5.13c) — 2
x(5.13a)]

(5.1b)

A’ B’ -
(1-30% +2¢2 - (ap) 1/2% , (5.18a)
with £, an integration constant given by
f2=2(1=-€)(1-4¢)(GM). (5.18b)

From the combination [(1 = 5¢) X (5.17a) + 2¢
X (5.18a)] it follows that

— vl 2
e%i+——1 5 (GM) (5.19)

A amy/e_
dV(AB) =2 2 y3

and, therefore, remembering that the boundary
condition for A and B, denoted by (5.8), is ex-
pressed by

lim AB=1, (5.20)

r >

we obtain

GM _1-5¢ <GM>2

1/2 1 _ Rt =
(AB) 1-2¢ p 7

>
- (1 _gﬂf)@ +§‘¥>, (5.21)

where two constants, p and ¢, are defined by

b=l )1 - 40}/ -2}

=2+e+0(?),
9 (5.22a)
q= 1-— 56{[(1 - E)(l - 46)]1/2+2€}
=2+9€¢ +0(e?).
Here € is assumed to be
€<it, (5.22b)

which covers the important case of € =0; for ;<
e€<1, p and g become complex values. Substitution
of (5.21) into (5.17a) and (5.18a) finally gives

A(r)=( _%4>p (1+Gi4>_° ,

qv
(5.23)
B = (1 _%>2'P(1 +%4)2+q .

It can be shown by direct calculations that this
solution indeed satisfies the field equation (5.13).



The parallel vector fields of (5.2) are thus given by

1 GM -P/2< GM)«/2
0 —_ = —_— _ .
b o, " (1 pr) 1+q1’ ,
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b(O)a=0=b(a)0, ‘(5.24)
5% GM —1”/2( GM)"I'“/z
=g = —_— —_ o
e
in a static, isotropic gravitational field. The invariant distance ds® of (5.3a) becomes
y » -q 2-p 2+
dsz=—<1-ﬂ4) <1 +(;1_W> dt2+<1-§1-—”> (1 _,_EM) qu"‘dx"‘
br qr pr qr
GM>’< GM>-° < GM>2 -"( GM \?*e
= (] =— 14+— dt? 1-=— it 2 2 2 2 2
< o7 +q?’ + o7 1+q'r [dv?+7%(d6® + sin®0 dp?)] (5.25)

where we have introduced the spherical polar co-
ordinates by
1_ s 2 _ s .
x*=vrsinfcos¢, x*=7sinfsing, (5.26)
x3=vcosh.

If the parameter € of (5.6) is exactly zero, then
two constants, p and g, are exactly equal to 2, and
hence this metric coincides with the Schwarz-
schild metric written in the isotropic coordi-
nates®:

1 — GM/2v)? 4
ds® = - ————((1 " GM;Z:;Z dt? + (1 +%l> dx®dx®

_ (1-GM/27)?
T 1+ GM/27)?

GMN\' . 2. 2,02 o 2 2
+ 1+§7 [dr2+r2(d6*+ sin®0 dp?)]. (5.27)

dt?

VI. COMPARISON WITH EXPERIMENTS
A. The equivalence principle

It has been verified experimentally to very high
accuracy?® that the world line of a freely falling
test body is independent of its composition and
structure. The equivalence principle implies that
the unique world line of a test body coincides with
the geodesics of the metric g. It was shown in
Sec. III that by taking the short-wavelength limit of
the Maxwell and Dirac equations the photon
and Dirac particles in the classical limit are to
travel along the geodesics of the metric g. Thus,
new general relativity is compatible with the
equivalence principle in this limit.

In general relativity implications of the equi-
valence principle are concisely expressed by the
conservation law,

vV, TL: =0, (6.1)

where {T%%} is the matter energy-momentum

F

tensor appearing on the right-hand side of the
Einstein field equation. It follows from the con-
servation law that the world line of a freely falling
test body is the geodesics of the metric g. The
characteristic feature of general relativity is that
the conservation law of (6.1) is a consequence of
the Einstein gravitational field equation, and hence
that mechanical equations of motion for matter
are consequences of the same gravitational field
equation.

Now we shall show that almost the same property
holds also in new general relativity based on the
Weitzenbdck space-time. From the invariance of
the gravitational action under the group of general
coordinate transformations follows the identity?’

V=g B*a8,b,,-08,(V-gB}Y)=0, (6.2)

where
V=g B®=V_g b* B*=_6V-g L,/bb,,. (6.3)

After slight modification, this identity can be re-
written as

VVBLW—KVMLBV)\EOQ (6'4)

where {K”**} is the contortion tensor given by
(3.22). From the definition of (6.3) it follows that
the gravitational field equation takes the form

B¥=T"", (6.5)

with the matter energy-momentum tensor {T*"}
defined by (4.28). Using (6.5) in the identity (6.4),
we get the response equation to gravitation,

V,T* — K™ T, =0. (6.6)

This is the conservation law of new general rel-
ativity, corresponding to the conservation law
(6.1) of general relativity. The energy-momentum
tensor {7*"} is not symmetric in new general rel-
ativity. However, an antisymmetric part {70#*%}
is due to the contribution from the intrinsic spin
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of spin-3 fundamental particles. For macroscopic
bodies such as a test body employed in terrestrial
experiments and astrophysical objects such as
planets and stars, effects due to the intrinsic

. spin of spin-3 fundamental particles canbe ignored,
and hence their energy-momentum tensor can be
supposed to be symmetric and of the same form as
that of general relativity. Therefore, an energy-
momentum tensor of macroscopic bodies satisfies
the conservation law

v, 7% =0 6.7

owing to the antisymmetric property of the con-
tortion tensor {K***} with respect to v and A. The
only exception seems to be compact stellar ob-
jects such as neutron stars and black holes: The
spin direction of neutrons may happen to be aligned
over the macroscopic scale inside neutron stars.

If this is indeed the case, the gravitational response
of neutron matter should be described by Eq. (6.6)
instead of by the conservation law (6.1)

The equivalence principle is thus satisfied for
macroscopic bodies in new geneval velativity,
and the wovld line of a test body coincides with
the geodesics of the wetvic g, although the metric
g itself may be diffevent from that of geneval rel-
ativity.

In the microscopic scale new general relativity
violates the equivalence principle, since effects
due to the intrinsic spin of spin-3 fundamental
particles cannot be ignored there, and an anti-
symmetric part of the energy-momentum tensor
should be seriously taken into account. The motion
of the intrinsic spin of a freely falling spin-3 fun-
damental particle, for example, does not satisfy
the equivalence principle. As was shown in
(3.37b), the spin vector {S*} obeys the equation
of motion

VS*/dT =~ $€*Y*° U, a,S, (6.8a)
with
dx* vS*  ds* X
b= — 7 A QY
U= dr ’ dr  dr Hos, (6.8b)

where 7 is the proper time. In order for this
equation of motion for the spin vector to meet
with the equivalence principle, the right-hand side
should vanish. Therefore, unless the axial-vector
part {a“} of the torsion tensor happens to vanish
identically, the equation of motion for the spin
vector violates the equivalence principle.?® An-
other important implication of new general rel-
ativity for microscopic phenomena is the pre-
diction of universal spin-spin interaction, caused
by an antisymmetric part of the energy-momentum
tensor. This interaction, if it exists, contributes

to the hyperfine splitting of the atomic energy
levels, and it shall be discussed in Sec. X.

B. Comparison with solar-system experiments

Since the invariant distance ds? of (5.3a) is
written in the isotropic coordinates, the post-
Newtonian parameters of the expansion (5.14a)~-
(5.14b), B and y, are the Eddington-Robertson
parameters.?® Thus, by virtue of (5.15), the
Eddington-Robertson parameters of new general
relativity are given by

B=1-€/2, y=1-2¢. -~ (6.9)

The values of 8 and ¥ have been measured by the
solar-system experiments:

1.00+ 0.06 (retardation of radio waves?°) y

Y= (6.10a)

1.014+0.018 (solar deflection®), (6.10p)
1(2+2y - B)=1.003+0.005

(perihelion advaneces®), (6.11)
n=4f -y -3=-0.001+0.015

(lunar laser ranging®?). (6.12)

From (6.9) it follows that the Nordtvedt parameter
7 is vanishing in new general relativity;

n=0. (6.13)

For the sake of safety, we here adopt the value
(6.10b) for y. Using (6.9) in (6.10b) and (6.11), we
get

—0.007£0.009 from (6.10b),
€= (6.143,)

—-0.003+0.004 from (6.11).

Combining these two values for € as if they were
independent, we are led to

€=-0.004+0,004. (6.14b)

This value of € satisfies our assumption of € <%;
see (5.22b).

By virtue of (5.12c), two dimensionless con-
stants, kc, and kc,, can be expressed as

€

- __ € 2
KCI—— '?,(T—e—)—— 3 +O(€ ),

4e 4e

_ - 2
Ke:= g1 _ge)- 30

Use of (6.14b) then gives

(6.15)

kc,=0.001+0.001, kc,=-0.005+0.005. (6.16)

Rewriting the gravitational Lagrangian density
L, of (4.18) as
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o e )

+2kc,(v* v,) +2kc, (@ a,)], (6.17)

we find that the strength of the ¢, and c, terms are
severely restricted by the solar-system experi-
ments.

VII. THE CASE OF ¢,=0=c,

We have seen in the last section that the ¢, and
¢, terms of L are, if they exist, very severely
restricted by the solar-system experiments.
Therefore, we shall henceforce ignore these two
terms and assume that ¢,=0=c,. The case of
c,#0#c, shall be discussed in a separate paper.

The gravitational Lagrangian density L , then be-
comes

Lg= E%—R({ D+cylata,), (7.1)

and the gravitational field equation, (4.31) and
(4.32), can be expressed as

G ({}) + K"’ =T *V?, (7.2)
b* b} 8,(V=g J*)=a/og T, (7.3)
where we have introduced a new parameter 2 by
9
A= — .
4C3 ’ (7 4)

and {K**} and {J***} are defined by

K = < 3 [€PN(TY0 = Ty!) + €2™M(T %, = TV o, - $a%a” ~ $g* a'a }, (1.5)

JHR bt b= e, (7.6)
Taking the combination of [(7.2) + (k/A) X (7.3)], the gravitational field equation is rewritten as

G"({ P +L* =kT*, (7.7)
with {L**} defined by

L*= -;X{a, [€4PMTY o = T3") + € MT Yy = Thot)] = 3a%a” - 3g*%a’a, + 3¢* (b, 8, a; +a,v,)}, (7.8)

where {a;=b;*a,} is a scalar with respect to gen-
eral coordinate transformations.

As is evident by the definition of the torsion
tensor (4.4) and its irreducible components of
(4.5)-(4.7), the second term {L*"} of (7.7) does not
transform like a tensor under a local Lorentz
transformation

By (x) =A% (1)),
Ajtz(x)nimA m"( x) =Men -

The energy-momentum tensor of the electro-
magnetic field depends on the parallel vector
fields b only through the metric tensor, g,
=b' n;;b’,, and hence it is locally Lorentz in-
variant. The energy-momentum tensor of spin-
3 fundamental particles, however, is not locally
Lorentz invariant, due to the second term of the
second line of (4.30a), i.e., $€,,,, b, K°, ¥r5y*d.
Thus, the energy-momentum tensor of matter is
not locally Lorentz invariant, unless effects due
to the intrinsic spin of spin-3 fundamental par-
ticles can be neglected. Therefore, the grav-
itational field equation of (7.1) is not invariant
under a local Loventz tvansformation.

The gravitational field equation is considerably
simplified in the particular case which satisfies
the following two conditions: (1) The axial-vector

(7.9)

4
part of the torsion tensor vanishes identically,

a* =é.. Gnvmbkv(aobkp_ 80 bku)zo, (7'10)

and (2) effects due to the intrinsic spin of spin-3
fundamental particles can be neglected. The first

. condition implies that the left-hand side of (7.7)

becomes the Einstein tensor G‘”’({ }). The second
condition, on the other hand, allows us to treat
spin-3 fundamental particles as if they were spin-
less; the energy-momentum tensor {T*'} on the
right-hand side of (7.7) can then be identified with
the energy-momentum tensor {T4%} used in gen-
eral relativity. Thus, in this particular case the
gravitational field equation (7.7) is identical with
the Einstein field equation,

G**({ D =kTYY . (7.11)

For example, suppose that the metric in the in-
variant distance,

ds?=— A (x)(dx°)? + B(x)(dx')?
+C(x)(dx?)? + D(x)(dx®)?, (7.12)
is an exact solution of the Einstein field equation
(7.11), where A(x), B(x), C(x), and D(x) are

functions of x. Define the parallel vector fields
b =1ba by
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1 1
©) “EEO’ 2(1)= F_Eu

1 1 (7.13)
2,(2)_ \/C_ Ez’ _b(3)= \/'1—)‘ 53’

with E, =9/8x* and Latin indices in b, enclosed in
parentheses. Then they form a system of four
orthonormal vectors with their contravariant com-
ponents given by

bo'=1/YA, by,'=1/VB,

b2=1/VC, b°*=1/VD , (7.14a)
b,* =0 otherwise,
and their covariant components given by
b = VA, bW =VE,
b‘2)2;-\/6, b® =VD , (7.14b)

b*, =0 otherwise .

In this case the axial-vector part of the torsion
tensor, formed of b, vanishes identically;

a*=0. (7.15)

Therefore, the parallel vector fields (7.13) are an
exact solution of the gravitational field equation
(7.7) with the source term, T""=T%%. The metric
of the form (7.12) covers, among others, a num-
ber of static vacuum solutions with high symmetry
of the Einstein field equation,®* such as the
Schwarzschild solution, the Reissner-Nordstrom
solution and the Weyl solution, and the Friedmann
model® in cosmology.

VIII. GEOMETRY OF THE EXTENDED WEITZENBOCK
SPACE-TIME

In this section we shall consider the particular
case discussed in the last section: Namely, we
shall assume that the parallel vector fields, b
={b,}, satisfy both the condition (7.10) and the
condition that spin- fundamental particles can
be treated as if they were spinless. The gravita-
tional field equation (7.7) is then apparently of the
same form as the Einstein field equation, but the
geometrical background of these two equations are
quite different: In general relativity the Einstein
equation defines the Riemann space-time, while
in new general relativity the gravitational field
equation is to define the parallel vector fields of
the Weitzenbdck space-time.

Let the parallel vector fields, b={b,}, be a
solution of the gravitational field equation (7.7):
Namely, we suppose that _IZ={_I_)12} simultaneously
satisfies both the condition (7.10) and the Einstein
field equation (7.11). New parallel vector fields,
b’ ={b",}, obtained from b by a local Lorentz

transformation (7.9), also satisfy the Einstein
field equation by virtue of the local Lorentz in-
variance of the Einstein field equation. The condi-
tion (7.10), on the other hand, is not fulfilled by

b’ in general, because the axial-vector part of the
torsion tensor, {a*}, transforms like

am(x)zau(x) —%6“”’°b",bk,A"‘,(x)A,,,k(x)',, (8.1)

under a local Lorentz transformation (7.9). Here
A,, is defined by A4,,, =7, A%,.

The new parallel vector fields b’ thus satisfy the
gravitational field equation (7.7), if and only if the
transformation matrix [A?,(x)] obeys the condition,

e“”’“’b’,b”pA"‘j(x)A =0, (8.2)

mR, ¢

which ensures the condition (7.10) for 5’. In the
present particular case, therefore, thzgravita-
tional field equation (1.7) is invariant under those
local Loventz transformations which satisfy the
condition (8.2), and the parallel vector fields are
defined by the gravitational field equation with
ambiguity of making those local Loventz tvans -
formations. This ambiguity does not lead to any
observable effects, because the Maxwell and Dirac
equations, (3.11) and (3.13), respectively, are also
invariant under those transformations.

In the Weitzenbdck space-time the parallel
vector fields should be defined only with arbi-
trariness of making a global Lorentz transforma-
tion, and there is no room for making any local
Lorentz transformations. In the present particular
case, however, the new parallel vector fields b’
connected with b by a local Lorentz transformation
satisfying (8.2) should be regarded as equivalent
to b’, because the Maxwell, Dirac, and gravita-
tional field equations are all invariant under the
transformation from b to b’. We are thus forced
to generalize the concept of absolute parallelism
in the following manner: Absolute parallelism
defined by b’ shall be vegavded as equivalent to,
that defined by b, provided that b and b’ ave con-
nected with each other by a local Loventz trans-
formation subjecting to (8.2). We shall refer to
this new parallelism as extended absolute paral-
lelism, and space-time endowed with extended
absolute parallelism shall be called the externded
Weitzenbock space-time. The geometry of the
extended Weitzenbdck space-time then is invariant
under those local Lorentz transformations which
fulfil the condition (8.2).

For given parallel vector fields b, we denote by
A(b) the set of those local Lorentz transformations
which fulfil the condition (8.2). The set A(b) does
not form a Lie group: Namely, for two elements
of A(b), A and A’, the inverse A™! and the product
A’A do not belong to A(b) in general. However,
for an infinitesimal local Lorentz transformation,
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Al(x) =08+ Wl (x), W+ w,=0,

|w| <1, (8.3)
the condition (8.2) becomes

€uvpubjubkp@jk(x),l¥:0 , (8_4)

by neglecting the second- and higher-order terms
of w;,. Since the condition (8.4) is linear in wy,,
the infinitesimal neighborhood of the unit element
in A(b) has some of a Lie-algebra property: The
inverse, (A™')/, =6, — w’,, and the product, (A’A),
= 6%+ W j,+ Wy, satisfy (8.4) for any two infinites-
imal local Lorentz transformations, A and A’,
belonging to A(b).

As an example of the extended Weitzenbdck
space-time, consider the static isotropic space-
time, which has the Schwarzschild metric for
the present case of ¢, =0=c,. Written in the iso-
tropic coordinates used in Sec. V, the Schwarzs-
child metric is expressed in the isotropic form,

ds®=-A(r)dt? + Blr)dx“dx* , (8.5)
with

Ap) - =CM/2r) B(r>=(1+G—M)4, (8.6)

T(1+GM/2v)? 27

and the parallel vector fields b defined by (5.24)
are
1 E 1 .

_IZ(O):\/T_O’ g(a):;fgéaga ’ (87)
with {E } the coordinate basis; E,=9/9x* The
axial-vector part of the torsion tensor, formed of
b, thus vanishes identically, and so the static,
i—sotropic space-time is the extended Weitzenbdck
space-time. Besides the parallel vector fields
b of (8.7), there exists an infinitely large number
of parallel vector fields, which are all equivalent
to b and with each other: All parallel vector fields
are related to b of (8.7) by local Lorentz trans-
formations sathfying the condition (8.2). The
condition (8.4) for an infinitesimal local Lorentz
transformation specified by (8.3) can easily be
solved in this case: The solution which leaves b
static is -

Way ey = 03 O Hy,s~Hg, o),

@i03(a) = = Wiay(0) = 03 Ho,a » ®.8)
with H, arbitrary small functions independent of
t, where Latin (Lorentz) indices in w,, are en-
closed by parentheses.

For a finite local Lorentz transformation it is
not easy to solve the Eq. (8.2). However, we can
find a special kind of the parallel vector fields in
the static, isotropic space-time by looking for
such a set of coordinates {x*} that the Schwarzs-
child metric is expressed in the diagonal form of

(7.12). The parallel vector fields, defined by
(7.13), in such coordinates are equivalent to the
parallel vector fields of (8.7) defined in the iso-
tropic coordinates. An example is given by the
spherical polar coordinates (¢, 7, 6, ¢) introduced
by (5.26): The Schwarzschild metric reads as

ds?=—A(r)dt? + Br)dr*+ C(r)d6? + D(r, 0)dp?  (8.9)
with A and B still given by (8.6), and

(8.10)

Thus, the system of four orthonormal vectors, 2’,

2'(0):;_Zl_zc» 2/(1):1[1__E_§” (8.11)
b(zﬁfl—gl;?e» 2'<3>=1—D“§o,
with
E,=8/dt, E,=8/dy, E4=8/86, E,=3/8¢,
(8.12)

is also a solution of the gravitational field equation
in vacuum, and can be taken as the parallel vector
fields, which are related to b of (8.7) by a local
space rotation

2,(0) :2(0)’ _Ql(a) :Racl’_(c) ’ (8-13)
with
sinfcos¢ sinfsing cosb
(R,.)=| cosbcosp cosfsing —sind (8.14)

-sing cos¢ 0

The parallel vector fields b’ are usually used as
tetrad fields'in quantum field theory for the
Schwarzschild space-time.*® The Schwarzschild
metric is of the form (7.12) also in the Kruskal-
Szekeres coordinates, *” and so we can use this
coordinate system to form parallel vector fields
b” by (7.13).

IX. THE WEAK-FIELD APPROXIMATION

Further insights into new general relativity can
be gained by applying the set of the gravitational
field equation, (7.2) and (7.3), to weak-field sit-
uations

bR (x) =0, +a* (x), |a*,| <1,

bt (%) =8, v, (%), o] <1,

9.1a)

since in this case the particle spectrum of the
new general relativity can be clarified by the use
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of the unitary, irreducible representations of the
Poincar€ group. In this situation we can expand
the field equation in ot’@uL and c,* and can keep only
lowest terms. Thus we need not distinguish Latin
indices from Greek indices, which are now raised
and lowered by the Minkowski metric tensor,

{n*"} or {n,,}: We shall use Greek indices through-
out this section. From (2.5a) follows

a’, +er =0, (9.1b)

and hence we take {a,,} as the basic field variable.
We shall decompose the weak field {a,,} into its
symmetric and antisymmetric parts,

auv=%hw+Aw, 9.2)
with k,,=h,, and A, ,=~A, . The components of
the metric tensor are then written as

g =M+, (9.3)

The antisymmetric field makes no contribution to
the space-time metric in this approximation,
implying that it is associated with the intrinsic
spin of spin-3 fundamental particles.
The Einstein tensor becomes to lowest order
inh,,
G PD==2[0h,, -3, h+8,k,,)

+Mu09, 8,h"], 9.4)

where [J=5"8, and Zu,, are defined as usual by
Euv=huv‘énuuh’ h=77whup- (9-5)

The second term of (7.2), i.e., {K*"}, is of second
order in k,, and A, ,, and hence can be ignored.
The left-hand side of (7.3), when indices are
lowered, becomes in the weak-field approxi-
mation

bi,byd,(Vog Ji?)==[0A4,,- (3,4, -8,A,)],
' (9.6a)

because the axial-vector part {a“} of the torsion

tensor is given by
(9.6b)

a* = §€uvpu aVADO‘ 3
Thus in the weak-field approximation the sym-
metric and antisymmetric parts of the gravitational
field equation are given by
Dﬁuv - ax(au hvx + 8,,1’1“,‘) + nuu apaa Epo =_2KT(uv) ’

9.7)
DAM.V_ al(auAv)t_ avAu.l)z_)tT[uu]' (9-8)

It follows from these equations that the symmetric
field {n,,} and the antisymmetric field {4} are
completely decoupled from each other. The {&,,}
obeys the linearized Einstein field equation. The

nonsymmetric energy-momentum tensor {Tu,, is
taken to lowest order in the weak fields; namely,
it is independent of {1,,} and {4,,}, and satisfies
the ordinary conservation law in special relativity,

3,T* =0, (9.9)

by virtue of the response equation (6.6).
Multiplying 8” on both sides of (9.7) and (9.8),

we find that both the symmetric and antisym-

metric parts of {T,,} satisfy the conservation law,

(9.10a)
(9.10Db)

8, T®"=0,
9 T[uu]=0
v .

By virtue of (9.9), these two.equations are not
independent of each other. The conservation law
(9.10b) imposes a severe restriction on the form

of spin tensor of matter. In fact, due to the Tetrode
formula in special relativity,*

(9.11)

Eq. (9.10b) is automatically satisfied if and
only if a spin tensor, {$**?}, is totally antisym-
metric with respect to its three indices. Thus,
the gravitational field equation demands that a
spin tensor be expressed as ‘

zT[uu]= 8psu.vp ,

LYp _ - uVpo
SHP =",

(9.12)

by an axial-vector current, {J_}. For Dirac par-
ticles, {J,,} is given by
J5a == %a?’s?’alp .

As canbe checked by direct calculation, the lin-
earized field equations of (9.7)-(9.8) are invariant
under gauge transformations,

J

(9.13)

(9.14a)
(9.14b)

h',,=h,,-8,J,-98,J,,

Ar,,=A,, +3,H,-3,H,,

with J, and H, arbitrary small functions which
leave the fields weak. In a particular case, J,
=2H,=A,, these gauge transformations give rise
to an infinitesimal coordinate transformation,

x* ~x' =x* 4 A*(x). By means of these gauge
freedoms, we can put the gauge conditions,

8,h*" =0,

BVA"'V =0,

(9.15)
(9.16)

which we shall assume henceforth. Then the field
equations of (9.7)—(9.8) become.

Ok, == 2T (5 (9.17)

OA,,==AT¢,,;- (9.18)

We shall restrict our discussions to the anti-
symmetric field {4 ,,}, because the physics of the:
{n,,} field is well known.* The retarded solution
of (9.18) is given by :
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T, (%t 1E-%'1)
1T %] )

A, (%)= Tg}f dsx’

(9.19)

Suppose that we observe the gravitational field
in the space region far outisde a source; there-
fore, we can calculate the solution of (9.19) to
lowest order in l/rzl/lil, using the expansion

|2 -%|=7 - x;,x'+o<1>,

4
a1 R (1 (9.20)
|X—X’l = ;4— 7_3 +O ?3' o

We assume that the energy-momentum tensor
can be expressed as Fourier integral or as a sum
of Fourier components; suppose we calculate for
a single Fourier component,

TEI“'](E’ t) = T[uu] (i’ w) e-iwt

+T[w](;(, w)e*ivt, (9.21)

where a bar means complex conjugation. In the
wave zone the solution (9.19) then becomes just
like a plane wave

A, (%, 0)=d, (X, w) e +d (X, w)e ™ (9.22)
with the wave vector,

K=wx, kK=w, (£=x/7), (9.23)
é.nd the polarization tensor

A

d T

(X, 0)= f A% Tp, (%7, 0) e %, (9.24)
The wave vector {k“} is a null vector, and the

polarization tensor satisfies the conditions,
Rd, (%X, w)=0, k'd,(X,w)=0 (9.25)

by virtue of the conservation law (9.10b). Since »
is very large, the X dependence of d, ( E, w) can be
neglected, and so the plane wave (9.22) satisfies
the d’Alembert equation, 0OA u,,(;(, t)=0, and the
gauge condition (9.16).

The energy-momentum tensor {f**} of the {A,,}
field is given'by

= - [aLA/B(auApo)]auApo +M*VL,

3 9
= _(-2-3 )aﬁ“”auA"”(ﬁ) n**(@a®, (9.26)

\

where L, is the linearized Lagrangian density
of the {4} field,

4r

L ,=c4la,a*) =(P—) @,a"). (9.27)

‘We use the plane wave solution (9.22) in (9.26),
and average ¢ i“’ over a space-time region much
larger than lkl". The average Kkills all terms
proportional to exp(+ 2ikx), and we are left with

only the X-independent terms,

(Y = (2/2) Re(k*Rd® T, — 264 P )

+ 2/ Rk AT, (9.28)
Using the condition (9.25), we then find
{t**y=(4/0) |d , | % R", (9.29)

where we have chosen the direction of K as the

third axis. Therefore, only the (12) component

is physically significant, and the enevgy density

1% is positive definite if the constant ) is positive.
The (12) component, d,,, does not change at

all under a rotation around the third axis; in fact,

for such a rotation the rotation matrix (R,,)

satisfies R ;=0=R,;, and hence the d,, transforms

like a scalar,

a’, =R R, Aoy = (R11R12 ‘R12R21)d12
=det(Rab)d12=d12. (9.30)

The physically significant component d,, is thus
of helicity zero. In the terminology of elementary
particle physics the {A w} field is a massless field
of spin 0.

In the above discussion the {4} field is assumed
to be a classical field. The quantization of the
{A w} field can be performed consistently, and the
resulting quantized theory does not involve ghost
states.

The space components of the solution (9.22),
which decrease as 1/7, contribute to the energy-
momentum tensor, but the (0a) components do not,
and hence they are of no physical significance.
This fact suggests that the next terms of AOa(i, 1),
which are proportional to 1/#2, are important.

In order to eliminate the (1/7) term from 4, (X, ?),
we rewrite the (Oa) components of (9.19) as follows:

- A -
Ag(x,8)= E/dax’T[Oa](x’,t—r)

1 %.% (1)] 3
<75 o)) o7

(9.31)

with &, given by

o

X 1 an ‘ -
fem g 2 Grnr o) O T -7)
n=0
y (’}’-— |§_i/|)nd

X=X’

(9.32)

The integral in (9.31) can be rewritten by using
the relations, (9.11) and (9.12):

fdax’T[M](i’,t—r) =<Oaﬂ,,f a*x'd,, B(;?’,t-r):O,
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[ Ty 1 =) G+ 5)
= éeomt,,f A% 0 (X1 =7)(X -X")
=5 €, ,,f dx7d,, (Xt —7)xt
=3 €45,X85 (1 =7),
where S$={5%} is a fotal intrinsic spin of the source,

S, ()= f Bx o (%, 1) = e, f A3xSPO(X, 1) .
(9.33)

We now perform a gauge transformation (9.14b)
with H, given by

H,=£,, H,=0. (9.34)

Then, dropping a prime onA,,, we finally get

BSY (f —

A (%, 1) = 8—71‘1— o x—%(ﬁ—’i +o(%>. (9.35)
Since £, decrease as 1/7, the change of the space
components, 04,,=9,§,-98,,, decreases as 1/7%,
and hence the (1/7) terms of A,, do not change
under this gauge transformation. The expression
(9.35) is to be compared with the asymptotic
expression for &, (X, ),

- K XEM(t -7

hoalE )= 25 upy _7_3(.__) (9.36)

where M={M¢} is a total angular momentum of

the source,
Ma(t)=<aB,fd3xxﬂT”°’(k’, ). (9.37)

See Table I for an illustration of {%,,} and {4}

in the asymptotic region.

TABLE 1. Asymptotic expressions for %, and 4,, far
from a weakly gravitating system. The result for %, is
well known (Ref, 41), but we list it here for compari-
son’s sake,

124 By A
M
ST o
v va
8 B
K xPMY 1 A xPSY 1
B e ) e 00

[gravitational
radiation terms that
die out as 0(1/7)]

2GM
ap <1+ v )6"‘“

+ [gravitational
radiation terms that
die out as O(1/7)]

X. COUPLING OF AN ANTISYMMETRIC FIELD

As is wellknown, the symmetric field {#,,} can
be neglected in atomic phenomena. So we shall
study the coupling of an antisymmetric field, as-
suming that the metric tensor is the Minkowski
metric tensor,

By =My (10.1)

It is then convenient to employ a Cartesian co-
ordinate system { x*}: The tetrad fields associa-
ted with it, which we denote by e={¢,} ={e,*
=0,"}, are related to the parallel vector fields b
by a local Lorentz transformation, B

(23 =A7 I3 (x)éj )
(10.2)
A (x)=67, - bk“bj”Ap,,(x) .
Here we assume that an antisymmetric field
{A,,} is so weak that we can neglect the second-
and higher-order terms of {A,,}.

In Sec. II, the Dirac spinor wave function was
introduced by referring to the parallel vector
fields b; we denote it here by §,. The Dirac spin-
or wave function y,, which is defined by referring
to the tetrad fields e, is related to ¢, by the local
Lorentz transformation (10.2);

Y, =UMY,, UM)=1-3i4,,5"". (10.3)

It should be remarked here that the spinor wave
function ¢, is usually used in atomic physics to
describe the electron.

Suppose that ¢, satisfies the Dirac equation
(3.13b), then Eq. (10.3) implies that y, satisfies

@Ev¥e, —2a,y /" =m)y, =0 (10.4)

by virtue of the following property of the covar-
iant derivative V,:

UMV, =V, =8,0, . (10.5)

Here V¢’ and v mean the covariant derivative
defined by the Ricci rotation coefficients formed
of b and e, respectively: V‘j’ coincides with the
usual derivative 3, since e,*=5,".

Now we apply the Dirac equation (10.4) to the
electron in the hydrogen atom, including the elec-
tromagnetic interaction between the electron and
the proton by the minimal principle

3, =9, +ieA, , (10.6)

where (- e) is the electric charge of the electx_'gn,
and the electromagnetic potential {A*} =(A°, A)
is given by
A’=—e?/r=-A,,
A= (eg,,/ZM,,)(VX S,);; .

Here the vector potential A is due to the magnetic
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moment of the proton; M,, §,, and g, are the
mass, the spin, and the gyromagnetic ratio of the
proton, respectively. The Dirac equation (10.4)
then becomes

[iv*(d, +ieA,) —2a,¥Y* —m]y,=0, (10.8)

for the electron in hydrogen atom.

For the proton at rest at the origin, the axial-
vector current of (9.13) is given by

J50=0, J,=5,6°%) . (10.9)

Use of this in (9.11)-(9.12) shows that space-
space components of the antisymmetric part of
Tyuvs Tiasys vanish identically; therefore, we
find that
A aB = 0

(10.10a)

around the proton. On the other hand, the (0a)
components of an antisymmetric field are given
by (9.35):
A > 1
(Age) == 5= (VX $5) 5 - (10.10b)
Using (10.10a)-(10.10b) in (9.6b), we obtain the
axial-vector part of the torsion tensor around the
proton at rest,
A

127 (10.11)

- - 1
0 A= — X (VX =
a®=0, 3 Ix(Vx§ ,)y
In order to evaluate the effects due to an anti-
symmetric field, we rewrite the Dirac equation

(10.8) into two-component wave equations,

] ez 3., » -~
(z vy +2m+7 rz @ o)x—o P+el)o ,
(10.12b)
where we put
v, =(i’>e'im' , (10.13)

and used the standard representation of the y
matrices.*” Here D denotes the momentum opera-
tor; p*=-178/6x* . In the Pauli approximation,

in which (10.12b) may be approximated to

= x . 7
X=g5 D+eA)-00 , (10.12b%)
we get
i Z—td“’ =H¢ , (10.14)

1 . =, e e’g, A >
e ( 2 & op =
H (D+eA) +(4mMp * Ten

x5 {TxFx§ 5, (10.15)

The last term of (10.15), which consists of two
parts, describes the spin-spin interaction of the
electron and the proton: One is due to the magnet-
ic moment of the proton, and the other due to an
antisymmetric field.

The spin-spin coupling due to an antisymmetric
field is not restricted to the case of the electron
and the proton, but quite universal. For any two
spin-3 particles, A and B, separated by 7, we
can show in the similar way that in the nonvela-
tivistic approximation the coupling with an anti-
symmetvic field leads to univevsal spin-spin cou- -
bling,

H

spin-spin 8

-;ﬂ—(@,, 85 - B, 0@, i)ﬂ, (10.16)

where S, and § are the spin vectors of the spin-
3 particles, A and B, respectively. This spin-
spin coupling makes a contribution to the hyper-

- fine splitting of energy levels in atoms and muon-

ium (the bound state of an electron and a positive
muon). :

Let us first consider the hyperfine structure in-
terval Av(H) of the ground state of the hydrogen
atom. We denote by A vy, (H) the theoretical value
which is based on conventional quantum electrody-
namics and on the assumption that the proton is a
Dirac particle without internal structure. Adding
possible corrections to Avgp, (H), we express
AV(H) as

AvH)=AvV,  (H)[1+05% +5,H)]. (10.17)

VQED
Here 82 is the correction due to internal structure
of the proton: The precise value of 62’ is not -
known at present, but it is estimated to be 1-2
ppm.** The last term 6,(H) is a possible correc-
tion which arises from universal spin-spin cou-
pling of (10.16): From the expression (10.15) for
the Hamiltonian, we obtain

6, (H) = /167

A
g, A, 012 g GV

(10.18)

The theoretical value Ay, (H) is in good agree-
ment with the experimental value*;

AVexp (H) —-A VQED(H) -
Av, (H)

exp

(2.5 + 4.0)X107° ., (10.19)

Since the correction 6‘1';” is of the order of 1 ppm,
we estimate the upper limit on & ,(H) as
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8, (H) < 5%107° (10.20)
>

Because of ambiguity in the correction 82, it
seems difficult to estimate the value of 6, (H) with
higher precision than (10.20). Combining (10.18)
and (10.20), we get

2 <4X107* (GeV)™2.

pps (10.21)

Next we shall consider the hyperfine structure
interval of the ground state of muonium. The
theoretical value AVgep(eis) based on conventional
quantum electrodynamics agrees well with the
experimental value®?;

Aveplen) =Avge(ep)
AV, (ep)

=~(0.45+1.5)x107° ,

(10.22)

The value of Av,,, (ep) is known with much higher
precision than Avygp(eu), due to uncertainfy in
our knowledge of the fundamental constants “u/ Ky
and a; here p, and u, are the magnetic moments
of the muon and the proton, respectively, and «
is the fine-structure constant. Possible fraction-
al correction to A, (ep), 8,(en), which arises
from universal spin-spin coupling of (10.16),. is
obtained from.(10.18) by replacing the proton
parameters, M, and g,, with the muon paramet-
ers, M, and g,;

GA(eu) =-e?é3%%ﬁ;= 0.0037 X -4}1—,_ (GeV)?.
(10.23)

Here M, is the muon mass and g, is the gyro-
magnetic ratio of the muon. From (10.22) we es-
timate the upper limit on 6,(eu) as

S,(en)=107°, (10.24)
This upper limit can be improved, provided that
the fundamental constants u,/u, and o would be
known with higher precision. Using (10.23) in
(10.24), we obtain

A < 3x107* (GeV)2 .

y (10.25)

Summing up, we conclude from (10.21) and
(10.25) that the squave of the coupling strength
of an antisymmetric field is bounded by N/4n
<3X%107% (GéV)~2. This result is in agreement
with the quantum-field-theoretical estimation of

Miyamoto and Nakano.”

XI. TIME-DEPENDENT SPHERICALLY SYMMETRIC
FIELDS

We now turn to a spherically symmetric, but
not necessarily static gravitational field in

KENJI HAYASHI AND TAKESHI SHIRAFUJI 19

vacuum. When we considered the static, iso-
tropic gravitational field in Sec. V, we assumed
that the state of a central gravitating spherical
body does not change under space inversion,
besides it is invariant under time reversal and
space rotation. This is the case either if con-
stituent particles of a spherical body are spin-
less, or if the spin of constituent particles is ran-
domly distributed and can be ignored. If the spin
of constituent particles of a spherical body hap-
pens to be polarized to outward (or inward) radial
direction, however, the spin state of the gravi-
tating body changes under space inversion: In
fact, if the spin of constituent particles is po-
larized to outward radial direction, then after
space inversion the spin is polarized to inward
radial direction. Therefore, we assume here
that the parallel vector fields b={b,}=1{b,*} and
their dual b* ={p*}={b*,} are form invariant
under space votation (5.1c), but not necessarily
form invariant undey time reversal (5.1a) and
space inversion (5.1b). It is shown in Appendix
B that we can then take the following expression

for b*={p*}={p*,}:

[ C 0
(%)= , (11.1a)
E\Hx® D&%+ Fe qpx”®
where C, D, F, and H are unknown functions of
¢t and = (x%x%)"/2. The parallel vector fields
b={b,}={b,"} are then represented as

-u
_H .

f1/C CD

(bku)z ]
o F2 a, o 8 2 2 12

B\ 0 D60+—D—xx + Fegopx")/(D*+7°F)
(11.1b)

and the invariant distance ds? is expressed in a
rotationally invariant form,
ds*=—(C? - v*HYdt’ + 2DH dt(x*dx )
+(D*+ 7' F)dx*dx® - Fi(x%dx®)*. (11.2)

In empty space the antisymmetric part (7.3) of

the gravitational field equation reads
8,(V-g etimp °p °q,) =0 . (11.3)

The axial-vector part {a"} of the torsion tensor
is expressed in terms of the unknown functions,
C, D, F, and H, as

P, for u=0,
Qx*Y,

‘/:Eau:{ (11.4)

for u=a,
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with P and @ defined by
= + 2 'r_n’
P=2DF 37(1?1? D.F) , (11.5)
Q=-tHF+%(DF - DF),

where a dot and a prime denote 8/8¢ and 8/97,
respectively. Using (11.4) in (11.3), we get

HP+DQ ,
2F Wx =0 (11.6)

for (,j) = (0,a), and

1 Y H
SO(E(HP + DQ)eabcx°> - a°‘<_C—D- (HP + DQ) s,,,,cxcx“‘>

e (o) v grl(Se)] <0 wio
for (¢,j) = (a,b). Equation (11.6) gives

F=0, (11.8a)
or

HP+DQ=0. (11.8b)

It follows from (11.5) that if F=0, then P and @
vanish identically. On the other hand, if (11.8b)
is satisfied, (11.7) gives

C_Y\ F? C
— + —— —
<DP) 27D2+1'2F2 DP o, (11.9)

which can be readily integrated to give

c T 2rF? > k '

D P=f(t) exp(—- A md’r , (11.10)

with £ () an unknown function of {. We impose

the boundary condition at spatial infinity as
limbk, =6*%,, limb*=5,".

w?
ro® row

(11.11)

Then unknown functions, C, D, F and H, satisfy

lim C(¢,7) =lim D(¢,») =1, (11.12)
 dadid T=®
lim vH(t,7) =lim »F(¢,7) =0, (11.13)
oo e

and hence from (11.5) if follows that
lim 7P(t,7) =lim»Q(¢,7) =0. (11.14)

7= r=-o

Because of the boundary condition (11.13) for F,
the integral in the exponent of (11.10) converges
for » —«, and so the exponential factor of (11.10)
approaches a finite positive value for » —.
Therefore, in order to satisfy the boundary con-
dition (11.14), the unknown function f(¢) must
vanish, and hence we get

P(t,7)=0, Q(7) =0, (11.15)

by virtue of (11.8b) and (11.10). It then follows
from (11.4) that the axial-vector part of the tor-

sion tensoy must vanish,

a*=0 (11.16)

for a sphevically symmetvic gravitational field
in vacuwm. The symmetric part (7.2) of the
gravitational field equation now becomes the Ein-
stein equation in vacuum,

Gu({N=0.

According to the Birkhoff theorem*® in general
relativity, a spherically symmetric solution of
(11.17) must be static and is given by the Schwarzs-
child solution.

We have thus shown that a spherically sym-
metric solution of the gravitational field equa-
tions (7.2)—(7.3) with source tevms absent must
coincides with the static, isotropic field in va-
cuum studied in Secs. V and VII, i.e., the Schwarz-
schild solution. This is just the Bivkhoff theorem
of new general relativity.

(11.17)

XII. CONCLUSION

We have formulated new general relativity and
proved the following:"

(1) The equations of motion for spin-3 funda-
mental particles and photons are approximated
by the WKB approximation method to yield, in
the classical limit, the geodesics of the metric g,
the extremal curve. This is the “corresponding
principle” in new general relativity.

(2) In the case of ¢;=0=c, the gravitational
action is of the form

I=fd4xV:§_<§1-;R({ })+%(aua")+LM>. (12.1)

Here k is the Einstein gravitational constant,
k=81G/c*=8nG, and A is a new parameter,
bounded by A/47 <10™7c/(GeV)? from precise
experiments in quantum electrodynamics. (We .
leave open the possibility that A would be equal
to k, i.e., A=x.) What differs from general rela-
tivity is the second term, which consists of the
axial-vector part {a“} of the torsion tensor.
From this action follows the gravitational field
equation,

G**{ P+ L*=kT*, (12.2)

where
K . .o
L= E}T{a)‘ [e#P™M(T% 0 = T3 + 69?0)‘(7‘?/10 = T;"))
- 3a*q’ ~ %guvapap+ 3Euvpo(bipai’u+ apvu)} .

(12.3)

Here a;=0;"a, is a vector with respect to global
Lorentz transformations, but a scalar with res-
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pect to general coordinate transformations. Ob-
viously, the field equation is invariant under
global Lorentz transformations but violates the
local Lorentz invariance in general.

(3) In the static, isotropic gravitational field
the axial-vector part of the torsion tensor is
identically vanishing, and the solution is given by
the Schwarzschild solution.

(4) New general relativity agrees with all the
experiments which have so far been carried out,
as general relativity does.

(5) In the weak-field approximation to the grav-
itational field equation, it splits into two separate
equations; one is for the symmetric field {Ew},
and the other is for the antisymmetric field {4,,},

(12.4)
(12.5)

Oh,, = -2kT .y »
UA,, =T,

with the conditions, 8,2 =0 and 8,4*=0. The
first equation describes the propagation of a
graviton with zero mass and spin 2, and the se-
cond means the propagation of a zero-mass and
zero-spin particle, which exerts spin-dependent
force among spin-3 fundamental particles.

(6) In microscopic processes the equivalence
principle is violated by means of the antisym-
metric field described by (12.5), which is coupled
to spin-3 fundamental particles. However, in
the macroscopic scale the equivalence principle
is recovered.

(7) In new general relativity the Birkhoff theo-
rem, that a spherically symmetric gravitational
field in empty space must be static, with a me-
tric given by the Schwarzschild solution, is
proved.

At this point we summarize several important
features of new general relativity in comparison
with general relativity; see Table II.

Finally, we emphasize that new general relativity,
originally due to Einstein in 1928, is a gravita-
tional theory that is acceptable on the experimen-
tal and theoretical grounds.

At present it seems impossible to detect the
differences between general relativity and new
general relativity. Among other things, it is
highly expected to see what are Kerr-like solu-
tions, i.e., stationary and axially symmetric
solutions, in new general relativity, since the
Kerr solution in general relativity has the total
angulay momentum, to which the axial-vector
part {a*} of the torsion tensor in new general
relativity may contribute.
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APPENDIX A: PARITY-VIOLATING TERMS, (v#a,) AND

AUV g+ PO
(6,78 P%)

In Sec. IV we constructed the gravitational
Lagrangian density L, of (4.12) by postulating the
basic principles (1)-(4). We now lift up the
postulate of (3), then we can add to L; of (4.12)

parity-violating terms like (v"a,) and (€,,,.t**"4°°):
Lg=a,(t*",,,) + a,0",) + a,(a"a,)
+a,(0"a,) + as(€,,,0t 1 E350), _ (A1)

where a cosmological term is neglected. Because {
of the identity,

'-g€uvpathuutipo:% V—gv“au_% V_gau),u’ (A2)

we can drop the ¢, term, absorbing it into the

a, term. Accordingly, the gravitational action of
(4.18) involves one additional parity violating
term;

Io= [ dxvTg L,

[ de‘xf-z(g—x-m{ D+ e 5v,,,)

1, 0%,) + cy(a"a,) + c4(v“au)> . (A3)

where the parameters, ¢,, ¢,, and c,, are given
by (4.19) and ¢, is given by

c,=a,. (A4)

The gravitational field equations are then given
by (4.22) with the tensor {F,,,} of (4.24) involving
an additional term,

FHw _ cl(tu-ux _ tuXV)+ Cz(guuvx _gu).vv)
Cs cump Cy (v A v _ L _unp
-3¢ a,,+3(g @ - g"a" —5€"0p,)

:_Flllll. (A5)

The tensor {H"*"} is still defined by (4.25), and L’
is

L'=c, (t*ty,,) + c,w,) + c,(a"a,)
+c,(v"a,). (A8)

It is to be noticed that the choice of parameters
in Ref. 4 corresponds to the case of ¢,=0%c,.

In a static, isotropic gravitational field, for
which the parallel vector fields & are of a diagonal
form (5.2), there is no appearance of the para-
meters, ¢, and c,, in the gravitational field equa-
tion. Therefore, all the results of Sec. V still
hold true independently of the parity-violating
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TABLE II. Comparison of new general relativity with general relativity.

General relativity

New general relativity

Space-time

Connection

Basic structure
Gravitation

Transformation
group

The Birkhoff
theorem

Static, isotropic
gravitational
field

Static, axially
symmetric gravi-
tational field

Very strong,
static, isotropic
field

Newtonian
approximation

Weak-field
approximation

Quantum

Theory
Equivalence
principle

Riemann space-time

Levi-Civita connection
r={3}

Metric tensor

g ={ew}

Riemann-Christoffel
curvature tensor

General coordinate
transformation group

(Local Lorentz group)

Yes )

The Schwarzschild
solution

The Kerr solution
Black holes

. Yes

Symmetric field {%,,};
Ohy,=—2kT,,

with 82" =0

Graviton;
spin 2 and massless

Macroscopic
Yes

Weitzenbock space-time
-absolute parallelism-
Nonsymmetric affine
connection
T =b,8,b%,
Parallel vector fields
b=1b,% —~&= w}
Torsion tensor
T}, =bM8,b%, ~ 8,b%)
General coordinate
transformation group
Global Lorentz group
Yes

The Schwarzschild
solution

Not yet found
Black holes

Yes

Symmetric field {ﬁw};
Ok, ==2kT )

with 8,2% =0
Antisymmetric field {4,,};
OAu=-AT gy

with §,4% =0
Graviton;
spin 2 and massless
Scalar particle; positive
energy, spinless and
massless
Microscopic
Yes, for macroscopic
phenomena
No, for microscopic
phenomena

¢, term of L;. In particular, the values of the
parameters, ¢, and c,, are severely restricted by
the solar-system experiments, as is shown in
(6.16).

We shall thus assume henceforth in this appen-
dix that ¢, =0=c,. Furthermore, in order to
elucidate effects of the parity-violating ¢, term of
L., we here apply the gravitational field equation
to weak-field situations, where (9.1a) is satisfied.
Using the notation introduced in Sec. IX, we find
that the symmetric and antisymmetric parts of
the gravitational field equation are given by

G:llv) ({ }) ‘%Kc4ax(auzvl + avZul) = KT(uv) ’ (A7)

_ics [DAuv + ax(auAv). - avAu).)]

9
+ 64[_%81 (auzvl - 8vZul)

+%€uvlpal80(%z” _A”)] = T[uv] H (A8)
where {4,,} is the dual of {4,,},
ZuvzéequA”. (A9)

The nonsymmetric energy-momentum tensor
{TW} satisfies the ordinary conservation law (9.9).
Corresponding to the invariance of the gravita-
tional field equation (4.22) under general coordi-
nate transformations, the linearized field equa-

tion (A7)-(A8) is invariant under gauge trans-
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formation,
hluv =Ry, —(aulk +9, Au)’

A10
A'uv:Auv"‘%(auAu—avAu)’ ( )

where A, are four small but otherwise arbitrary
functions that leave {&,,} and {4,,} weak. For the
symmetric field {#,,}, the most convenient choice
of gauge is to put the harmonic condition (9.15),
which we shall assume henceforth.

It is to be noticed that the field equation (AT)-
(A8) is not invariant under space inversion and
time reversal, when ¢, does not vanish. This is,
of course, a direct consequence of the fact that
the gravitational Lagrangian density of (A3) in-
volves the term c,(v"a,), which changes sign under
space inversion and time reversal. This apparent
parity violation, however, does not lead to any
observable effects in the weak-field approximation,
as will be shown below.

(uv)(;‘ t- IX X D
_x'l

Y.

D ﬂl’x’

which is interpreted as the gravitational radiation
produced by the source {T‘w}. Inspection of (A15)
shows that if {8,‘7‘“‘} does not identically vanish,
the field {hu,} propagates inside the light cone as
if it is massive.

It seems natural, however, to restrict the
theoretical framework of gravitation by requiring
that gravitational radiation should propagate on
the light cone with the speed of light. In view of
this criterion, the case of ¢,#0 should be disre-
garded unless the energy-momentum tensor satis-
fies

8,T**=0, (A.16)

in addition to the ordinary energy-momentum con-
servation law (9.9). Therefore, we shall assume
(A16) hereafter. Then the spin tensor {S***} is
totally antisymmetric with respect to its three
indices, and is represented as (9.12).

It follows from (A13) and (A16) that the symme-
tric field {,,} satisfies the field equation

DZuul:-zKT(uu) ) (A.17)

which is nothing but the field equation (9.17) in the
case of ¢,=0. Consequently, we find that tre
symmetric field {n,,} is not influenced at all by
the parity-violating c, term of Lg.

From (A12) and (A16) it follows that

9,A"=0, (A.182)
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Multiplying 8 on (A7) [or (A8)], we get
—%C4Davz uv:avau’ (A.ll)
of which the retarded solution is given by
) -
O, & 1) = fd3 ' T""(x L xl’l‘ =%X'D
%~ (A.12)

since c, is assumed to be nonvanishing. Using
(9.4), (9.15), and (A12) in (A7), the field equation
of r,, reads

Oh,, = —2kT

(uv)
dix’ T)»(u.v)& t—lx -x'])
2 X—X%'| (A13)
where
Tyuym = 30,75, +8,Ty,). (A14)
The retarded solution of (A13) is
)
vom [ [ v ““’GI‘ t;{',ll‘, Jr] D s

r

which, in view of (9.6b), is equivalent to the
vanishing of the axial-vector part of the torsion

tensor;
a*=0. (A.18b)

Therefore, {Au,,} can be represented as curl of a
vector field {B,},

A,y (A.19)

Using (9.11)-(9.12), (Al8a), and (A19) in (A8), we
find that the field equation of {4,,} is rewritten as

-3
w T 2¢e,

=8,B,—9,B,.

0OA (8,5, -8, (A.20)

SM) 4

the retarded solution of which is given by (A19),
with B, defined by

~ ,J_W(x t—lx xi)
Bu= 811c‘1 fds -x']

- (A21)

It follows from (A18b) that an antisymmetric
field does not couple with spin-3 fundamental
particles [see the Dirac equation (3.13b)]. On the
other hand, the electromagnetic field is decoupled
from an antisymmetric field, since the former
interacts with the gravitational field through the
metric tensor {g,,}. Consequently, an antisymme-
tric field (A19) does not interact with fundamental
particles and fields, and so it is entirely devoid
of physical reality.
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The present case of ¢,#0 is invariant under the
gauge transformation (A10). Using this gauge
freedom, we have put the harmonic condition
(9.15), which is necessary to eliminate unphysical
components of the symmetric field {h,,,,}. We are
still left with the freedom to perform a gauge
transformation (A10) with A, satisfying the
d’Alembert equation,

0A,=0. (A22)

It follows from (A21), however, that {B,} satisfies
the inhomogeneous d’Alembert equation,

3

u=‘2‘aJ

OB (A23)
if matter exists. Accordingly, a gauge trans-
formation (A10) with (A22) s insufficient to make
an antisymmetric field (A19) vanishing in that
space-time region where there exists nonvanishing
source, {J,,4#0.

Therefore, an antisymmetric field (A19), al-
though it is unphysical, cannot be eliminated by
a symmetry transformation of the present case of
c,#0. This situation is to be contrasted with that
of the electromagnetic field, in which unphysical
components of the electromagnetic potential {Au}
can be eliminated by choosing an appropriate
gauge. It is unreasonable to accept a theory in-
volving such unphysical degrees of freedom that
cannot be removed by a symmetry transformation
of a theory. Consequently, we should disregard
the case of ¢,#0.

APPENDIX B: SPHERICALLY SYMMETRIC PARALLEL
VECTOR FIELDS

Consider the parallel vector fields for a spher-
ically symmetric (but time-dependent in general)
system. We mean by “spherically symmetric”
that it is possible to choose a “quasi-Minkowskian”
coordinates, x',x%,x%,x°=¢, such that the parallel
vector fields b* ={b*}={b* | are form invariant
under space rotation

xa_.RanB! g(a)-.RacB(C)’ (Bl)
where R =(R,.) =(R,;) is an orthogonal 3 x 3 matrix
RR'=R'R=I, detR=1.

The most general expression of {b"u} can then be
iven b
g y )
C Gx*
A\l
| ., (B2)
x® DO, +Ex®%x® +Fe %

(%)=

where C, D, E, F, G, and H are unknown func-
tions of £ and »=(x*x®)*/2, We are, however, still

free to redefine the time coordinate and the radius
by

t=¢(t,r), x'=p(t,r)x*, (B3)

with ¢ and ¥ arbitrary functions of ¢ and 7..

Under arbitrary coordinate transformation x*
—-x'*, the parallel vector fields {b"“} transform
like covariant vectors

bR (x')=(8x"/ax"*)b" (x) . (B4)

For a redefinition (B3) of ¢ and 7, the transform-
ation coefficients (8x”/0x’*) are given by

at/at' =(v+7ryY’)/A,
0x%/ot! ==(/A)x?,

(B5)
at/ax’%=—~(¢'/ra)x®,
o ’ _1 [ 1 ) b’ xa'xB
ox /ax”-i (68+K(¢> b= oY) — ) ,
where
p=0p/ot, ¢p'=0¢/ov,
l.l)=3¢‘/at, Z!)'=82b/37’, (BG)
_a(t,,?”) ot o ]
A:W —Z[)(yb‘l’?’((bd) "'(b lwb)°
Using (B5) in (B4), we obtain
b/(O)O'__..}&, [(lb+711)')c—7‘2‘2’c]’ (B7a)
o N 1 (bl . ) «
b()m_.&(__;-cﬂpcx , (BTh)
bf(a)o__._]'&. [(d).(.'rlp’)H—lel)(D*'?’zE)]xa, (B7C)
o= Do, L (jp o g B9 ) e
b= 6a+A<¢E— 7 H = D) x
* -IPE €aa8*” - (B7d)

Inspection of (B7b) shows that the (0a) compo-

nents, b, can be eliminated by setting

C ¢r-ch=0, y=1. ' (B8)

In particular, if C, D, E, F, G, and H are all
time independent, ¢ can be taken as

sy C 4o '
¢—t+d)(t), 7 W_G_OB (Bg)
where Zi;(r) is a function of ». Now we assume G
to be zero, then theE term in b“’, can be elimin-
ated by putting
D
¥

¢=t, E- %’-=0. (B10)
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The parallel vector fields (B2) then take the fol-
lowing form:

@)= € 0 : (B11)

Hx® D3, +Fe x°

Further reduction of {6*,} is impossible: Any
of C, D, F, and H cannot be put to zero in ad-
dition to E and G. This is evident from (B7a) and
(B7d) for C, D, and F. To prove this for H, we
assume that the (a0) components, b, were el-
iminated from (B11) by a suitable redefinition of
. t and 7, then Egs. (B'Tb)-(B7d) show that the func-
tion  must satisfy

»'=0, $H-pD=0,

However, these two conditions of i) are not com-
patible with each other, since D and H are, in gen-
eral, functions of 7.

Now we turn to a static, spherically symmetric
system. We assume furthermore that the spin of
constituent particles of the system, if it exists,
can be completely neglected: This means that’
there is no physical distinction between the left-
and right-handed coordinate system to describe it.
Then the parallel vector fields are form invariant
under time reversal and space inversion,

t==t, bo,~=-b, (time reversal) (B12)
x%~=x% b, ,~-b, (space inversion) (B13)

in addition to space rotation (B1). Hence the (a0)
components, b, and the F term in the (aq)

components, b, must vanish., The parallel
vector fields (B11) then become

(%)= ¢ 0 ) (B14)

0 D5,

where C and D are unknown functions of » alone.

APPENDIX C: PROOF OF 1+(c, +4c, )+ 0

The field equations for the static isotropic gravi-
tational field become

—k(c,+cy)A” = [1 = k(c, - 2¢,)|B”
- _2,‘;{’((01+62)A’+[1—K(CI—ZCZ)]B'}=T°°, (C1a)
[1-k(c,—2¢,)]A"+[1+k(c, +4c,)]B" =0 (C1b)

in the Newtonian limit. (Dividing (C1) by
[1+k(c, +4c,)] gives (5.7).) Assume that 1
+k(c, +4c,) =0, then (Clb) gives [1 - «k(c, — 2¢,) A’
=0. If A’=0, the equation of motion (5.11a) for
a nonrelat1v1stlc test particle becomes

d?x* 1

T e =g A0,
which contradicts the Newton equation of motion.
If 1-«(c, —2¢,)=0, on the other hand, c,.and c,
are given by ¢, =1/3x and ¢,=-1/3k, respectively.
Using these values of ¢, and c, in (Cla) gives

0=xT%,

which is a contradiction. Therefore, [1+ K(f‘ +4c,)]
should not be zero.
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