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Angular dependence of neutrino emission from rotating black holes
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The asymmetry of the angular dependence of neutrino emission from rotating black holes is calculated. A
low-frequency analytic approximation demonstrates the preferential emission of neutrinos (antineutrinos)
antiparallel (parallel) to the direction of the black hole's angular momentum vector. Numerical calculations
are performed to reveal the detailed nature of the neutrino emission on polar angle, neutrino energy, and
black-hole angular momentum and mass.

I. INTRODUCTION

Quantum theory predicts that black holes emit
a thermal spectrum of particles into the sur-
rounding vacuum. ' Kerr (rotating) black holes
lose angular momentum in addition to mass due
to the particle emission process. As a result,
particles with positive helicity' are emitted pre-
ferentially along the rotation axis in the direction
of the angular momentum vector of the black hole
and negative-helicity particles in the opposite
di rection.

Most particles occur in nature with both signs
of helicity due to invariance under the parity
operator. However, neutrinos violate parity
maximally, occurring only with negative helicity. '
CP invariance then gives the antineutrino a posi-
tive helicity. 'The result is that neutrinos are
preferentially emitted from the "southern" hemis-
phere and antineutrinos f rom the- "northern"
hemisphere during the evaporation of a rotating
black hole. 'The importance of parity violation by
neutrinos in the presence of a Kerr black hole was
pointed out by Unruh' and has been independently
investigated by Vilenkin. '

In this paper, a low-frequency analytic approxi-
mation is made to verify the asymmetry in neutrino
emission. 'The results of numerical calculations
involving the full set of equation are presented. '
These display the detailed dependence of the
emission on polar angle (8), neutrino energy (v),
and black-hole angular momentum (4} and mass
(~).

Natural (Planck) units in which h = c=G =0 = 1
are used throughout, except as noted. For the
conversion to more common units see the last
(red) page of Misner et al. '

II. THEORETICAL FORMULATION

'The minimally coupled neutrino field equations'
describe the propagation of the classical neutrino
field in a fixed background metric, which in our

R, (r) S,(8)

R, (r) S,(8)

(2.1)

'The radial and angular functions, R and S,
satisfy Eqs. (2.20) and (2.21) of Ref. 11:

(
2 2 k———[to(r'+a') —ma] R, (r) =,&, R, (r),

(2.2)
d

+ [—~(r'—+a') —ma] R, (r) =,&, R, (r);
k

dr

m—+ a&a sin8 — . S, (8) = kS, (8},d 8 sin6)

'd . m—— a&@ sin8- . S,(8) =-kS, (8),d]9 sin&

(2.3)

where a= J/M, the angular momentum per unit
mass of the black hole, and &=r' —2Mr+a2.

Linearly independent solutions to (2.2}, denoted
by(R, (r), R",(r)) with X=+, have asymptotic forms
IRef. 11, Eq. (2.23)]:

R', (r), R', ( ))- 1 x (&'(u, m, k)8'", e '""),

(0, B.((u, m, k)e +"),
(2 4)

1 (B (&u, m, k)e'"",0)

(e'"",A ((u, m, u)e @'), r--~.
In (2.4) f is defined by di/dr = (r'+ 'a')/& and ap-
proaches -~ as r approaches the outer event
horizon. One also has

case is that of a Kerr black hole. Boyer-I indquist
coordinates" are used, in which the neutrino
equations were first shown to be separable. ' The
formal calculations follow those of Unruh. " How-
ever, the orbital quantum number m is opposite
in sign to that of Ref. 11. In particular, the
neutrino field normal modes take the form (with
x'=f, x'=8, x'=y, x'=~)

jut~+ jmg

I& sin'8(r+ia cos8)']'~'
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(d = v —m(k)„, &u„= a(2M'(1+ [1—(a/M)']'~ ']}'.

coH is the angular velocity of the outer horizon.
The X=+ solutions in (2.4) represent waves in-
coming from infinity which are reflected with
amplitude A, and transmitted to the horizon with
amplitude B,.' 'The A. = —solutions represent waves
outgoing from the horizon.

S, and S, in (2.3) possess the symmetries

(S,(m, k, a(u, v —8), S, (m, k, a(u, )T —8)

=+(S,(m, k, a(d, 8), S,(m, k, a(u, 8)), (2.6a)

(S,(-m, k, -a(o, 8), S,(-m, k, -a&a, 8)}

= + (S,(m, k, a(d, 8), -S,(m, k, av, 8)}, (2.6b)

(S,(m, —k, a(u, 8), S,(m; -k, a(u, 8))

= a (S,(m, k, a&@, 8), -S,(m, k, a(d, 8)}. (2.6c)

Because of (2.6c) one can always take k positive,
which we do. S, and S, are related to the spin-
weighted spheroidal harmonics of Pres s and
Teukolsky" by

sin 8
S,(m, k, a(u, 8)=,t,S, (8, a(u),

(2.7)

exp(v v/2K, )

[2 o h( /K )]"' (2 8)

in the region outside the horizon, where + takes
on all values, positive and negative. In (2.8) K„
is the surface gravity of the outer horizon of the
black hole:

(spin plus orbital) for a nonrotating black hole
while m is the component of angular momentum
along the rotation axis.

The quantization procedure involves making the
neutrino field an operator and expanding it in
terms of positive-frequency modes and creation
and annihilation operators. The choice of positive
frequency is not unambiguous in a nonflat space-
time, yet it determines the vacuum state of the
field. " Hawking' demonstrated the correct choice
for black holes formed by stellar collapse. Unruh"
developed an equivalent definition of positive fre-
quency for the full analytic extension" of the Kerr
metric. The latter definition is mathematically
simpler and is used here: Ingoing modes, as
given by Eq. (2.1) with X =+, are positive frequency
for (d &0 (the standard flat-space definition);
positive-frequency outgoing modes (X=-I)
are of the form

sine ' '
S,(m, k, a~, 8)=,&,S2 (8, a(d). K, = 2M(1+ [1—(a/M)'] 't']. . (2.9)

In (2.7) I is the value of k for a&a = 0 and is used to
denumerate the k eigenvalues. l takes on half-
integral values (-,', —,', —'... . . ) and for given I, m
takes on the 2I+ 1 values (-I, -I+ 1, . . . , + I). I is
the total angular momentum quantum number

Negative-frequency modes for X = —are of the
form (2.8) but with (2 replaced by -&e.

The field operator 4 then has the fol'lowing
expansion outside the horizon in terms of the
above normal modes:

k(a")=g f dta[P(a";le, m, k, +)a(ta, m, k, +)+P(a";-te, —m, k, +)0 (ta, m, k, +)(
l, m eu)0

e(kk

exp a(ta, m, k, —)+exp 0 (ta, m, k, —) P(x";la, m, k, —)I. (2. 10)
2K,

Some physical quantities of interest are the ex-
pectation values of the current and energy-mo-
mentum operators J and T„„. 'These are func-
tions" of-the field operator 4:

(2.11)

+ Hermitian conjugate .
J" is a conserved current. 'The symmetry of the
Kerr metric under translations in t and (t) coordi-
nates give rise to two other conserved currents
T", and T~. 'The radial components of these three
currents are the flows of the number of neutrinos

minus the number of antineutrinos, N„-„; energy,
E; and angular momentum, I, respectively, in
the radial direction away from the black hole. In
the vacuum state one has

dndt =('~~"'""'~0x'dQdt

,.„„"„=«IT"( ")10)

(2.12a)

(2.12b)

,.„„'„,=«~T".( ") I». (2.12c)

Substitution of (2.10) and (2.11) into (2.12) yields
explicit formulas for the quantities in (2.12). The
large-r asymptotic forms of the radial functions
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+k sin S,S,+ (S,' —S,')

with a =a/M, x=M&u, g(8) =2/sin8, and

(2.13d)

f(x) =
~

B (a, x, m, &)
~

' [exp(2~~/&. ) + 1]'.
~B ~' is the transmission probability for a, neu-
trino wave originating at the past horizon to reach
infinity or for a wave originating at infinity to be
absorbed by the black hole and is found by solving
the radial equations (2.2) for R, (r) and R, (r).
N„,„- is the number of neutrinos plus antineutrinos.
S,(m, k, ax, 8) and S,(m, k, ax, 8) are the angular
eigenfunctions involved in the separation of g into
normal modes in (2.1). Integrated over angle,
equations (2.13) yield the loss rates' through a
spherical 2-surface at large x:

(2.4) are then put into the resulting formulas to
give values for the quantities in (2.12) far from
the rotating black hole. 'These can then be ex-
pressed in dimensionless form by factoring out
the mass M of the black hole:

M " "(a,8) =—P dxf(x)g(8)(S, ' —S,'),d'N„„- 1
2~ rm x)p (2.13a)

M "'"
(»», »))=— f dxf(x)g(»)(g, '»g, '),d'N„,-„1

(2.13b)

M' ' =—P dxxf(x)g(8)(S, '+S,'),,d'E(a, 8) 1

l& m x&p (2.13c)

-M ' =—gf dxf(x)g(»»)
d'L(a, 8) 1

dQdt 2m r, „&p

m —ax sin'8
(

2

III. LOS(-FREQUENCY ANALYTIC APPROXIMATION

'The solutions of the wave equation, and hence
the angular eigenfunctions and the transmission
coefficients, cannot be expressed in terms of
known analytic functions. However, for x=M+=0
both radial and angular functions can be found
exactly and the lowest-order corrections to these
functions for nonzero x can be obtained. Page'
gives the transmission probabilities ~B. ~' (his I')
for x «1. Because the tra,nsmission probabilites
for the various l modes go as x"', only the lowest
values of l will contribute to the emission rate
for small values of x. In particular we have

~B (m, -'„a,x) ~'=x',

~B (m, -'„a,x) ~'= (1+-,'a')(1 —a')&%
) (3.1)

)/2t (8» ax) =i/2Fr (8)+pi/2+it (ax)x/2Fi (8) ~

l'4 $ (3.2)

Since the l = 2 term dominates the transmission
probability because of the radial dependence on
x, we need only consider this mode. For m =+ —,',
we have

[(I+k)(~+-')]"'
&/2 II' (2f+ 2)2 l'» l+).

, [(~ - 2)(I+ 2)]"
6

(2I )2 P ~ t (3.3)

We must also find S, and S, to lowest order in
ax = av. S, and S, are directly related [Eq. (2.7)]
to the spin-weighted spheroidal harmonics which
for x=0 reduce to the spin-weighted spherical
harmonies, Z", (8). Following Press and Teukolsky"
we expand the spheroidal harmonics in terms of
the spherical harmonics:

"-"(a)=O
dt

"'"(»»)=—Q f dxf(x),CN„,„- 1
Ct 2Z) m

-M' —(»»)= — f ddt(x),2dE 1

2&,m g&p

-M =— Chm x .dL (a) 1

m x)p

(2.14a)

(2.14b)

(2.14c)

(2.14d)

Using the equations" for the, Y, ,

1 8/2»/2(8)=sin —,
27

1 8
,/, F3, /

/', (8) = sin—c os 8,
2

Eqs. (3.2), (3.3), and the symmetries (2.6), we
find

The Fermi-Dirac factor [exp(2m(d)/K, )+ 1] ' in
(2.13) and (2.14) [through f(x)] is responsible for
the famous thermal character, with temperature
K./2m, of the black-hole emission. ' Departures
from a pure thermal distribution are due to the
albedo of the black hole varying with frequency
through ~B ~' and to the quantum instability
associated with the rotation of the black hole"
(i.e. , the presence of Cu rather than e in the
Fermi-Dirac factor).

,/, S,'//', (8, ax) =
&- sin—(1+ ax—,

' cos8),
v'2m 2 .

, /, S,'//', (8, ax) = cos
2 (1 —ax-,' cos8),1 2 1 2

—1 8
, /, S,//'(8, ax) = cos —(1+ax eos8),

2r

-1 8
, /, S,/, '(8, ax) = sin —(1 —ax-', cos8) .

2r 2

(3.4)
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Substitution of Eqs. (3.4) and (3.1) into (2.13a)
yields the neutrino number emission rate per unit
frequency to order x'.

d'N„„-x' 2m(~+ &u„/2)
dQdtdu& (2v)' K

27)((d —(ds/2)
exp K,

H

x (] 9 Qg ) cos 8 (3.5)

'The dominant contribution to the asymmetry ex-
hibited by (3.5) is the exponential factor which
arises from the quantum instability of rotating
black holes. "

For a slowly rotating black hole, o.'«1, (3.5)
reduces to

d'N„„(n, 8) -x, vo.'

dQdtd~ 2m 2(1 —o.')'~'

For a rapidly rotating black hole, (1 —u')'~'« I,
one has

(3.6)

d'N (n 8)-
dQcMd(d 27t'

(3.7)

The dependence on a is linear for small n and
constant for n -1. For arbitrary rotation, Eq.
(3.5) gives the emission rate as a simple analytic
function of ~. The angular dependence in the low-
frequency limit is given by the cos6) factor, veri-
fying the asymmetry in emission. The asymmetry
is not sharply peaked in angle 6). Neutrinos
dominate in the hemisphere 8&v/2, antineutrinos
in the hemisphere 8& w/2, as expected.

IV. NUMERICAL CALCULATIONS

The emission rates have also been evat. uated for
arbitrary values of @=M+ by solving for the an-
gular eigenfunctions S, and S, and for the trans-
mission coefficients numerically. The results of
a representative sample of the calculations will
be presented here. More details about the calcu-
lations and further results will be presented in
the thesis of one of us (D.L.).

The angular functions were calculated by direct
numerical integration of the angular equations
(2.3) using values for the eigenvalues k obtained
from Page's" polynomial fits to his numerical
calculations. Twenty-one (I, m) modes were cal-
culated for about 10 values of nx from 0 to 3.

In each case, S, (8) and S,(8) were calculated for
41 distinct values of 8 from 0.001 to m/2. The
symmetry of these functions (2.6) under 8-m —8
and cubic spline interpolation were used for other
values of 8 and for other values of &x.

The transmission probabilities ~B (m, k, o', x) ~'

were calculated using the method described by

Page. " These functions were calculated for the
21 (l, m) modes and for each of 15 values of n
f rom 0.01 to 0.999. The double precision numeri-
cal integration routine UBC DDE" was used to
solve the radial equations, with fractional and
absolute error criteria of 10 '. The frequencies
x at which ~B ~' was calculated for each set of
a, l, m values were chosen so as to make the
estimated fractional error in the quantity
J„&gxf(x) less than 10 '. A list of values of M'dE/dt
and MdN„, „/dt fo-r a large number of o. , &, m
values, provided by Page, served as a check on
the results.

V. RESULTS AND DISCUSSION

Representative results of the calculations are
summarized with the help of the accompanying
figures. Figure 1 shows the frequency dependence
of the thermal Fermi-Dirac factor and of the
transmission probability ~B ~' for the cas«
= a/M = 0.8, (I, m) = (

—„—,). The effective tempera-
ture of the Fermi-Dirac factor K, /2m determines
the slope of the cutoff in this factor. 'The case
plotted has an effective temperature of 0.38/4'.
For larger values of o'. the slope becomes steeper,
and the factor approaches a step function as +
approaches 1. The location of the drop is around
co=mes~ where this factor equals —,'.

The transmission probability is small for low
frequency —for ~Zlzz~ the neutrino wave does not
have enough energy to surmount the gravitational-
angular momentum barrier associated with the
radial equations —and thereafter rises rapidly to
unity.

'The product of the Fermi-Dirac function and the
transmission probability gives f(x), which is pro-
portional to the emission rate of particles for
that given mode [Eq. (2. 14b)]. This is displayed
in Fig. 1(b). Because of the Small overlap bet-
ween the two functions, this probability is always
much less than 1 for any mode, and is significant
only over a very narrow frequency range.

The Fermi-Dirae function depends strongly on
m (the cutoff occurs at e = mv„) while the trans-
mission coefficients depend only weakly on m. For
m(l, the Fermi cutoff occurs long before the
transmission probability becomes nonzero. Only
if o.'= a/M is extremely small, giving a smaller
slope to the Fermi-Dirac cutoff, will the m4 l
modes contribute significantly. For larger n, it
is only the m = l mode which contributes to the
emission.

'The power spectrum summed over modes and
integrated over angle,
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is given in Fig. 2 for + = 0, 0.8, and 0.999. Only
the lowest-order l =-,' modes contribute to the mode
sums in (2.13) and (2.14) for small n. Higher l
modes increase in importance for increasing ro-
tation. For a ~ 0.9, the power in the higher modes
becomes greater than that in the I = m =-,' mode.
'The peaks at increasing frequency for n =0.999
in Fig. 2 correspond to l =m modes for l=2, 2, —'„
~2, —', , and —",, respectively. 'They appear as dis-
tinct spikes due to the sharp cutoff at mco„of the
Fermi-Dirac factor and to the sharp rise of IB ~'

for vs l&uH as noted in Figs. 1(a) and 1(b). The
oscillations within the spikes are due to the fre-
quency variation of

This shape of the power spectrum is not uniform
in the angle 6I. At the poles only the l=m=-,' an-
gular mode is nonzero and only that one peak would
be seen in the power spectrum. Each. of the higher
/ modes has its dominant angular peak nearer to
the equator. 'Thus the number of peaks seen in
the power spectrum will increase as one Bp-
proaches 8= v/2, and the spectrum will be domin-
ated by the higher values of / near the equator.

'The angular dependence of the net number cur-
rent, i.e. , neutrinos minus antineutrinos, is
presented in Fig. 3(a) for n =0.1, 0.5, 0.8, and
0.999 while Fig. 3(b) displays the asymmetry in
neutrino emission. 'This is defined as the ratio of
the rates for N„„and A„,-„-given in Eqs. (2.13a) and
(2.13b). For even small values of o. it is signifi-
cant. In all cases the asymmetry is smooth in 6I,
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FIG. 1. (a) Fermi-Dirac factor and transmission pro-
bability ( B (

t for rotation parameter o. =0.8 and angular
mode (l, m) =(2, 2) vs frequency Mw. (b) Single mode
(I„m) = (2, 2) total number rate spectrum for n =0.8.

FIG. 2. Power spectrum for & =0, 0.8, and 0.999
showing peaks primarily due to m =E angular modes at
frequencies ~ = m~z.
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FIQ. 3. (a) Net number rate (neutrinos minus antineu-
trinos) vs polar angle 8 for 0'=0.1, 0.3, 0.8, and 0.999.
(b) Asymmetry vs 8 for u =0.1, 0.3, and 0.7. Asymme-
try is the difference divided by the sum of neutrino and
antineutrino rates.

closely approximating a cosa dependence. The
asymmetry always peaks at the poles. .

'The net neutrino number emission rate, on the
other hand, does not peak at the poles for ~ ~ 0.8.
The peak in the current away from the poles for.
n ~ 0.8 is due to the increasing dominance of the
higher l modes in the emission seen in Fig. 2.
For n ~ 0.8 the net rate increases monotonically
with n for all angles 8, with the peak at the poles
indicating the dominance of the l = —,

' mode.
To give a more detailed picture of the contribu-

tions to the angular dependence of the net neutrino
current of the various l modes, these have been
plotted in Fig. 4 for +=0.1 and 0.999. For n =0.1
we see that only the l = —,

' mode is significant, but
both m = 2 and m = - ~ modes contribute. Their

I gQ. 4. (a) Net number rate vs 8 plotted separateIy for
the dominant (l, m) angular modes for u=0.1. (b) Same
as (a) but for 0. =0.999.

contribution to the net rate almost cancels, giving
a small net flux of neutrinos. Since the contribu-
tion to the total number current is the absolute
value of the net rate for each of the modes, one
sees also that for small ~ the fractional asymmetry
will be sma, ll.

For a =0.999, however, the higher l modes also
contribute, with m = l being the only significant
modes. Here very little cancellation between
different modes occurs except near the equator,
giving large fractional asymmetry.

The power emitted by the black hole I2.13c) is
plotted in Fig. 5. The increase with n is steady.
For n ~ 0.8 the emission at the poles drops. The
emission rate for neutrinos plus antineutrinos
Md'N„, „-/dQdt has not been plotted, but behaves
similarly to the power in Fig. 6. Because of the
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