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6(980) as a four-quark state and the radiative decays of vector and scalar mesons
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A large phenomenological value for the decay rate I'(§—vy?y) contradicts the very small values obtained in
a model assuming the 8(980) is a two-quark state, implying that the & should be treated as a four-quark
state. The Okuba-Zweig-lizuka rule then gives a large ratio of the 8-p-¢ to 8-p-w couplings which is
opposite to previous estimates based on vector dominance. Previpus calculations of & radiative decays and
three-body radiative decays of vector mesons are modified and new decay rates are obtained.

In a previous calculation of the decay rate for
n-myy in which the intermediate state is the
6(980),1 we found that a good fit to the data is
obtained if the decay rate T'(6 —yy) is 550+ 270
keV.? Eilam has pointed out?® that this large rate
for 6 - yy contradicts the results of Babcock and
Rosner,* who obtain values ranging from 0 to
~370 eV depending on the choice of parameters
in their two-quark model of the 6. This contra-
diction suggests that the two-quark description
of the & is incorrect and is evidence that the 6 is
the four-quark state udss proposed by Jaffe.’
The large rate found for 6 -7y is consistent with
the equally large rate needed for the two-photon
decay of the charmed 6, in order to explain® the
2.88-GeV enhancement seen in 7°p =nyy atp,,,
=40 GeV/c.

In our previous calculations,!® it has been
necessary to evaluate the ratio B =g;,,/g5p. UP
until now, we have used a value 8 =0.07 which is
obtained by setting g8 equal to g,,,/gr,., Where
this ratio is calculated using the vector-domin-
ance model and the ratio of the decay widths for
¢ -7y and p—~7y. Eilam? has pointed out that if
the 6 is indeed a four-quark state, the Okubo-
Zweig-Tizuka (OZI) rule® implies that the ratio 8
could be as large as 10 or larger. This is be-
cause the four quarks of the 6 connect without
annihilation to p¢, but not to pw. We reexamine
our previous calculations of the radiative decays
of the 6(980) (Ref. 2) and the three-body radiative
decays of vector mesons® in the light of these
observations, by recalculating the decay rates
for an arbitrary value of 8 and then letting g
=10, as implied by the OZI rule.

The following relationship is obtained by
assuming that the decay 6 —yy is mediated by
vector mesons:

1/1 1 :
g=21a gy, 7(——+B—> , (1)
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where g is the 6-y-y coupling. The vector-

meson~-photon couplings from photoproduction!?
2 2 2
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yyn 0.61, - 7.6, pp. 5.9,

and I'(5 -~ yy) =550 + 270 keV give

1
w=—"——(170+40) GeV!, 2
Eoow = va+B ( ) \ (@)

where y,/y,=0.88.. For radiative decays in
which two diagrams contribute, one with an w
converting to a photon and the other with a ¢
converting to a photon, (1) and (2) imply that
varying g8 will not change the calculated decay
rate. This is because the overall amplitude is
proportional to g;,,(1/7,+8/v,), which is con-
stant. Our previous calculations of the three-
and four-body radiative decays of 5! are of this
type.

We first consider the radiative decays of the
6(980). Since the decay 6 —py is mediated by
both w and ¢, our previous result is unchanged,

T'(6~py) =4.7+2.1 MeV . (3)

However, for 6 —wy, only the p mediates and we
now have

Yo/ Ve

The expressions for the decay rates in Ref. 2
are generalized to include an arbitrary value of
B. For the three-body decays,

T(6*—7*yy) =1.1+0.8 keV, (5a)
1
Vo/va +R)
X(3.4+1.6 MeV) .
(5b)
For the decay 6 —nyy, the narrow-width approxi-
mation is used to obtain the contributions me-

diated by the p and w. Two sets of branching
ratios, B(p—~ny) and B(w —ny), exist, depending

(6% ~7%7)=1.1+0.8 keV +
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on the choice of relative phase between the p and
w contributions.!! For 0° relative phase

B(p~1ny)=(3.6+0.9) x10™,
B(w—-1ny) =(3.0+2.2) X107,
-and for 180° relative phase
B(p~ny)=(5.4+1.1) x10™*,
B(w—-1ny) =(29+7)x10™.

The decay rates of Ref. 2 then become, for 0°
relative phase,
(6 -nyy) =(1.7+£1.2 keV)
1
(vo/ 70 +B)?
X[(11£11 keV)+6%(5.0£ 2.2 keV)],
(6)
and for the 180° relative phase,
(6 ~nyy) =(2.5+1.6 keV)

1
4
(7¢/7w +B) ¢

X[(1104 70 keV) +8%(5.0+ 2.2 keV)] .

(7

Modifications of the expression for the four-
body radiative decays of the 6 in Ref. 2 proceed
in an analogous way. The results are

1
e mrtnTy) =————(0.4110.
T(6* = m*1*17Y) e/70 7B) (0.41+0.38 eV),
(82)

F(é* - 77*‘170170')/) = (120 + 60 keV) I} (Sb)

1
(Yo/Vw +B)*

1
0, 0+ =,y __
(6’ =-n'r*77y) -*—_T('}’o/')’w TB) (34+15 MeV), (8c)

1
(6 - mmyy) —m (0.98+0.80 eY) . (9)
In (9), the rate applies to both 6*—7*7%yy and

6% - 7%7%y. In the model used in Ref. 2, the
decay rates for 6° - 7%7%% and 6° - 7*7"yy are
both zero.

In Table I, the results (5)—(9) are evaluated
for two values of 3, one from the vector-
dominance-model analogy used in Ref. 2 and the
other based on assuming the & is a four-quark
state and invoking the OZI rule. The large
value of B8 reduces many of the calculated decay
rates by about two orders of magnitude. In
Ref. 2 it was pointed out that a measurement of
T'(6 = nyy) would help to resolve the uncertainty
in the relative phase between the amplitudes for
p—-ny and w—17y. However, if the 6 is a four-
quark state, the different values of the relative
phase give nearly equal values for the decay
rate for 6 -nyy, and it appears that a measure-
ment of this decay would not resolve the phase
problem.

The expressions for the rates for the three-
body radiative decays of vector mesons obtained
in Ref. 8 are also modified to contain an arbitrary
value of 8. The results are ’

T'(p ~nmy) =100 + 50 ev, : (10)
_ 1

P(a)~nﬂy)—m(l.6:{:0.8 keV), (11)
) =B

T(p —nmy) ——m (140 + 70 keV), (12)

TABLE I. Vector-dominance estimates of the radiative decay rates of the 0 for two values
of B =g5p¢/g5pw. The values for 6 — 1y depend on the choice of relative phase ® between the

amplitudes for p—7ny and w—7Yy.

Vector-dominance 6=udss
analogy OZI rule
Decay B=0.07 B=10

8=ty 4.2 + 1.8 MeV 42+ 1.8 MeV
80— 70y y 3.8 = 1.8 MeV 29 = 14 keV
8% — nyy(@=0°) 14 +14 keV 6.0+ 6.0keV
69— nyy(2=180°) 120 +80 keV 7.6+ 5.3keV
8% -t rrnly 38  +17 MeV 280 +120 keV
6% =m0y y 1.1 £ 0.9eV (8.3+ 6.8)x107% eV
6%t —7* nly 4.2 + 1.8 MeV 42+ 1.8 MeV
6t—rmtyy 1.1 = 0.8 keV 1.1+ 0.8keV
&% — 7t 100y 130 +60 keV 1.0+ 0.5keV .
ot —mEntTTy 0.45+ 0.42 eV (3.5 3.2)x1073 eV
5t —mtnlyy 1.1 = 0.9eV (8.3 6.8)X1073 eV
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TABLE II. Scalar-meson-dominance values for the
radiative decay rates of vector mesons for two values of

ﬁ:gépqﬁ/gﬁpw'

Vector-dominance 8=udss

analogy OZI rule

Decay B=0.07 B=10
p—nTY 100 + 50 eV 100 = 50eV
w—nTY 1.8 0.9keV 14 + 7TeV?
¢—nmy 760 +380eV 120 *= 60 keV

¢—~K*K™y 20 + 11eV 3.1+ 1.7keV

¢— KKy 3.0+ 1.6eV 460 +250eV

2 This value is comparable to the contribution to this
decay from vector dominance; therefore, both must be
included in the total rate. See text.

2 .

T'(¢ ~K'K) =(—yﬁ@r (3.742.0 keV), (13)
2

(¢ - K'K%) :G%W (550+300 eV). (14)
() w

In Table II, (10)-(14) are evaluated for the two

values of 8. The value 8 ~0.07 reproduces the
results of Ref. 8. The four-quark § value de-
creases the w decay rate by two orders of mag-
nitude and increases the ¢ decays by two orders
of magnitude. The w —nny rate is now compar-
able to the estimated contribution to this decay
from vector dominance, where w—nw-nry.
Therefore, if the 6 is a four-quark state, our
prediction for the total rate for the decay w
-y is in the range 0-56 eV. This is well
within the experimental upper limit!?

I'(w —~n +neutrals) <150 keV .

‘The other results in the last column of Table II

are many orders of magnitude larger than the
vector-dominance estimates for these decays.
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