δ (980) as a four-quark state and the radiative decays of vector and scalar mesons

Gary K. Greenhut* and Gerald W. Intemann

Department of Physics, Seton Hall University, South Orange, New Jersey 07079

(Received 20 February 1979)

A large phenomenological value for the decay rate $\Gamma(\delta \rightarrow \gamma \gamma)$ contradicts the very small values obtained in a model assuming the $\delta(980)$ is a two-quark state, implying that the δ should be treated as a four-quark state. The Okuba-Zweig-Iizuka rule then gives a large ratio of the δ - ρ - ϕ to δ - ρ - ω couplings which is opposite to previous estimates based on vector dominance. Previous calculations of δ radiative decays and three-body radiative decays of vector mesons are modified and new decay rates are obtained.

In a previous calculation of the decay rate for $\eta \rightarrow \pi \gamma \gamma$ in which the intermediate state is the $\delta(980)$,¹ we found that a good fit to the data is obtained if the decay rate $\Gamma(\delta \rightarrow \gamma \gamma)$ is 550 ± 270 keV.² Eilam has pointed out³ that this large rate for $\delta \rightarrow \gamma \gamma$ contradicts the results of Babcock and Rosner,⁴ who obtain values ranging from 0 to $\sim 370 \text{ eV}$ depending on the choice of parameters in their two-quark model of the δ . This contradiction suggests that the two-quark description of the δ is incorrect and is evidence that the δ is the four-quark state $u\overline{dss}$ proposed by Jaffe.⁵ The large rate found for $\delta \rightarrow \gamma \gamma$ is consistent with the equally large rate needed for the two-photon decay of the charmed δ_c in order to explain⁶ the 2.88-GeV enhancement seen in $\pi^- p \rightarrow n\gamma\gamma$ at p_{1ab} =40 GeV/c.⁷

In our previous calculations,^{1,8} it has been necessary to evaluate the ratio $\beta = g_{\delta\rho\phi}/g_{\delta\rho\omega}$. Up until now, we have used a value $\beta \simeq 0.07$ which is obtained by setting β equal to $g_{\pi\rho\phi}/g_{\pi\rho\omega}$, where this ratio is calculated using the vector-dominance model and the ratio of the decay widths for $\phi \rightarrow \pi \gamma$ and $\rho \rightarrow \pi \gamma$. Eilam³ has pointed out that if the δ is indeed a four-quark state, the Okubo-Zweig-Iizuka (OZI) rule⁹ implies that the ratio β could be as large as 10 or larger. This is because the four quarks of the δ connect without annihilation to $\rho\phi$, but not to $\rho\omega$. We reexamine our previous calculations of the radiative decays of the $\delta(980)$ (Ref. 2) and the three-body radiative decays of vector mesons⁸ in the light of these observations, by recalculating the decay rates for an arbitrary value of β and then letting β ≈ 10 , as implied by the OZI rule.

The following relationship is obtained by assuming that the decay $\delta - \gamma \gamma$ is mediated by vector mesons:

$$g = 2\pi \alpha g_{\delta\rho\omega} \frac{1}{\gamma_{\rho}} \left(\frac{1}{\gamma_{\omega}} + \beta \frac{1}{\gamma_{\phi}} \right), \qquad (1)$$

where g is the $\delta - \gamma - \gamma$ coupling. The vector-

meson-photon couplings from photoproduction¹⁰

$$\frac{\gamma_{\rho}^{2}}{4\pi} = 0.61, \quad \frac{\gamma_{\omega}^{2}}{4\pi} = 7.6, \quad \frac{\gamma_{\phi}^{2}}{4\pi} = 5.9$$

and $\Gamma(\delta \rightarrow \gamma \gamma) = 550 \pm 270 \text{ keV}$ give

$$g_{\delta\rho\omega} = \frac{1}{\gamma_{\phi}/\gamma_{\omega} + \beta} (170 \pm 40) \text{ GeV}^{-1}, \qquad (2)$$

where $\gamma_{\phi}/\gamma_{\omega} = 0.88$. For radiative decays in which two diagrams contribute, one with an ω converting to a photon and the other with a ϕ converting to a photon, (1) and (2) imply that varying β will not change the calculated decay rate. This is because the overall amplitude is proportional to $g_{\delta\rho\omega}(1/\gamma_{\omega} + \beta/\gamma_{\phi})$, which is constant. Our previous calculations of the threeand four-body radiative decays of η^1 are of this type.

We first consider the radiative decays of the $\delta(980)$. Since the decay $\delta \rightarrow \rho\gamma$ is mediated by both ω and ϕ , our previous result is unchanged.

$$\Gamma(\delta - \rho\gamma) = 4.7 \pm 2.1 \text{ MeV}. \tag{3}$$

However, for $\delta - \omega \gamma$, only the ρ mediates and we now have

$$\Gamma(\delta \to \omega \gamma) = \frac{1}{(\gamma_{\phi}/\gamma_{\omega} + \beta)^2} (38 \pm 16 \text{ MeV}) . \tag{4}$$

The expressions for the decay rates in Ref. 2 are generalized to include an arbitrary value of β . For the three-body decays,

$$\Gamma(\delta^{\pm} \to \pi^{\pm} \gamma \gamma) = 1.1 \pm 0.8 \text{ keV}, \qquad (5a)$$

$$\Gamma(\delta^{0} \to \pi^{0} \gamma \gamma) = 1.1 \pm 0.8 \text{ keV} + \frac{1}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^{2}} \times (3.4 \pm 1.6 \text{ MeV}).$$

(5b)

For the decay $\delta - \eta \gamma \gamma$, the narrow-width approximation is used to obtain the contributions mediated by the ρ and ω . Two sets of branching ratios, $B(\rho - \eta \gamma)$ and $B(\omega - \eta \gamma)$, exist, depending

3464

19

© 1979 The American Physical Society

on the choice of relative phase between the ρ and ω contributions.¹¹ For 0° relative phase

$$B(\rho \to \eta \gamma) = (3.6 \pm 0.9) \times 10^{-4}$$

$$B(\omega \rightarrow \eta \gamma) = (3.0 \pm 2.2) \times 10^{-4} ,$$

and for 180° relative phase

$$B(\rho \rightarrow \eta \gamma) = (5.4 \pm 1.1) \times 10^{-4} ,$$

 $B(\omega \rightarrow \eta \gamma) = (29 \pm 7) \times 10^{-4}$.

The decay rates of Ref. 2 then become, for 0° relative phase,

$$\Gamma(\delta \rightarrow \eta \gamma \gamma) = (1.7 \pm 1.2 \text{ keV}) + \frac{1}{(\gamma_{\phi}/\gamma_{\omega} + \beta)^2} \times [(11 \pm 11 \text{ keV}) + \beta^2 (5.0 \pm 2.2 \text{ keV})],$$
(6)

and for the 180° relative phase,

$$\Gamma(\delta - \eta \gamma \gamma) = (2.5 \pm 1.6 \text{ keV}) + \frac{1}{(\gamma_{\phi}/\gamma_{\omega} + \beta)^2} \times [(110 \pm 70 \text{ keV}) + \beta^2 (5.0 \pm 2.2 \text{ keV})].$$
(7)

Modifications of the expression for the fourbody radiative decays of the δ in Ref. 2 proceed in an analogous way. The results are

$$\Gamma(\delta^{\pm} - \pi^{\pm}\pi^{-}\pi^{-}\gamma) = \frac{1}{(\gamma_{\phi}/\gamma_{\omega} + \beta)^{2}} (0.41 \pm 0.38 \text{ eV}) ,$$
(8a)

$$\Gamma(\delta^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \gamma) = \frac{1}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^{2}} (120 \pm 60 \text{ keV}) , \quad (8b)$$

$$\Gamma(\delta^0 \to \pi^0 \pi^* \pi^- \gamma) = \frac{1}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^2} (34 \pm 15 \text{ MeV}) , \quad (8c)$$

$$\Gamma(\delta \to \pi \pi \gamma \gamma) = \frac{1}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^2} (0.98 \pm 0.80 \text{ eV}) .$$
 (9)

In (9), the rate applies to both $\delta^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma\gamma$ and $\delta^{0} \rightarrow \pi^{0}\pi^{0}\gamma\gamma$. In the model used in Ref. 2, the decay rates for $\delta^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}\gamma$ and $\delta^{0} \rightarrow \pi^{*}\pi^{-}\gamma\gamma$ are both zero.

In Table I, the results (5)-(9) are evaluated for two values of β , one from the vectordominance-model analogy used in Ref. 2 and the other based on assuming the δ is a four-quark state and invoking the OZI rule. The large value of β reduces many of the calculated decay rates by about two orders of magnitude. In Ref. 2 it was pointed out that a measurement of $\Gamma(\delta \rightarrow \eta \gamma \gamma)$ would help to resolve the uncertainty in the relative phase between the amplitudes for $\rho \rightarrow \eta \gamma$ and $\omega \rightarrow \eta \gamma$. However, if the δ is a fourquark state, the different values of the relative phase give nearly equal values for the decay rate for $\delta \rightarrow \eta \gamma \gamma$, and it appears that a measurement of this decay would not resolve the phase problem.

The expressions for the rates for the threebody radiative decays of vector mesons obtained in Ref. 8 are also modified to contain an arbitrary value of β . The results are

$$\Gamma(\rho \to \eta \pi \gamma) = 100 \pm 50 \text{ eV}, \qquad (10)$$

$$\Gamma(\omega \to \eta \pi \gamma) = \frac{1}{(\gamma_{\phi}/\gamma_{\omega} + \beta)^2} (1.6 \pm 0.8 \text{ keV}), \qquad (11)$$

$$\Gamma(\phi - \eta \pi \gamma) = \frac{\beta^2}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^2} (140 \pm 70 \text{ keV}), \qquad (12)$$

TABLE I. Vector-dominance estimates of the radiative decay rates of the δ for two values of $\beta = g_{\delta\rho\phi}/g_{\delta\rho\omega}$. The values for $\delta \to \eta\gamma\gamma$ depend on the choice of relative phase Φ between the amplitudes for $\rho \to \eta\gamma$ and $\omega \to \eta\gamma$.

	Vector-dominance	$\delta = u \overline{d} s \overline{s}$
	analogy	OZ1 Fule
Decay	$\beta \simeq 0.07$	$\beta \approx 10$
$\delta^0 \rightarrow \pi^+ \pi^- \gamma$	$4.2 \pm 1.8 {\rm MeV}$	4.2± 1.8 MeV
$\delta^0 \rightarrow \pi^0 \gamma \gamma$	$3.8 \pm 1.8 \text{ MeV}$	$29 \pm 14 \text{ keV}$
$\delta^0 \rightarrow \eta \gamma \gamma (\Phi = 0^\circ)$	$14 \pm 14 \text{ keV}$	$6.0 \pm 6.0 \text{ keV}$
$\delta^0 \rightarrow \eta \gamma \gamma (\Phi = 180^\circ)$	$120 \pm 80 \text{ keV}$	$7.6 \pm 5.3 \text{ keV}$
$\delta^0 \rightarrow \pi^+ \pi^- \pi^0 \gamma$	$38 \pm 17 \text{ MeV}$	$280 \pm 120 \text{ keV}$
$\delta^0 \rightarrow \pi^0 \pi^0 \gamma \gamma$	$1.1 \pm 0.9 \mathrm{eV}$	$(8.3 \pm 6.8) \times 10^{-3} \text{ eV}$
$\delta^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$	$4.2 \pm 1.8 {\rm MeV}$	$4.2 \pm 1.8 \text{ MeV}$
$\delta^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$	$1.1 \pm 0.8 \text{ keV}$	$1.1 \pm 0.8 \text{ keV}$
$\delta^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0 \gamma$	$130 \pm 60 \text{ keV}$	$1.0 \pm 0.5 \text{ keV}$
$\delta^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \gamma$	$0.45 \pm 0.42 \text{ eV}$	$(3.5 \pm 3.2) \times 10^{-3} \text{ eV}$
$\delta^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma \gamma$	$1.1 \pm 0.9 \mathrm{eV}$	$(8.3 \pm 6.8) \times 10^{-3} eV$

3465

TABLE II. Scalar-meson-dominance values for the radiative decay rates of vector mesons for two values of $\beta = g_{\delta 0,\phi}/g_{\delta 0,\psi}$.

	Vector-dominance	$\delta = u \overline{d} s \overline{s}$
Decay	analogy $\beta \simeq 0.07$	OZI rule $\beta \approx 10$
$\rho \rightarrow \eta \pi \gamma$	$100 \pm 50 \text{ eV}$	$100 \pm 50 eV$
$\omega \rightarrow \eta \pi \gamma$	$1.8 \pm 0.9 \text{ keV}$	$14 \pm 7 \mathrm{eV}^a$
$\phi \rightarrow \eta \pi \gamma$	$760 \pm 380 \text{ eV}$	$120 \pm 60 \text{ keV}$
$\varphi \rightarrow K^0 \overline{K}^0 \gamma$	$3.0 \pm 1.6 \text{ eV}$	$460 \pm 250 \text{ eV}$

^a This value is comparable to the contribution to this decay from vector dominance; therefore, both must be included in the total rate. See text.

$$\Gamma(\phi - K^* K^- \gamma) = \frac{\beta^2}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^2} (3.7 \pm 2.0 \text{ keV}), \quad (13)$$

$$\Gamma(\phi - K^0 \overline{K}^0 \gamma) = \frac{\beta^2}{(\gamma_{\phi} / \gamma_{\omega} + \beta)^2} (550 \pm 300 \text{ eV}) .$$
 (14)

In Table II, (10)-(14) are evaluated for the two

values of β . The value $\beta \simeq 0.07$ reproduces the results of Ref. 8. The four-quark δ value decreases the ω decay rate by two orders of magnitude and increases the ϕ decays by two orders of magnitude. The $\omega - \eta \pi \gamma$ rate is now comparable to the estimated contribution to this decay from vector dominance, where $\omega - \eta \omega - \eta \pi \gamma$. Therefore, if the δ is a four-quark state, our prediction for the total rate for the decay $\omega - \eta \pi \gamma$ is in the range 0-56 eV. This is well within the experimental upper limit¹²

$$\Gamma(\omega
ightarrow \eta + ext{neutrals}) < 150 ext{ keV}$$
 .

The other results in the last column of Table II are many orders of magnitude larger than the vector-dominance estimates for these decays.

ACKNOWLEDGMENT

The authors are grateful to Dr. Gad Eilam for pointing out the implications of a large $\delta - \gamma \gamma$ rate and for proposing use of the OZI rule.

- *Present address: National Center for Atmospheric Research, Boulder, Colorado 80307.
- ¹G. K. Greenhut and G. W. Intemann, Phys. Rev. D <u>16</u>, 776 (1977).
- ²G. K. Greenhut and G. W. Intemann, Phys. Rev. D <u>18</u>, 231 (1978).
- ³G. Eilam (private communication).
- ⁴J. Babcock and J. L. Rosner, Phys. Rev. D <u>14</u>, 1286 (1976).
- ⁵R. J. Jaffe, Phys. Rev. D <u>15</u>, 267 (1977).
- ⁶G. Eilam, G. Margolis, and S. Rudaz, McGill University report, 1978 (unpublished).
- ⁷W. D. Apel et al., Phys. Lett. 72B, 500 (1978).

- ⁸G. W. Intemann and G. K. Greenhut, Phys. Rev. D <u>19</u>, 398 (1979).
- ⁹S. Okubo, Phys. Lett. <u>5</u>, 164 (1964); G. Zweig, CERN Reports Nos. TH 401, 1964 (unpublished) and TH 412, 1964 (unpublished); J. Iizuka, Prog. Theor. Phys. Suppl. 37-38, 21 (1966).
- ¹⁰A. Silverman, in Proceedings of the 1975 International Symposium on Lepton and Photon Interactions at High Energies, Stanford, California, edited by W. T. Kirk (SLAC, Stanford, 1976), p. 335.
- ¹¹D. E. Andrews *et al.*, Phys. Rev. Lett. <u>38</u>, 198 (1977).
- ¹²S. Flatté et al., Phys. Rev. <u>145</u>, 1050 (1966).