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Relativistic expansions of two-body scattering amplitudes are presented for reactions involving particles
with arbitrary spins. The expansions are "complete" in that the entire dependence on the kinematical
variables (energy, scattering angle, and azimuthal angle) is displayed explicitly in known functions. They are
provided by the representation theory of the Lorentz group O(3, 1) which in this case is identified as an
"internal Lorentz group, " acting in a specific manner on two-particle states. The expansion coeAicients,
called Lorentz amplitudes, carry the dynamics of the reaction. The phenomenological motivation for writing
such expansions is to be able to analyze large bodies of data simultaneously, e.g. , the scattering data
measured in a specific reaction for all angles and all available energies.

I. INTRODUCTION

'The purpose of this article is to present and dis-
cuss a method for treating two-body scattering
processes involving particles with arbitrary spins.
The method is a generalization of the ordinary
partial-wave. analysis and a further development
of relativistic two-variable expansions proposed
elsewhere. ' ' The essence of this approach is
that the scattering amplitudes are considered ex-
plicitly as functions of both intrinsic kinematic
variables (in our case the center-of-mass energy
and scattering direction). They are expanded in
terms of known' functions of these two variables.
The expansion functions are essentially the finite
transformation matrices for the Lorentz group
O(3, 1). Since they have their origin in a group-
theoretical treatment of Lorentz invariance, these
expansion functions will automatically display some
of the kinematical properties following from the
general principles of sca'ttering theory.

The purpose of writing two-variable expansions
is thus to go beyond the usual single-variable ex-
pansions of partial-wave analysis, Regge-pole
theory, impact-parameter expansions, etc. , in

separating the kinematical and dynamical aspects
of a reaction. The dynamics is carried by the ex-
pansion coefficients —the "Lorentz amplitudes. "
Theoretical models can then be formulated in
terms of assumptions on the form of these ampli-
tudes. From the phenomenological point of view
two-variable expansions make it possible to fit
scattering data simultaneously for all available
scattering angles and energies. In this sense they
provide a model-independent tool for an energy-
dependent partial-wave analysis of scattering data.
Since the energy is an integral of motion and since
we wish to expand in terms of explicit functions of
the energy, the group providing the expansion can

clearly not be an invariance group of the scattering
matrix. Hence the expansion will introduce labels
that are not conserved quantum numbers.

'The bulk of previous work in this direction con-
cerned the scattering of spinless particles. ' ' In
this simple case, all the kinematics of the scat-
tering can be described by the four-direction of
the four-momentum of one final particle, e.g. ,
x=P, /m, . Thus the scattering amplitude can be
considered as a function defined on the upper sheet
of a two-sheeted hyperboloidx'= 1, x'~ 1. As
such it can be developed in terms of the basis
functions of the irreducible unitary representations
of the Lorentz group. %hen spins are involved the
scattering amplitude becomes a scattering matrix
and we have to account for the spin indices to per-
form globally the energy-dependent expansion. An

earlier article' was devoted to the case of general
spin and made use of one-particle states trans-
forming according to irreducible representations
of the Poincare group 6', using a basis correspond-
ing to the reduction (P & O(3, 1)& O(3) & O(2)."~"
Unfortunately, the derivati. on contained a flaw
which led to an asymmetrical treatment of the par-
ticles involved [finite-dimensional representations
of O(3, 1) for three of the particles, unitary ones
for the fourth]. The obtained expansions were un-
necessarily complicated and involved quantum
numbers that were hard to interpret.

In this paper we shall make explicit use of the
"internal Lorentz basis" for two-particle states
defined in a, recent article" (an

' internal Galilean
basis" has also been defined. " These states
transform according to irreducible unitary repre-
sentations of the internal Lorentz group" con-
tained in the direct product of the two Lorentz
groups acting on the two particles. 'This internal
Lorentz group acts in different ways on each par-
ticle and should not be confused with the kinemat-
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II. THE INTERNAL LORENTZ GROUP AND INTERNAL
LORENTZ BASIS FOR TYCHO-PARTICLE STATES

A. Preliminary comments

In a reference tetrad fe ] [with e, = (1, 0, 0, 0),
e, = (0, 1, 0, 0), e, = (0, 0, 1, 0), and e, = (0, 0, 0, 1)]
the spherical coordinates (a, 8, K) of a four-momen-
tum P will be defined as

p = m[cosh ae, + sinh au(8, f)],
u(8, f) = sin8 cosKe, + sin8 singe, + cos8e, , (lb)

with ac [0 ~), 8c [O, m], and pc [0, 2m) (and the
mass m satisfies m) 0).

We consider two three-parameter families of
Lorentz' transformations, each transforming the
vector me, into the four-momentum P:

L& =—l, (a, 8, g)=R(g, 8, 0)B (a)R '(f, 8, 0), (2a)

A& =-(a, 8, f) =R(g, 8, 0)B,(a). (2b)

ical Lorentz group (relating different inertial
f rames) which acts in the same way on both parti-
cles. The transformations of the internal group
change the total energy m= [(P&+P2)']' ' of the
two-particle system and hence do not leave the
scattering matrix invariant. This is precisely the
property which allows us to obtain two-variable
expansions in a natural manner and makes it pos-
sible to utilize the well developed representation
theory of the. group O(3, 1).""

It should be stressed that both the internal and
kinematical Lorentz groups have the same rotation
subgroup, used to perform the usual single-vari-
able expansions in terms of the scattering angle
appearing in O(3) D-functions. The coefficients of
this expansion are the partial waves which depend
on the energy. Our two-variable expansion is thus
a. further development of the partial waves in
terms of the boost matrices of the internal Lorentz
group.

After some mathematical preliminaries we de-
vote Sec. II to a discussion of the internal Lorentz
basis for two-particle states. The core of the
article is Sec. III, . in which we derive the complete
expansions of the scattering amplitudes. Some
properties of the expansions are discussed in Sec.
IV, in particular, threshold behavior and the re-
quirements of parity and time-reversal invari-
ance. In Sec. V we use the expansions to derive
energy-dependent expansions of experimental
quantities. Some final comments are made in
Sec. VI. In the Appendix we summarize some
relevar. .t results on the representation theory of
the Lorentz group O(3, 1).

The rotations R(k, 8, () are parametrized by the
Euler angles and B,(a) is a boost along the axis 3.

Let us consider the finite transformation matri-
ces D&„"„(L&)and D&„",„(A&) corresponding to (2a)
and (2b) in a unitary representation (pv) of the
Lorentz group (see Appendix for definitions). The
general completeness and orthogonality relations
(A20) and (A21) reduce to

P, (p) = sinh'a sin8, d'p = dad8df,

f v(p, v)dpDi" (I~)D&""(L~),
gn v

2~'(2s + 1)
p p

5'(P-P')5- (3b)

&'(p -p') = &(e - u') &(8 —8') 5(f - K'),

P(P, ~)=P +~

The relations for the family A~ are identical.
The two equations (3a) and (3b) exhibit the two sets
of variables (p = (a,8, 0), e(or A)] and ( p, v, j,n}
that will be used to describe the states of a par-
ticle with mass m and spin s.

Note that when the particle is at rest we have
P = me„a = D, and 8, g are not -defined. The ma-
trices reduce to

D,'"„„(&(0,8, 0)) = 5„5„„

D,'„",), (A(0, 8, K)) = 6„D~~(&, 8, 0).
(4)

The energy-dependent expansions of the scatter-
ing amplitudes will be performed in terms of the
functions D&„"„(I~) or D&„",„(A&)

B. Internal Lorentz group

An internal Lorentz group" and an internal
Lorentz basis" were introduced explicitly in a
recent article. " These are very suitable for de-
riving two-variable expansions of scattering am-
plitudes. Indeed, such expansions for spinless
particles' ' at least implicitly made use of the
internal Lorentz group in the relativistic case and
of an internal Galilei group" in the nonrelativistic
one. '

Here we s/all briefly review some relevant
properties of the internal Lorentz group and the
internal Lorentz basis. For all details and the
derivation of formulas we refer to a previous ar-

p j ~(o)&'oD,', (I,)D"g.:," (I,).
a

2w'(2s+ 1)
)

& ( p —p') 5„„,5„,5„„, (3a)~V &
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x =xo -g =1, (5)

ticle." Let us consider two particles with arbi-
trary (positive) masses m„spins s„and momenta

p( (i=1, 2). Let us introduce an arbitrary unit
timelike four-vector x:

mass system (c.m. s.) has been studied else-
where" and we shall just present the formulas
needed below. We shall parametrize states by
the coordinates of the vector x, so let us relate
x-to the c.m.s. particle momenta p, and p, . In
the c.m. s. we have

Let us consider a reference frame, such that a
pair of linear momenta (p„p, ) satisfy

(p„p, ) = (m,x, m, vx), (6)

P, = m, (cosha, e, + sinha, u),

p, = m, (cosha, e, —sinha, u),

m, sinh, a, =m, sinha, .
where m is the parity operator. The set of all such
pairs of vectors is left invariant by a subgroup of
the direct product of the two Lorentz groups
0'(3, 1)x 0'(3, 1), acting on particles 1 and 2,
namely the group of transformations

P='gx ~A~ '.

We define the unit timelike four-vector x as

x +7T

x = coshae, + sinhau,
l

(12)

(13)

The transformations it form an 0(3, 1) group. We
shall call it the internal Lorentz group and denote
it 0(3, 1). It is conjugate to the physical "diagonal
Lorentz group" 0(3, 1) generated by

J=J" + J" K=R" +K"' (8)

where J'' and K~" are the rotation and boost gen-
erators for particles 1 and 2. Indeed, we have

0(3, 1)= (Ix v)0(3, 1)(fx p) ',
so that the internal Lorentz group is generated by

J J (&) J '|2) g K(&& K(2) (10)

Lorentz invariance implies that the scattering ma-
trix should be invariant under the diagonal Lorentz
group. No such property holds for the internal
Lorentz group; however, the 0(3) subgroups of
these two Lorentz groups coincide.

Note that any pair of momenta (m,x, m, nx) can
be obtained from the state of two particles at rest
(m, ea, m, eo) by an internal Lorentz transformation
L„=(L„xvL v ') with L„, as in (2).

From a practical point of view the reference
frame in which to perform expansions is the cen-
ter-of-mass frame, rather than the frame de-
fined by (6) [this last frame is characterized by
the fact that the vector q

=—(p, /m, +p, /m, )/
((P,/m, +P,/m, )')'~' satisfies q = e,j. The rela. —

tion between this "q frame" and the center-of—

and it is easy to check that we have

a =-,' (a, + a, ) . (14)

The invariant mass of a two-particle state depends
on a only,

s = u}'(a) = (p, +p, )' = (m, + m, )'+ 4m, m, sinh'a,

(15)

and we have

(m, +m, ) ~u)(a)&~ as 0~a&~.

We can now parametrize our two-particle states.
In a canonical basis (quantization along the third
axis) we have

ip, o,)(8) [p,a,)-=[xa,a,) =- [a&go,o;),
and in a helicity basis,

(16)

(we use the original Jacob and Wick phase conven-
tion" "). These two-particle states are now de-
fined on a unit hyperboloid x'=1, xo& 1 and this has
been achieved for arbitrary spins and masses.
Equivalently, they can be considered to be defiried
on the group manifold of the internal Lorentz
group, i.e., as functions of the Lorentz transfor-
mations L„or A, .

C. Inte~a1-Lorentz-group states

To proceed further we must introduce the internal-Lorentz-group two-particle states"

~
(pvs)jn) =,

( ) p (s,o,s,o,
~

sa) p, (x)d'xD~&„",*,(L„)Ixo,o,),
ogo20

, Q (s,x,s, —x, (sz)f p(x)d x(A)(xxD,x',}. '', (18)
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Here we use standard O(3) Clebsch-Gordan coefficients" (s,m, s,m, (sm), and Dp&"„(A) is a Lorentz-group
finite-transformation matrix"""" (see Appendix). The real number p(= [0,~) and integer or half-in-
teger v(= [-s, —s+ 1, . . . , s] label the irreducible unitary representations of O(3, 1). The matrices are
written in the Naimark canonical basis corresponding to the group reduction O(3, 1)& O(3) & O(2). The
labels j and s are the usual total angular momentum and total spin; n and o (or A. ) are their respective
projections.

The completeness properties (3) of the functions DjP„"„(L„)make it possible to invert these defining rela-
tions (18) and to obtain O(3, 1) expansions of the usual two-particle states:

~ss.a,&=P ( , s. a. s~ a)sgsfdp p(pv)jjs, „"„(j.,)~(pvs)ja),

(19)
~sS,S,&= F (s,S,s, —S,~sv) P f dp p(p, v)jj; „((V)~ ("p„vs)j,a).

S Vjff

The states l(pvs)jn) correspond to a definite value j of the spin operator which is a relativistic invariant
(the total angular momentum of the two particles in their c.m. s.) They do not, however, transform accord-
ing to an irreducible representation of the Poincare group. Indeed, two-particle states that do transform
irreducibly under the Poincare group can be written as

(2j+ I)'~'
(w(a)jn, Is) =[ ],&, g g (lmso(jn)(s, o,s,o, (so) I sin8d8dfY, „(8,g)( a8fo,a,)

51 gyy2g

in the l-s coupling scheme, or as

(2
~ 1)a/2 (j 2(j

lw(a)jn, Xp,) =
~l

sin8d&df D~~* „(g, 8, 0)( a+a,z,)

in the helicity coupling scheme. ""
In terms of these irreducible states we can express the internal Lorentz basis states as

(20}

(21)

l
(pvsj)n) = . ,j,p (2l+ )(l0sk(gX) sinh'adadjp, "~ (a) lw(a)jn, Is)

E)L
0 ()

,,j, p (s,&,s, —d).2(s&) sinh'adad&, "„*(a)lw(a)jn, z,z,)
X pl, 2X

(22)

[the boost functions dj,"„(a) are defined in the Appendix]. We see that the l(pvs)jn) states do not correspond
to a definite value of the invariant total energy w'(a) = (P, +P,)'. Instead they involve an integral over all
energies, from the threshold w'(a) = (m, +m, )' upward. Formulas (22) can be inverted using (A19) of the
Appendix and we thus obtain the irreducible states in terms of the internal Lorentz states, and their en-
ergy dependence is now displayed explicitly in known functions, namely the O(3, 1) d functions:

~sv(a)ja, (s)=,&, P ((Osv~jv)g f p(p, v)dpda (a)~(pvs)ja),

(w(a)jn, xp) = . ,~, Q (s,x,s, —x2(sA)Q p(p, v)dpdj"„(a}
l
(pvsj)n) .

(23)

(24)

III. ENERGY-DEPENDENT EXPANSIONS

OF SCATTERING AMPLITUDES

Let us consider the reaction

1+2-3+4 (25)

I

dence of the usual partial-wave amplitudes, i.e,
the matrix elements of the scattering matrix be-
tween Poincare-invariant irreducible states. Thus
in the canonical /s basis we obtain the canonical
amplitudes A~„, , (a),

in the c.m.s. Let p, = -p, be parallel to the third
axis of a coordinate system. The initial state is
then characterized by the spherical coordinates
(a', 0, 0}, the final state by (a, 8, P).

We wish to present explicitly the energy depen-

(~~(a)jn Is
I
~

I
~(aj')j'n', 'sI'

&

= f)(w(a) —w(a')) hajj 5„„,A. j„j...(a), (26)

and in the helicity basis the helicity amplitudes
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A', ~~, (a},

(w (a)jn, )(.,x, I
T

I
n)(a')j'n', x,)(,&

=6(w(a) —w(as)) 6„.5„„,A', ~~, (a) . (27)

Energy conservation provides the relation a)(a)
=m(a'), i.e.,

(m, + m, )'+ 4m, m, sinh'a '

=(m +m4)2+4m3m4sinh a. (28)

m, + ~n~ & w, + m, the choice would be a ', since the
threshold then is ur(a'=0) =m, +m, . For m, +m,
=m, + m„ in particular elastic scattering ()n, =m„
m, =m, ), the two coincide. For definiteness let
us consider the case )n, +m, ~ m, +m, which is
the case most often realized experimentally. -

We now use formulas (23) and (24) to introduce
the internal-Lorentz-group basis into the matrix
elements (26) and (27). We have

We can thus expand in terms of a' or a, depending
on. which variable varies through a more conven-
ient region. For ~n, +m4) m, +m, the appropriate
variable will be a, since a=0 then corresponds to
the physical threshold w(a=0}=m, +m~. For

Af. i" (a) = g (f0s&
I jx} (f os )). 'I j&') &!..'(a),

A,',~~~(a) =Q (s,x,s, —)(., Is'x')
SyS

x(s,~,s, -x, Is~)x,„,, (a),

(29)

where we have defined

1

22+1 ~,-
p(p' v )dp f'p(p'" v')dp"d". " (a)dv;"", (a')(p'v's(

[
T"s"pv)s (30)

and used the Wigner-Eckart theorem to set:

(p'v's IT'I p" v"s'&=((p'v's)jnlT l(p" v"s')j'n'&6+ 6" . (31)

I

Equation (30), involving the product of two d functions of related arguments a and a' [see (28)] cannot be
directly inverted. We can, however, use the orthonormality and completeness relations (A18) and (A19)
to introduce the quantity

(32)

and to express

d:;."'(P)dl.'"'(")=r. f P(P )PPQ(' ". ")d "()""""''"
v

(33)

Substituting (33) into (30) we obtain

1
X',

' .. .(a) = P f V (P, v )dP T;."„..d)","(a), (34)

where

~I P(p, v )dp P(p", v" )dp" Q(z»", ),
'. ' -'")(p'v's IT~I p" v"s'&.

v v"" (35)

Equation (34) can easily be inverted and we have

g(2s + 1) (36)

The coefficients T&,",, „, are energy independent. Indeed, these are our fundamental quantities, the
Lorentz amplitudes.

Returning to the matrix elements of the transition matrix in the linear-momentum basis we have, in
terms of canonical amplitudes,
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&x"o IT la'o".&
= &«to.o. l

Tta 00...,&

= 5(u)(a) -u)(a')) g (s,o,s,o, ls'o')(s, o,s,a, iso)

x g [4)) (2I + 1)]'t' (lo' -oso lj o')(I'Os'o' lgo')A ~„„(a)I'„,,(e,f),
ll' j 2j+1

(37)
and, in terms of helicity amplitudes,

&xq&,
l
T

l

a' &,q& = &«l' &,&, l
T la'00&, &,& = &(tv(a) - tv(a')) g (2j + 1) A,'... ,,,(a) D", „,,(K, ~, 0) ~ (38)

Substituting (29) into (37) and (38) and using (34}, we obtain the final expansions. In the case of canonical
quantization we have

&xo,o, l
T la'o, o,) = 5(u)(a) -u)(a')) g (s,a,s~o4 iso)(s,o,s,o, ls'o') P Jt t((p, v)dp Tz",,...Dz","t„(L„).

S~S vJ

In the case of helicity quanti. zration we have

(xs X
~

T~
' aX)r=5(w(a) —w(a'))P (s Xs —X ~SX)(sss —ra ts'X') P f p(p s)dp Tr'"„,xrrr'rwr(&r) (40)

St S PJ

E(luations (39) and (40) represent the "complete" expansions. Indeed, the entire dependence on the kin-
ematical variables a, 8, and f is contained in the Lorentz-group D functions. They directly generalize
the O(3, 1)-group two-variable expansions for spinless particles considered earlier. ' '

Expansions (39) and (40) can be inverted and we obtain the Lorentz amplitudes in terms of the scatter-
ing amplitudes, integrated over the entire region of kinematical variables. We have

1
T'r. ..,—, "g (s rr s rr ~ss)(sas rr ~s'a') fp(x)rpxDr", „(L l(xrr s ~p~a'aa). ,

Qy6263040

1 (sx s. —x. ~»)(s xs;x, (s~ )f a(x&d'»; ;„((r)(»x."~)' ~a'xA&
2w'(2s+1)

(41)

(42)

We have "derived" the above expansions with a
complete disregard for mathematical rigor. In
particular, questions of convergence of various
expansions were ignored. Let us just state that
the expansions in (39) and (40) will converge in
the mean and that (41) and (42) will be valid if the
expanded scattering amplitudes belong to a Hil-
bert space of functions, square integrable over
the hyperboloid x =1 [t((x)(Px denotes the invar-
iant measure] . In this case the continuous O(3, 1)
label p is real and the expansions involve only
unitary representations of the principal series. '4

Physical amplitudes do not necessarily satisfy the
mathematical constraint of square integrability,
implying, e.g. , that total cross sections must de-
crease quite rapidly as the energy increases.
The expans'ions must then be generalized and this
can be done by analytically continuing in p and
integrating over an appropriately chosen path in
the p plane. Such generalizations involve non-
unitary representations of O(3, 1}and are similar

l

to a replacement of Fourier transforms by com-
plex Laplace transforms for functions of one
variable.

IV. PROPERTIES OF THE ENERGY-DEPENDENT
EXPANSIONS

Let us list some of the properties of the obtained
expansions (39) and (40) that are important for
physical applications.

(1) As was stressed earlier, the expansions are
complete, in that the entire dependence on the in-
variant variables s and t, as mell as on the azimu-
thal angle f, is displayed explicitly in known func-
tions, namely the Lorentz-group D-functions.

(2) The expansions contain the usual partial-
zeave expansions and can thus be interpreted as
further expansions of the Poincard-invariant
partial-wave amplitudes. Thus, in the canonical
coupling scheme we can express the invariant
amplitudes in (37) as
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A, ,„,(a) = . g(IOs~~g~)(I Os X ~gX)

x g ~

p(p, .v)&pr,'",„,, &;;~Ma).

(43)

Similarly, in the helicity coupling scheme we ex-
press the invariant amplitudes in (38) as

Az& z z z (a) = p (s3A3sd —X~~ sX) (s~k~s2 —X2~s Y)
SO S

x Q f p (p, v)dp P,'.",~,. d,'.;,"(a) .

(44)

The Lorentz amplitudes characterize a given re-

action as such, i.e. , for all energies and angles.
Notice that the same Lorentz amplitudes T J",, ,
figure in both expansions, independently of the
coupling scheme. The quantum number j is the
usual total angular momentum in the initial and

final states, the quantum numbers l, s, X, l', s ',
A,

' and A, have their usual and obvious meanings.
The quantum numbers p arid v, introduced by the
internal Lorentz group are somewhat harder to
interpret. In the nonrelativistic and spinless case
the number p has been related to the distance from
the scatterer. 4

(3) Threshold behavior. The kinematic behavior
of, e.g. , the partial-wave helicity amplitudes at
the initial and final-state thresholds and pseudo-
thresholds is expected to be"

A~& ..., (a) = [m2(a) —(m, + m, )']'r(~' [zo'(a) —(m, m, )'-]'~ d

X [~'(a) —(m, + m, )']"t"[~'(a) —(m~ ™d)']'~t"Af,~ ~,~, (a) (45)

where A~~,~,~,~ is regular and nonzero at the thres-
holds and pseudothresholds and l ~. , l~. , l ~, and

Z fl„are the minimal possible values of the angular
f

momentum at the appropriate points.
We have assumed that m3+ m4 ~ m, + m, and

hence only the final-state threshold touches the
physical region at a)(a) = m, + m, . At this thres-
hold we have

l

(45) at the physical threshold.
.We have not studied the analyticity properties

of the expansions (43) and (44), nor their con-
vergence outside the physical regiori. The re-
quirement that the partial-wave amplitudes with

l & l q„should vanish at the nonphysical threshold
and at the pseudothresholds would impose con-
straints on the Lorentz amplitudes:

(m, + m,)' —(m, + m, )'a = 0, sinh'a'=
mrs, (46) fp(p, v)dptq , „,dq „(a )=((",'s", s„', A. , V)dp

(49)

and the property

(f,p.,"„(0)= 6,, (4 t)

xZ J» ~)d»:"..'
(48)

A~d ~ ~ ~ (0) = 6&,g (s~k,s4 —A4lsh)(s, k.,s, —A., ~s'Y)
Sy S

x p ~

V (p, ~)&p I';;, , .
I

V

For a more detailed study of the threshold be-
havior we would need to investigate the behavior
of the d functions for small values of g. The be-
havior (fp.",,(a) - (sinha))' ') for a-0 has been con-
jectured' and would indeed ensure the behavior

of the d functions insures that only the waves with

j = s, i.e. , l~ =0 contribute:
gf

A&„, , (0) = 6&, g (los%. ask)(l'OsÃ isA. ')1

A' —~( y)s3+s4-sy-s2A j
/~$2)t3$4 -Xg-jL2-A3-A4 s

0 0/020304 p

where g,. are the intrinsic parities. For the

Lorentz amplitudes this implies

TP v —q( $)s 8 Tpv

(50)

(51)

Here a» and s» are the energy and spin at the
corresponding nonphysical point and C(s, s', X, V)
is finite and nonzero. Notice that the constraint
(49) must actually be satisfied at the nonphysical
threshold a' = 0. Indeed, this behavior is present
in formulas (29) and (30) and its explicit "visibil-
ity" was lost in the redefinition (35) of the Lorentz
amplitudes.

(4) Consequences of parity conservation. If

parity is conserved in the reaction, then, e.g. ,
the partial-wave helicity amplitudes (44) must

satisfy"
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(5) Consequences of time xev-ersal invaziance
for elastic scattering. If the reaction is elastic
and time-reversal invariance holds, then the
partial-wave helicity amplitudes (44) satisfy

)teak.

2)t3)L4 )t3)t4)tj X2 (52}

For the Lorentz amplitudes this implies a linear
relationship that can be written as

(53)
oo

40

(6) Identical Particles. If the two particles in the initial state and the two particles in the final state are
identical, then the partial-wave helicity amplitudes satisfy

A~ gag(a) =Ax)(), ) (a}~

For the Lorentz amplitudes this implies

gPV —gP V

lpga

I gt T
~g (g I ~gt ~

(54)

(55)

V. ENERGY-DEPENDENT EXPANSIONS OF THE OBSERVABLES

For a given initial density matrix the unnormalized final-state density matrix is obtained in terms of the
transition matrix elements in any quantization scheme as

(pt);3r4,,(x) = g (xoso~ I
T

I o)o2&(p, ) , .(xo. s
'1 2

(56)

In order to avoid. a proliferation of O(3) Clebsch-Gordan coefficients we define the following auxiliary
quantities:

(p/) . ( ) = g (. . . , l )(, ,', .'l ' ')(p, )',",( ),
03Oy

4

~3~4

(p;)t~, ~
—g (s, so,o' lt2r)(s, o,'s,cr2lt r )(p.) z'2.

rrla2
Oy02

(57)

The transformation (57) is unitary and can easily be inverted using the orthogonality properties of the O(3)
C lebsch-Gordan coefficients.

Using the expansion (39) of the transition matrix elements, we obtain

(58)

The product of O(3, 1) matrices in (58) can be expanded using the O(3, 1) Clebsch-Gordan series [see
(A22) of the AppendixJ. We have

(PI) . (*)=Q Q J u(P ')"P'g fu(P , )"P . („("P")',:".';:,"",, D;„".,*(l,)D;:," . . (I,.). .
tt' V tt
V7'

I I IC II
=(-1}' g ' p(p, ) )dp g(i Ti'7'l~Af)(s-cs'o-'lsI)l) D'z»s(I ).

V JS js j's' JS

(59)

The expression in square brackets is defined in (A26) as a, product of two reduced O(3, 1) Clebsch-
Gordan coefficients. Substituting (59}into (58) we have

(pt), ...(x)=(-1)' 'g (s-os'o
l

o o) g I p(p, v)dp+D~". . .s.. .(I.„)IP«...„,(p).. .
S vt' & tt0

(6O)

where we have defined
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js j's' JS

Il II

E",„,~, i, i =(-1)' 'g p(p', v')dp' g p(p", v")dp"(j -vy'&'~ J7' —7) T~z,"„T&',', .,
v sg vNy

(61)

The expansion (60) can obviously be simplified at the threshold, but we shall not go into that here.
Let us consider a special case of interest, namely the scattering 0+ ~»0+s, i.e. , the case s, =s3

= 0, s, = —,, and s, =s. The general expansion (39) of the scattering amplitude in the canonical quantiza-
tion reduces to

(xso ~T ~a'~ e) =5(w(a)-gg(a')) g p(p, v)dp Tf~Df', (L„).
vj

The expression (60) for the matrix elements of the unnormalized final-state density matrix reduces to

(PI);, (x)=(-1)' ' Q(s oso-' So' —o) Q p(p, v)dp Q D'~;. ,~.. .(L„)K',",f~(p, ),'i . (
g vJ St8

Further, we can express the normalized initial-state density matrix in terms of the initial spinor-par-
ticle polarization vector P

p) = k (1+o ' ~), (64)

and the unnormalized final-state density matrix in terms of the differential cross section and the statis-
tical polarization tensor s2'

[pq (x)$.=
d
—(x} Q (so LN

I
so') t„*(x) . (65)

The expansion (63}for the experimental quantities now reduces to

2s+ 1't'~'
2L+1 j

—t~*(x)=(—1) "
~ g P(p v)dP ff ' z ' rv( }2-t.5 '+~(o (66)

VI. CONCLUSIONS

The main results of this paper are the expansions
(39) and (40) of the total scattering amplitudes for
two-body reactions involving particles with arbi-
trary spins and (positive) masses, or the corres-
ponding expansions (43) and (44) of the partial-
wave amplitudes. The main properties of these
expansions were discussed in Sec. IV, namely they
are complete expansions, in that all the kinematic
variables figure in known functions, the Lorentz-
group transformation matrix elements. The for-
malism generalizes that of the usual partial-wave
analysis, and the expansions can be interpreted
as partial-wave expansions, supplemented by fur-
ther expansions of the invariant partial-wave amp-
litudes. 'The partial waves automatically have the
correct behavior at the physical threshold. All ex-
perimental quantities can now be expressed in
terms of the expansion coefficients which we call
Lorentz amplitudes (indeed we have expressed the
final-state density matrix in terms of these amp-
litudes and the initial density matrix).

The expansions are a direct generalization of

I

previously considered O(3, 1) two-variable expan-
sions for particles of spin zero. '~ They were ob-
tained by making use of an internal Lorentz group
acting on two-particle states. The derivation
made use of standard methods of group represen-
tation theory in quantum mechanics. Indeed, we
started from single-particl'e states, constructed
two-particle states as direct products, then ex-
pressed these product states in terms of irreduc-
ible ones and calculated matrix elements of the
scattering matrix between such states.

We envisage a continuation of this program in
several directions. One is a further exploration
of the formalism, including an investigation of
convergence and of the use of nonunitary repre-
sentations to incorporate more general classes of
scattering amplitudes. The second is a study of the
implications of further physical principles, such
as unitarity and analyticity of the scattering ma-
trix for our formalism. The third direction is
generalizations to many-body reactions and de-
cays on the one hand and to expansions involving
other subgroups of O(3, 1) on the other. As in the
spinless case, the subgroupcha, in O(3, 1)&O(2, 1)
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&O(2) would provide an extension'of complex-ang-
ular -momentum theory, the O(3, 1)a E(2)a O(2)
chain an extension of eikonal expansions.

The most important, according to our opinion,
continuation of this paper concerns phenomenolog-
ical applications. Thus, we plan to consider spec-
ific reactions and to use the complete expansions
to analyze the obtained experimental data simul-
taneously for all available energies and angles.
Obvious candidates for such analyses are pion-
nucleon and nucleon-nucleon scattering, where
large bodies of data exist and still more are be-
coming available. In particular we hope that this
formalism will make it possible to analyze simul-
taneously the abundant and detailed nucleon-nucle-
on data from the three existing pion factories,
from the Saturne II accelerator at Saclay, and
from the ZGS at Ar'gonne. From this point of view
the present formalism should be compared to the
"locally energy-dependent partial-wave analysis"
that has been recently applied to treat nucleon-
nucleon scattering data for more restricted ener-
gy regions. "

Two difficulties must be overcome before the
present expansions can be efficiently appj, ied to
phenomenological analyses. The first is that they
involve a continuous variable, namely the Lorentz-
group representation label p. This difficulty has
been overcome for the case of spinless particles. '
The expansions have been made discrete and the
integral over p replaced by a sum over a new dis-
crete variable. Work on a similar discretization
for particles with spin is in progress. The sec-
ond difficulty is related to the well known fact that
standard partial-wave analysis for nucleon-nuc-
leon scattering is known to be unstable. It be-
comes stable if modified partial-wave analysis
is used, i.e. , if the higher partial waves are not
set equal to zero but calculated on the basis of the
one-pion-exchange model. " Work is currently be-
ing performed to establish whether a similar sta-
bilizing effect is provided either by the one-pion-
exchange model or some more sophisticated ap-
proach, e.g. using the ' Paris nucleon-nucleon po-
tential" (Ref. 26) to calculate the higher Lorentz
amplitudes.
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APPENDIX: SOME RESULTS ON REPRESENTATIONS
OF O(3,1)

We consider representations of O(3, 1) in the
Naimark canonical basis'~ corresponding to the
group reduction O(3, 1)& O(3)& O(2). The basis
functions lpvJM) satisfy

pvJM)=(v' —p'-1) lpvJM)

6' lpvJM&= pv lpvJM&,.JM) = J(J+ 1)

L, lpvJM&=M lpvJM&,

with ~= L' —K, &'= L K. The generators of
rotations L and pure Lorentz transformations
K satisfy

(Al)

[L,, L~]=z&,y2L2~ [L. , ,K, ]=i&,)2.K.

[K,K2] —-Z& y2L2

(A2)

K„ l
pvJM&= g ft,"".„( 1)'(J1Mp-lJ+uM+ p.)

xlpv J+AM+ p, &.
'

Here p runs through the values +1 and 0:

(A3)

(A4)

and
2

( J 1/2
Rvp J 1

l
ftvv2J 1 ~(2J ] )

1/2
R "P gyp J+1' 2J+3

ftvpZ [(J2 V2)(J2+ p2)]1/22i
J

Rg~ =vp[J(J+1)] 'i'

(A5)

Unitary representations of the principal series
can be realized in a Hilbert space of functions
d (u) defined over the group SU(2), satisfying [we
are considering the covering group SL(2, C) of
O(3.1)]

P(yu) =e' "p(u) u=lr

21 22) (A6)

(e-'" o )
y =

l l, u„,u„—u„u, =1
k o e'"]

Relations (Al) do not determine the phases of the
basis functions. To specify their dependence on
J and M completely, Naimark postulates the ac-
tion of the generators on lpvJM&:

L. lpvJM&=[«J+1)]'"«1MplJM+ p) lpv JM+ p&



RELATIVISTIC ENERGY Y-DEPENDENT PARTIAL-%A VE. . .

~
e(v)~'d~& (A7)

[du is the invariant measure on SU(2)]. The basis
functions satisfying (A1) and (A3) in this space can
be shown to be'4

tions in the canonical basis (As):

Dj"„jv (A) =(pvJ, M, l T(A)i pvJ, M,), (A11)

where T(A) is an operator representing the gener-
al Lorentz transformation A in the irreducible
representation (p, v). Using the Euler parametri-
zation

(f&vjv„(u) =K, (2J+1)' 'D, ~(u),
J -t +Sf

VV J J (+2+ p2)1 /2

1)j ~„~., 1"(J—tp+1)I'(lvl+ip) 'j2
-1'(J+tp+1)f'(I v I tp) J-

(As) A =Q~dQ2 ~ (A12)

where u, and u2 are rotations and d =exp(iaK2} is
a Lorentz transformation along the z axis, we
find

(A9)

Here D„11(u) is an SU(2) Wigner D function and the
normalization is such that

where

d j"j,(a) =K„,'K„', [(2J„+1)(2J,+1)]'j2

0 j+( ) Q J~pl(21) d 6jj'l5 gggg
(A1O} 1

dt d„,'(2t —1)dj'(2t, —1)

It is worth mentioning here that the basis used by
Riihl" is obtained from (AS) by omittmg the phase
factor KJp The basis used by Joos' and also by
Chakrabarti et al."is obtained by multiplying
(As) by e ' ' "j (all bases are specified up to a
phase factor that can depend on p and v only).

We are interested in the Lorentz-group D func-

x [te '+ (1 —t)e']" ',
t, =te '[te '+ (1 —t)e'] ' (A14)

[d,2(cos0) is an O(3) d function]. Using explicit
expressions" for dj,(cose), we can evaluate (A14)
in different manners"'" and obtain, e.g. ,

min(J~ -v, J~ -X)

~& j22 ( )
d=max 0, -v-)t)

min (J2 -v, J2 -X)
gv p -a(2d'+1+v+ f"i p)

J] J& Add',e
d'=max(0, -v-)t)

where

x2E~(1+ J2 —ip, v+ A. + d+ d'+ 1; J&+J2+ 2, 1 —e '), (A15)

flvv K j1jjj2( 1) j1+j2-2x+d+d'
J2Xdtf' vp ~vp&

X[(2J1+1)(J1—v)!(J1+ v) !(J1—X)!(J, + X)!(2J2+ 1)(J2—v)!(J2+ v)!(J2—A)!(J2+ X)!] t

(v+ A. + d+ d')! (J1 + J2 —v —X= d -d')! (A16)
(J, + J, + 1) td! (J, —X- d)!(J, —v —d)! (X+ v+d)!d !(J2—X —d )!(J2—v —d )1(A+ v+d')!

Thus, d~«, 2(a) is expressed as a finite double sum involving hypergeometric functions. Tt can a!so be
expressed in terms of elementary functi'ons. "

Some relevant symmetry properties of the d functions (A15) are

d j1 j2 $(a) = djf j2 $(a)

d j, j, 2(a) = dj'. j.„(a),

dg)j22(a) =dj", j 2(-a),

dj&j21(-a) =(-1) 1 2dj, j 1(a),

~j,"j, -2(~) = 'j1 j, 2(~).

(A17)

The orthonormality and completeness relations for the two sets of matrices d'.",. and D',-", „- are
(p(p, v} = p'+ v')

00

I (A16)



3424 M. DAUMENS, M. PERROUD, AND P. WINTERNITZ 19

p, (p, v)dpd,'"„,„(a)d,'"„, (a')+= — ' . „,' 5(a-a' )t)„„,,
m (2j, +1)(2j,+1)

~ ~

p, (A) =sin8 sinh'a sinp, dA=dyd8dadndpdy,

I P(p, v)PP g P D;.',. (A)P,'." „.„,(A')*= ll(A-A'),
v=-~ 0

(A20)

5(A —A') =5(q —y')t)(8 —8')6(a —a')5(o. —c(')5(P —P') t()y —y'). (A21)

(A22)

They satisfy orthogonality and completeness relations

The Clebsch-Gordan coefficients" of O(3, 1) are defined by the tensor product reduction

DP1 1P, ,(A)gP2 2P, , (A) —g p (p p)dp Q ( 1 1 2 2 I t 1 1P2 2 ) DPP (A)
'= )~jm jm, jmj &j,m,'j'.m; jmi

They can be written as the product of an O(3) Clebsch-Gordan coefficient and an analytically continued O(3)
ej symbol,

( p'p" p'& =(jm jm ~jm)
p" p"

(A23)1 j. 2 2

(j,m, j2m2 jm j j 1j2

p1 1p2 2 p pl 1p2 2
= &(»") '~(p- p')~pp~ '~mm p(j m1j m 1m) )(g m1j m2 j'm'j (A24)

( p)d ~ ~(P1 1P2 2 P ) (Pl 1P2 2

p pi )p =)(j,m, j,m, jm) (j,'m,'j,'m,' jm)y

For brevity in the main text we make use of the quantities

(A25)

) Pl 1P2 2 P Pl 1P2 2

( jljlj2j2 jj jlj2
pi ~i p2~2

jlj2
(A26)

hen using these formulas it should be noted that the symbol p in Refs. 14 and 18 has been replaced by
2p in this article. The symbol E of Ref. 18 has been set equal to %=1.
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