
PHY SICAL RE VIE% D VOLUME 19, NUMBER 11 1 JU NE 1979

Determination of the chiral-SU(4) )& SU(4)-breaking parameters

Kamala P. Das and Nilendra G. Deshpande
Institute of Theoretical Science, Uniuersity of Oregon, Eugene, Oregon 97403

(Received 5 July 1978)

We consider broken chiral SU(4) &(SU(4) symmetry. From the observed mass spectrum of pseudoscalar
charmed mesons, we are able to solve for the symmetry-breaking parameters of the theory. We find that
both vacuum and Hamiltonian breaking play an important role as far as charmed states are concerned.
Purely from the masses of D and F mesons we deduce the current-algebra mass ratio rn„/m, & 5. This differs

greatly from values obtained using linear or quadratic mass formulas. Considering q, q', and g, mixing we

further obtain a good solution with rn, /rn, 3.2 and (cc)/(uu) 5.67.

I

I. INTRODUCTION

m, 4 q„1 (1.2)

However, the estimates for e„/es vary widely
depending on whether we use first-order breaking
formula to fit the masses or the masses squared.
Thus if linear mass formula is employed we have
5»/58 = 9.7, and if quadratic mass formula' is em-
ployed we find 5„/e, =21.6. These yield for the

Recent observation"' of charmed pseudoscalar
mesons D', D', F' as well as g, prompts us. to re-
examine the question of how the chiral SU(4) xSU(4)
symmetry is broken. ' Current ideas of strong in-
teractions based on quantum chromodynamics
(QCD) and unified theories of weak and electro-
magnetic interactions suggest that chiral SU(4)
xSU(4) symmetry is a global symmetry of the
Lagrangian associated with the flavor group.
Further, this symmetry is broken both by the va-
cuum and explicitly in the interaction Lagrangian
by the quark mass terms which transform accord-
ing to (4, 4*)6 (4*,4) representation. Our knowl-
edge of quantum chromodynamics is not yet at a
stage which will allow us to calculate directly the
true vacuum of the chiral group. Nevertheless,
we can use current-algebra techniques and the ob-
served mass spectrum of the pseudoscalar mesons
and their decay constants F„F~, etc. to deter-
mine the properties of the vacuum as well as the
mass ratios of the quarks.

The charm-quark-to-strange-quark mass ratio
m, /m, in principle is simply calculated from the
knowledge of the ratio of SU(4) breaking along the
15 direction to that along the 8 direction. Thus if
the Hamiltonian for symmetry breaking is

symmetry breatisg (50 0 ~8 8 515 15) 1=-&~+ u+
then since m„, m~ «m„m, (Ref. 5)

ratio m, /m, the values 9.5 and 20.7, respectively.
For vector mesons the linear formula fits better

than the quadratic one, as

MFq -Mgg=M~g —M

(0. 13 GeV) =(0.122 GeV),

M g —M +=M + -M
(0.54 Ge V') 55 (0.203 GeV') .

(1.3)

However, neither fit is satisfactory for pseudo-
scalar mesons, because they yield

MF -M~ = M~ -M, ,
(0. 178 GeV) 55 (0.414 GeV),

or (1.4)

(0. 695 GeV') 55 (0.283 GeV') .

Thus we need a more accurate treatment of
chiral breaking to yield a more reliable estimate
of m, /m, .

Work based on chiral SU(3) xSU(3) breaking' had
revealed that (a) the Lagrangian is approximately
SU(2) xSU(2) invariant leading to a small number
for the ratios m„/m„m„/nz„a d(nb) the vacuum
is to a good approximation a SU(3) singlet. implying
approximate equality of decay constants E, = F~,
as well as the (mass)' octet broken formula for '

the pseudoscalar bosons. An extremely good solu-
tion' for all the parameters was obtained by solv-
ing the current-algebra equations which included
a general q-g' mixing with a single hypothesis
on equality of renormalization constants
VZ, =- (0

t zqA. .y q~Ps, ), where P. denotes the ith
pseudoscalar meson. In this paper we wish to
find a consistent set of solutions to the current-
algebra equations using a similar technique in the
case of SU(4) xSU(4) symmetry. We have found,
however, that the requirement that ~Z be SU(4)
symmetric is completely at variance with the
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mass spectrum of the pseudoscalar mesons. We
shall show that such an assumption leads to an ex-
tremely small B-F mass splitting if the decay con-
stants are assumed equal, and if the latter re-
quirement is given up, a realistic value for F~
=1.28 leads to M~ &M~, which is quite unaccept-
able. In the present work, we use the value of M~
and M~ as inputs and find that ~, 's have large
SU(4) breaking. Purely from SU(3) symmetry of
Z, 's and the value ofD and F meson masses, we
establish that the ratio m, jm, (5.

With further assumptions we are able to solve
the coupled set of equations that characterize the
model. We allow for a general mixing for g, q'
and g, . A surprise is that the vacuum is not an
SU(4) singlet, although it is still to a good approx-
imation SU(3) symmetric.

We have determined the ratios of quark masses
and the decay constants. These are

—'=33.5, -—' =3.2,m
(1.5)

II. THE FUNDAMENTAL EQUATIONS

The strong-interaction Hamiltonian density is
assumed to be of the form

H=Ho t'o+o &s+s &i5 i5 ~ (2. 1)

where Ha is invariant under chiral SU(4) xSU(4)
symmetry, while the symmetry breaking terms

and the decay constants are, in units of F, = 92
MeV,

E„=1.28, Fv =0.974, E~= 1.056. (1.6)

We could have started with the group U(4) xU(4)
instead of SU(4) xSU(4). This would lead to the
U(1) problem discussed by Weinberg. ' As noted
by 't Hooft, "this problem can be circumvented in
QCD where the presence of instantons leads to
an extra U„(1)-breaking effective interaction
U=detq, .q,.~+ H. c. We have added an extra term
to the divergence of the A'„current to take into
account this effect. The net result is that it is
possible to consider the SU(4) xSU(4) algebra itself
and solve for the unknown parameters. No con-
straint is imposed on this form from thy U„(1)
sector. On the other hand, from the knowledge of
the solution we can say something about the matrix
elements of the U„(1)-breaking term.

In Sec. II, we set up the bp, sic equations of the
model. The section also serves to define our no-
tations. In Sec. III, we show how simple assump-
tions on equality of Z, give unacceptable values
and in Secs. IV and V we present our technique
for solving the set of equations. A discussion of
our results is contained in Sec. VI.

—'—+—"+~ (2.2a)

t' ~0 68 615

~6
( &o &i5 't

m, =-]@-3~).

(2.2b)

(2.2c)

Note that if m„4m~, then (2. 2a) should have
average mass of light quarks, m, = —', (m„+ma) on
the left-hand side.

The generators of SU(4) x SU(4) can be expressed
in terms of F' and F'„ the vector and axial gen-
erators, which are defined as usual by

F'(t) = d'x V,'(x),
moat

E'(t) =f ,d'xA', (x) .
go"-t

i =(0, . . . , 15) (2. 3)

The seals. r densities u,. (=@A.,q) and pseudoscalar
densities v,. (:—zqA, &'q) satisfy the equal-time com-
mutation rules.

[F'(t),u'(x) ]„,=if, ,„u'(x),

[F'(t), v'(x)]„,=if,.„v'(x),

[E,'(t), u'(x) ]„,= -id, ,,v'(x),

[E,'(t), v'(x) ]„,= id, ,,u'(x) .

(2. 4)

The current divergences are given by

8"V,
' = -z[F*(t),lf(x)]„„ (2. 5a)

(2. 5b)

From Eqs. (2. 1) and (2. 5) these are found to be

(2.6a)8"V'. = -&af az)u - amfgiaau'
~ lt"A„= odio& ~ + &sdisy ~ + &i5diisy + ~io~ ~

(2. 6b)

where V= -i[Ea, U] is a flavor singlet.
We take matrix elements of Eq. (2. 7) between

vacuum and single pseudoscalar or scalar meson
states. The following conventional definitions are
employed:

u,. transform according to (4*,4) 8 (4, 4*) represen-
tation. In terms of the quark model, these sym-
metry-breaking terms are merely the mass terms
of the quarks. We shall neglect isospin-breaking
effects due to lack of degeneracy of the mass of u
and d quarks as well as conventional electromag-
netic corrections, in this paper. The explicit
relation between quark masses and &„&„and &is

are easily found to be
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(0 A""' ii&=ip„E, ,

(0 fA "fz&=ip„F„
(O A'" ""iD)= P F

&olA'. l~, ~' ~.&
= sP.F','„

&oi v'„i ~&= ip, F„,
&o

f
v';" fs„„&=-{ofv'„'" s, „&=ip„F„,

(oiv," s,g=-(ofv„"fs„&=ip,E, .

(2 . 'l )
(i=o, 8, or 15),

(0 ii""' m&= Mz

(0 l
+,9,9, 7

(0 +9, 10, 11I 19 D)

(ol "" E) =v'z

(0 v' 7t, ii', ii,&=lz~i

&ol~"" l.&=mz„,
9, 10, 11,19

l
s & ~z

&ofu" "fs,&=vz, ,

&ol vie, q', q,&=g„„,„.

(i=0, 8, or 15),
(2. 8)

We then find for pseudoscalar mesons

M» E» 60 6p

~z, W& Ws v 6

Our currents are so renormalized that E, =92
MeV, States S~ and SF are members of the scalar
15-piet.

M „sF„&3
~z 2

Fg &8 t'15

2~ v6
Sg)

2E
SF SF +

QZ~ F

(2, 10)

Fg, '+ '+
vY vY

E~Z =~ 8

vY 2v3

F QZ~= —+~0 ~8 ~15

2~P vY
'

F gZ 0 &8 ~15

vY vY
'

The above equations are exact consequences of
the model. Further equations are obtained by
single-particle saturation which becomes exact in
the Nambu-Goldstone limit, i..e. , p,. 0. Then the
only breaking of symmetry is in the vacuum, re-
sulting in massless bosons that saturate the com-
mutation- rules. The corrections to these results
are expected to be of order & and except for
charmed states, we might expect these to be quite
small. Here we assume the validity of all the re-
lations and appeal to future experiments as a way
of establishing them. Defining (0

f
u, l

0) =-6, , we
have for pseudoscalar mesons

2Mg Fg Ep

1'„1IY 21tY &6

Mg) F~ Q()

2v3

2MF FF pp

vY W3
(2. 9)

FVZo + E' V'Zs + E' V'Z0 =——~ + il

EVZo+E„', v'Zo, +E„' v'Zo =—'
"c

E QZ»+F„,QZ»+E„QZ»= —,
C

E'VZo+E"qZ0 +E'VZ0 = ~
C

(2. 11)

M„'F' = ' ' +~ 1izss + iL1iz»+ —"yz0"i E»1iZs y F» ~Zs+ E»QZs
'g pl Q g 'g g P

M E' = —2 ' QZ15+~ QZp +—QZ8
~6 ' W "i v6

F15yZ15 + F15yZ15 + F15yZ15 0
Tl 8 O' Tli n

C

M„F„=—QZ0 + — — QZ8 + ~QZ'5+g

(17i —'g1'g 1 or 719) ..

Similarly we find for scalar mesons

Similar equations for scalar bosons can also be
written. However, pole saturation cannot be
justified for these because in the chiral limit the
masses of scalar bosons diverge. For the sake
of completeness, we only list them but shall not
make use of them in this paper:
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Z ~Z„=—6k k 2 8 0

E &Z = ' +2~, (2. 12)

v'Z = -~+2~
F F

It is also possible to derive relations by con-
sidering commutators of generators with the di-
vergences of currents, and then taking their
vacuum expectation values. These relations are
easily obtained. from Eqs. (2. 9) and (2. 11) by
eliminating v Z, 's.

The basic problem we address to ourselves is
to solve these equations with reasonable assump-
tions. The result will be to determine symmetry
breaking parameters, i.e. , e,/e„e»/~„and 6,/6„
6»/60 as well as decay constants E,'s. In the next
section we examine some simple but experimental-
ly inadmissible solutions and then in Secs. IV and
V we make only the most plausible assumptions to
solve these equations.

III. SIMPLE SOLUTIONS AND PROBLEMS

The set of equations obtained in Sec. II clearly
involve too many unknown parameters to obtain a
complete solution. In this section we shall make
some simplifying assumptions to illustrate the dif-
ficulty in obtaining physically meaningful solutions.
The simplest assumption is the generalization of
the Gell-Mann, Oakes, and Renner (GOR)' solution
to this enlarged group. The assumption is that the
vacuum is a SU(4) singlet, i.e. ,

(u,) =-5,~0,

(u,) -=6,=0, (u„)=6»=0,
(s. 1)

and further that SU(4) symmetry is good for M's,
i.e. , &,=&~=~~=Z~=&,= ~». ~hisisoneofthe
solutions considered in Kandaswamy, Schechter,
and Singer's paper in Ref. 4. Our point in dis-
cussing it here is to show that it is unsatisfactory.
We also allow the possibility of mixing of the SU(4)
8 and 15 states because u, in the Hamiltonian
mixes the 8 and the 15 components of the 15 repre-
sentation. We shall, however, following GOR,
neglect any singlet mixing, for simplicity. The
general case will be considered next. Thus,

4M+' -M, '= 3(M„' cos'8+M„' sin'8),

—(Mr' -M, ') 3vY= (M„' -M„') sin2 8,

9M&& +M+ —4M, = 6(M„sin 8+M„cos28) .

(s. 3)

M

E D
(s. 4)

The experimental value of M~ is, however, much
lower, 1862 MeV, ' while M~ —M~ is closer to
180 MeV."' The source of the problem can be
traced to (mass)' sum rules that emerge with our
simplifying assumptions, while the heavier masses
are fitted better with a linear mass formula.
Thus

~

(s. 5)M~ —~ M„
C

Inclusion of singlet in our mixing scheme does
not change/he basic situation. The matrix QZ& „,„
(i= 0, 8, or 15) is then a 3 Xs orthogonal matrix,
and Eq. (2. 11) yields the solution (remembering
6, =6.„=0)

gg
' (i = 0, 8, or 15) . (s. 6)

Now solving the Eq. (2.9) is equivalent to the
diagonalization of the 3 x3 q, q', g, mass matrix.
We identify the physical states as

~q)=z, -'"[vY' P,)+~ P,)+VZ»~P„)],
q') =Z,-"'[qZ; P,)+VZB, P,)+qZ~5 P„)],
q,)=z, '~'[gzo P,)+gz' ~P )+VZ» P„)],

C C

(3.7)

where P,)are SU(4)-sym.metric unmixed states
Since operator V is a SU(4) singlet, it is reason-
able to assume that matrix elements of V in low-
est-order perturbation theory are

&o~~~n n n)=g~, . (s. 6)

These are four equations involving seven var-
iables, six masses, and one mixing angle. A gen-
eral feature of these equations is that because of
the large g, mass (-2.83 GeV) we have

(—)~&2M = 2 31 Gey

& Z8=VZ" =~z cos8,
QZ8 = —QZ» =~z sin 8 t

C

(3.2)
where p,

' is an arbitrary constant.
Equation (2. 9) can be written as a matrix equa-

tion
A consistent set of solutions is then obtained to

all the equations in Sec. B. The mass sum rules
are

M'vY =GYM' )

where
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(M, ' o o

M = 0 M„, 0

0 M„
C

(3.9a)

is a diagonal matrix,

M'= &S, ~a~S, &

F8 6p (3.9b)

and

PE' ~ Vz" )
yZp yg 8. yg is

ygP yZ8 yg X5

"c

(3.9c)

Equation (3.9b) is then written as

q2+ -', (M, '+ M, ') ——(M„' —M, ') (M»'+ 2M, ' —3M'')
vY

" '
2vY

M = (M,' -M, ')
3

—(4M»' -M, ') ——(M„' -M, ')

(M
o + 2M, —3M ') ——(M» —M, ') —(9M ~ + M» —4M, ) (3.9d)

This matrix is easily diagonalized as a function of p, '.
Using M, =135 MeV, M~=496 MeV, and M~=1862 MeV we, however, find that no value of p.

' gives
masses of j, g', and q, that are close to the experimental values. All results being expressed in MeV,
our results are

p, M„M„M„,
1909.2 549 2879 1569
1653.4 543 2802 1413
954.6 493 26V'7 953

Further, we still have M~ -M~ = 60 MeV, which is far from the experimental value 180 MeV. Thus, we
are forced to give up our assumption of vacuum being a SU(4) singlet. We next attempt a solution that ad-
mits nonvanishing 5, and 5» though still preserve the SU(4) symmetry of Z s. The vY mixing matrix in
Eq. (3.9c) is taken as

-sin8 cosp cose sin8 sing

~g = ~g, —sing sing+ cos8cosp cosg sin8 cosg -sing cosQ —cos8 sing cos(

cosP sing + cos 8 cosQ sing sin8 sing cos( cosQ —cos8 sin&sing (3.10)

The set of Eqs. (2. 9), (2. 11) can now be solved
numerically on a computer. This approach, how-
ever, leads to a problem of mass reversal, i.e. ,

M~ comes out greater than M~. The source of the
problem can be seen easily. From Eqs. (2.9) and
(2. 11) we have, since Z's are equal,
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E~ —F~ = E~ —E, ,

MJ F~ ™~E~ ™gF~ -M, F, .
Simplifying we obtain

(3. ii)

We then see that for E~ =1.28 the right-hand side
is negative provided E~ has the same sign as F~.
This is expected from SU(4) symmetry and also
found to be true in the numerical solution. This
fact actually leads to the erroneous prediction
m~ &m~ by Ueda" and Vaughn, "who analyzed the
linear 0' model which corresponds to the assump-
tion of W, 's being equal.

We are forced, thus, to abandon the assumption
of equality of W's. " Nevertheless, from SU(3)
XSU(3) solution we know that the equality for ~Z
among SU(3) members is a good assumption. Thus
we can retain the restrictive assumption ~=~»
=~ ands Z~=QZ». The simplest a,ssumption to
make now is that the vacuum is a SU(4) singlet,
i.e. , 5,=5» ——0. We can assume that vZ'sare
SU(4)-broken along the the 15 direction, i.e. ,

2M E& =m„+m„

2M E~=m +m,u e&

gZ~

2M F
c&

~ =m, +m,
gZ~

F,~= (ru) + ( dd) = 2(uu),

(4. i)

from previous work on SU(3) xSU(3) breaking.
Consider the subset of Eqs. (2.9) and (2. 11) which

arise from g, K, D, and F meson pole saturation.
We set ~=VZ» and VZn=v'Z».

We prefer to write these equations in terms of
the masses of quarks and quark expectation values.
Relations between q,. and masses are given in Eqs.
(2. 2) and the vacuum expectation values 5,. are re-
lated to (qq) by

5,
-=(qx,.q),

2M.'F.' =m. +md=2m"

(0 v~ P~ ) = c,5~~ + c,5«5~, + c,d»~g, (3. iS) F»VZ, = (uu) + (ss),

&Z» QZn QZ»
(3. i4)

Since this implies

(3. iS)

where ~Ps) are pure SU(4) states. The states,
g, q', q, are taken as linear combinations of P,),

P~), and ~P»). The Eqs. (2. 9) and (2. 11) can
now be solved on a computer, and we again find no
acceptable solution. We may also note that Kanda-
swamy, Schechter, and Singer' have assumed in-
stead

F~gz n = ( cc) + (uu),

F»v'Z n = ( cc) + (ss) .
Note that all quark masses on the right-hand side

are the bare masses or so-called current-algebra,
quark masses. This follows from the fact that the
divergence of the axial-vector current is propor-
tional to the bare masses in a Lagrangian theory.

We assume the masses of mesons M, = 135 MeV,
M~=496 MeV, M~.=1862 MeV, M~=2039.5 MeV,
and the ratio F»/F, = 1.28. The following rela-
tions can now be easily derived:

which is badly violated, this solution also seems
unacceptable. We thus are forced to consider the
very general case of symmetry breaking in Z's
as well as in the vacuum. In the next section we
shall see the restriction that emerges from purely
D and'E masses on the nature of symmetry break-
ing.

IV. CONSTRAINTS FROM D AND F MESON MASSES

2
mQ

c+1 +]

m~+m„~~ +

(")=2 —-i=i 56
(uu)

M EE .E'

mm

(4.2)

In this section we obtain powerful constraints on
the solution to Eqs. (2. 9) and (2. 11) that arise
purely from our knowledge of D and E meson

. masses and the weak assumptions that the wave-
function renormalization constants MZ 's are SU(3)
symmetric. The latter is verified to a good extent

M~

Mg

~+1 +1
= 1.2.I, (cc) c( 58)

(uu)

Thus to a good approximation

(4. 3)
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m, /m, &5. (4.4)

This conclusion is very different from the result
that follows from the quadratic mass formula' that
yields m, /m, =20.7, or the linear mass formula
which gives m, /m, =9 5. Some support for a
small value for m, /m, comes from consideration
of the renormalization group in QCD where Zeorgi
and Politzer" have deduced the value m, /m, = 4.
We can make further progress only after an esti-
mate of (cc)/(uu) or equivalently the ratio 6»/68.

A model for vacuum breaking which assumes a
bnear relation

Note that this relation is insensitive to assumed
equality of nz„and m~.

We plot the ratio m, /m, as a function (cc)/(uu)
in Fig. 1. Since (ss)/(uu) is positive, we expect
(cc)/(uu) to be positive and large as the symme-
try breaking arises from large m, . As (cc)/(uu)—~ we observe m, /m, —5. Thus for all physical-
ly meaningful values of (cc)/(uu) we deduce the
condition

consider the remaining equations involving g, g',
1I, mixing and solve for (cc)/(uu). Our conclusion
is that (cc)/(uu) &5.6. This leads to

m, /m, ~3.2. (4.7)

V. GENERAL SOLUTION

In this section we obtain a phenomenological
solution of the Eqs. (2.9) and (2. 11}by considering
the equations involving g, g', and g, mixing in ad-
dition to constraints obtained in the last section.

Reviewing, we find that the equations resulting
from considerations of g, K, D, and F mesons
have yielded a considerable amount of information.
They involve six equations with nine unknowns, and
we obtain values of the six symmetry-breaking
parameters, e„e„e„,5„5„and 6„and the de-
cay constants E~ and I ~ if we know one unknown

which can be chosen to be K—= 6»/&68. The value
of K in terms of (cc) /(uu) can be written as

'&qe) =&w&o+m, &

would yield

(4. 5) 6„3[(cc)/2(uu) --', ', (E» 1-)]-—

( cc) m (ss)
(uu) m, (uu)

= I + (0.56)
m

(4. 6)

The solution to Eqs. (4. 3) and (4. 6) lead to m, /m,
= 2. 4 and (cc)/(uu) = 2.3. However, this value
for m, /m, seems rather low, and linear breaking
cannot be justified. In the next section we shall

= 2. 6786[(cc)/2(uu) —0.593], (5. 1)

where we expect K to be a large and positive num-
ber.

We now turn to the 1I mixing Eqs. (2.9) and (2. 11)
and obtain solutions as a function of K. We shall
see that not all values of K are allowed.

Consider Eq. (2.9). We can eliminate E's which
are involved linearly in favor of W's. It is useful
here to define new variables x1px2px3y ~ o ~ px6.

mc
fTl S

. ', 'M.
C

Mfl q

@15 @15 @15
gt

3 M
2'

M 2 M 2

c

(Zog8)1/2 (gO g8 )1/2 (gO g8 )1/ 2

+ ~c "c

c

(5.2)

(cc&
(uu)

IO

FIG. 1. The curve represents the v~ri~ti~~ of me~ms
as a function of &cc)/&uu) which is obtained by using the
masses of D and E mesons as input. The numbers on
the curve are the values of the parameter K defined to
be 6&5/M2&8. The straight line represents linear break-
ing for the vacuum expectation values.

(gOg 15)1/2
X5=

M„
(g8g 15)1/2

x =6

M„

(Zo Z15}1/2
gt vent

2
M„.

(g8 Z15)1/2
nt

M„t

(gO Z15)1/2
+ ~C C

M„
(Z8 g 1'5)1/2

"c "c

M„
C

The new equations which take the place of g-
mixing equations in Eq. (2. 11) are then written
in a matrix form as
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0 ~p 8 + 15 8 x]
~0 8 15+

0 8 + 15

Es.

0 2—FP F15

6p

0 0 ~0 2 ~15

(5.3)

An examination of the q matrix reveals that the
determinant of the matrix is zero, and actually
only five of the six equations are linearly inde-
pendent. So, it is possible to find the values of the
five of the six x's as a function of one of them
(chosen as x, ) and 6's, which are known for any
given value of E.

Now, since

(7i&
—q, q', or q,),

the bounds on x,/Z, are known to be

1 x2 1

C

(5.4)

(5. 5)

Further, x,/Z, must be close to 1/M„' because
q is known to be nearly an octet.

Once the x's are known we have six equations
[Eq. (5.2)] for the nine Z's. There is one con-
straint that Q Z„' =Z, . So we need to postulate
two more reasonable constraints to solve for the
individual Z's. Although there exist a lot of
choices to select two such constraints, we, here,
investigate the one that seems the most reasonable.
%'e demand that g and g' do not contain any
charmed' quarks. Since cc ~qg, -vYX»)q, this
requirement leads to

(0 ~(vo —Wv»)~'7) = 0 or ~o=~vZ„»
and

(0~ (V, -W3V )~q')=0 or v'Zo, =&YES'Z", . (5. 6)

Then the Z's and from them the F's are obtained
as functions of K= 6»/VY6, and x,. The solutions
are found numerically by choosing particular
values of K and letting x,/Z, vary near 1/M„'. It

6 15

8 8

-5.67, 1 56
(uu) (uu)

FD FF==0.974 —.= 1.056
Il'

FE.—= 1.28.

We notice that although there is large SU(4) break-
ing both in the Harniltonian and in the vacuum, F s
retain their approximate SU(4) symmetry. This
prediction can be tested experimentally by direct
measurements ofED and FF.

From our solutions we can also obtain the ex-
pectation value of the operator V between vacuum

was found that the set of equations yield consistent
physical solutions only for a very narrow range of
x,. Besides, the solutions do not vary much in
this range. This practically makes the whole set
of solutions depend only on the value of E. The
least value of E for which solutions were fourid is
around 6. We present a table (Table I) to show the
variation of the solutions as a function of E. E= 6
implies a large SU(4) vacuum breaking (6» (0;
6»-8. 5 6, ) compared to the almost symmetric
vacuum found in broken-chiral-SU(3) xSU(3) mod-
els.

Although we cannot determine the value of E
from these equations, we feel that E= 6 —7 repre-
sents a reasonable solution. Larger values of E
would mean extremely large SU(4) breaking in the
vacuum which would not be reasonable in view of
the validity of approximate SU(4) classification of
states. We list below the various symmetry-
breaking parameters, as well as the decay con-
stants that emerge from our solution (complete
solution can be found in Appendix A):
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TABLE I. Symmetry-breaking parameters as a function of X=—5~&/v 2 68.

K= 15
0 268

0
1
2

4
5
6
7
8
9

10
11
12

0.430
0.541
0.642
0.734
0.819
0.899
0.974
1.045
1.113
1.177
1.238
1.297
1.354

0.540
0.644
0.793
0.827
0.908
0.984
1.056
1.124
1.189
1.251
1.310
1.367
1.422

t

2.545
.2.711
2.867
3.015
3.157
3.292
3.421

. 3.547
$.667
3.784
3.898
4.008
4.115

c
~S

1.884
2.233
2.508
2.730
2.914
3.068
3.199
3e311
3.410
3.496
3.572
3.640
3.701

(ss)
(uu)

1.56

(cc)
(uu )

1.186
1.933
2.679
3.426
4.173
4.919
5.666
6.413
7.159
7.906
8.653
9.399

10.146

and g, g', or g, states. From Eq. (2. 9) we find,
in GeV'

g„=0.0231,

g„.= -0.6191,

g„=0.0014,

tain m, /m, ~ 3.2, E~ ~ 0.974E„and Iiza 1.056E,.
This value of m, /m, comes very close to the value
Georgi and Politzer" found from renormalization-
group considerations in QCD. This value differs
sharply from the linear or quadratic mass fitting
for SU(4) multiplets, both of which give much
larger values for this ratio.

Since these are expectation values of SU(4) sing-
let operator which arises from QCD effects, it
may be possible to verify them from direct calcu-
lation in the future. Here we observe that the con-
tribution from g and g, are small because these
states are not predominately singlets, while g'
is large, as expected.
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I

UI. RESULTS

We have found a good phenomenological solution
for the broken-chiral-SU(4) XSU(4) model that in-
corporates the masses of the charmed pseudo-
scalar mesons D and E and g, exactly. The values
for the symmetry-breaking parameters reveal that
the vacuum is not a SU(4) singlet and a large value
for the ratio of the vacuum expectations of the
scalar densities, u» to u, was observed. Further,
the renormalization constants ~'s for the pseudo-
scalar meson wave functions are found not to be
SU(4) symmetric, although the SU(3) symmetry is
preserved.

From the observed D and E meson masses we
reached a strong constraint on the mass ratio
m, /m, of the 'current' quarks m, /m, &5. With
two more plausible assumptions, namely that g
and g' do not contain any charm quarks, we ob-

APPENDIX A

In Secs. IV and V we have discussed how the
solution to Eqs. (2. 9) and (2. 11) is obtained. Our
inputs were the masses M, = 135 MeV, M~= 496
MeV, M~= 1.862 GeV, M~=2. 0395 GeV, M„=549
MeV, M„. =958 MeV, M„=2. 83 GeV; the decay
constants of g and K mesons are in units of E„
E,= 1, E~= 1.28. Here we list the complete set
of parameters for our solution with K= 6»/W6,
= 6 in units of QZ„F„and M, :

fp —50 52~ E8 18 80& 6],———58.47,

0= 3 26
u ~8= 0 3233' ~15= 2. 4743

(ss)/(uu)= 1.56, (cc) /(uu) = 5.67,

m, /m„=33. 5, m, /m, =3.2;
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~Z, =1
~Z~=8. 42, vZ~=8. 42,

E~= 1.28, ED = 0.974, E~ = 1.056,

F„'=1.456, E„', = 0.0611, F„=0,
E„"=—0.4998, F„",= —0.0233, F„"=—1.019

E„'=-0.0346, E„', =-7.369, E„' =0.5884;

~zo 0 1507 v'Zo — 0 1542 v'Zo —1 981
rl 7l' ~C

~~Z~=0. 943, 4Z~ =0.016, 4Z& = —0.3337

gZ»= -0.087, v'Z»= —0.089, gZ»= —4.416,
C

g„=13.748, g„, = -369.26, g„=0.8106.
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