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Neutral-current results without gauge theories
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Low-energy weak interactions are phenomenologically described in terms of an intrinsic part poss:ssing a
global SU(2) symmetry plus an additional electromagnetic correction. This description reconstructs the
%'einberg-Salam SU(2) e U(1) gauge-theory effective Lagrangian. Use of dispersion relations and Schwarz
inequalities provides a lower bound on the range of the charged-current weak force, comparable to that
obtained from gauge theories. The connection with the usual gauge-theory approach, especially the work of
Georgi and steinberg based on the group SU(2) U(1) g 6, is elucidated.

I. INTRODUCTION

The past decade has been marked by spectacular
progress in the development and application of
quantum field theories based on principles of
local gauge invariance. Perhaps the most impres-
sive role has been played by the weak-electro-
magnetic unified theories based upon spontaneous
symmetry breakdown. Not only did these develop-
ments to considerable extent motivate the success-
ful search for neutral currents and for the charm
quantum number, but they have also led to a
quite quantitative description of the neutrino-
induced neutral-current phenomena. It is no
wonder that nowadays it is hard to find any the-
oretical considerations of weak-interaction phe-
nomena that do not presume the correctness of
the gauge-theory ideology.

However, it is this very success that should
force us to look with an especially critical eye -at

what aspects are specifically dependent upon the
gauge-theory concepts, and what aspects depend
upon more general considerations. For example,
the existence of 4$=0 neutral currents of strength
comparable to the charged currents, while a
historical success of gauge-theory developments,
is not a strict logical consequence. It is easy in
most theoretical schemes of weak interactions
to include neutral currents if only for reasons of
symmetry. ' It is the striking absence of ~S=1
neutral currents which for a long time inhibited
many theorists from inclusion of neutral-current
couplings. But the Glashow -Iliopoulos -Maiani
(GIM) cancellation mechanism' also solves this
problem in frameworks more general than renor-
malizable gauge theories. (Indeed the GIM pro-
posal preceded the development of the present
formalism for calculation' in the renormalizable
models, ) On the other hand, the quantitative
agreement of the standard SU~(2) g U(1) modele

[or the more recent SU(2)St SU(2) U(1) variants'] with
data is more difficult to refute: these provide
apparent objective support of weak-electroxn. agnetic

gauge theories in general and equally strong sup-
port of the specific SU(2) @U(1) [or SU(2) mt SU(2)
@U(1)]scheme. However, it seems that this
evidence has not been critically examined to see
whether the same quantitative results can be ob-
tained in a credible, but more general, frame-
work which does not presume the renormalizable
gauge theories or even the existence of a dis-
crete set of intermediate vector bosons. It is
our purpose here to demonstrate that such a
framework, albeit more phenomenological, does
exist, and that all predictions of the standard
model for neutrino-induced neutral currents can
be obtained zvithout assuming weak-electromag-
netic unification, existence of intermediate
bosons, or existence of a spontaneously broken
local gauge symmetry. ' Vfhat we do assume is a
weak-interaction global SU(2) symmetry, uni-
versality, absence of couplings of SU(2)-singlet
weak quanta with p, and a significant amount of
electromagnetic symmetry breaking, in particular,
mixing. Nevertheless, as we will elaborate be-
low, some of the qualitative results of the gauge
theories remain. For example, in this generaliza-
tion the important states which mediate the p-q
weak force (which we call "weak quanta") still
have J= 1 (but may be a continuum), have an
average mass less than 175 QeV, and must be
produced copiously in 'e= annihilation.

In Sec. II we set up the general framework and
deduce the bounds on the "weak cutoff". Section
III is devoted to what can (and cannot) be said
about production of weak quanta in colliding-beam
processes. In Sec. IV we establish a connection
of this point of view with the conventional gauge
theories. Section V contains some final comments
and conclusions.

II. THE GENERALIZED MODEL

We assume that in the absence of electromag-
netism the 5 matrix for weak lepton-lepton scat-
tering at low energy can be obtained by an effec-
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tive SU(2)-invariant interaction of the form'

where

(2.1)

We assume that the weak couplings of hadrons can
be described by the same amplitude again taken
as an effective Lagrangian. ' The sum over fer-
mion fields P' is extended to the quark doublets

and the weak doublets F are

(2.2)

(2.3)

( u ')( ( c
p ) ~ ~ ~ ~

(dcos8c+s sin8c)~ (s cos8c —d sin8c)j~

(2.4)

Evidently the GIM mechanism is operative, and
the pure weak neutral-current interaction is

-C,sr =kG(q')i y» ( ')v„sy ( ')s —r(y ( ')qvcy ( q
')c —sy ( ') s

(2.5)

(Hereafter we shall only consider the portion of the current involving v, u, and d. )
The effective Lagrangian, Eq (2.5), does not agree with the standard model. ' However it is not dis-

similar; in the standard model the hadronic current contains another contribution proportional to the
electromagnetic current

+ eff v &OP))1 —
fq)r uZ u —d1'& d —2 sin 8G»( —, Py&u —

3 dyzd) + ~ ~ ~
st4 I — X ys — y5 y5 ~ 2 2 — 1 (2.6)

or schematically

-g,« =4v 2Q(T~)„(T, —sin'8~Q), . (2.7)

Furthermore, the phenomenological (T,)(T,) term represented in Eq. (2.6) as generated from isospin rota-
tion of the charged current, has the same normalization as in the standard model. All that is needed for
equivalence is to add a photon-exchange term, with inclusion of a charge radius for the neutrino. " The
neutrino-photon vertex is written (for squared photon momentum q'-0)

1 5((qq. )(qq. )]'r*(vsv Iq»r r(r))=v»»
q

')vr

and the effective interaction is

(2 6)

1 —y, , 1-y, — 1-y, e' ~I,
~C ff = v y v G )t 2 'uy& u —dye d —

~

—,uy&u —3 dy~d +
u 2 A2I (2.9)

Comparison with Eq. (2.6) gives

fffr&&»
G s~n Ow

(2.10)

(Notice that the sign of A' is not determined;
hence neither is the sign of g„=sin'8)f. ) Putting
in numbers gives

53 GeV
)sin Ow I

(2.11)

From this estimate it would appear that there
must exist structure in the weak force adn/ rothe
neutrino at a mass-scale -50-100 GeV, com-
parable to that existing for the renormalizable
theories.

This can be seen by examining in more detail
the structure of the contributions to the ampli-
tudes for fermion-fermion scattering. These are
shown in Fig. l. We shall ignore the proper con-
tribution in Fig. 1(d). However, all other photon-
mixing contributions will be considered to all
orders in g, inasmuch as we shall find that the
charge renormalization can be sizeable, i.e.,
much larger than 0(f) ). The blobs in Fig. 1 con-
tain intermediate states which in the gauge models
are discrete intermediate-boson resonances.
While not excluding that possibility, we also in-
clude the possibility that the states of weak quanta
form (wholly, or in part) a continuum, and that
they are a strongly interacting system. The



l9 NEUTRAL-CURRENT RESULTS WITHOUT GAUGE THEORIES

(b) (c}

In this language, Q ~ are currents of the weak
quanta. The spectral function p~ measures the
squared matrix element of 8„ from vacuum to
states of mass Wscontaining weak quanta

A , p'~(q )+q&q p~(q )

= g (2v) 5 (p„—q)(0)e)& (0))n)(n)g„(0)[0) .

FIG. 1. Amp1itudes for fermion-fermion scattering.
{a) Intrinsic weak interaction.
(b) Charge-radius contribution.
(c) Vacuum po1arization contributions.
(d) Proper electromagnetic correction to intrinsic weak

interaction (which we neglect. )

(2.14)

The vacuum-polarization bubbles in Fig. 1(c) can
be handled in a familiar way

amplitude, illustrated in Fig. 1(a), which mediates
the weak force may be written (assuming approp-
riate convergence properties) in terms of its
spectral decomposition

1

2 1 2P. dsP. (s)
'&~. q'-s

(2.15)

(2.12)

-S,ff =h Q J~ 4„+ee Q J "~+ge2 A2 ~

(2.ia)

G(q') h ' t" ds sp~(s)
v2 2 „q'—s

An effective (phenomenological) Lagrangian
describing the coupling of the weak quanta to the
fermions and of all states to the photon has the
form

with

( q'g, .+q, q-. )p. (q')

= g (2v)'n'(p„-q)(0[g„(n)(n)y„~o) . (2.16)

The "charge-radius" contribution in Fig. 1(b) is
given by

Sfr e h J J
F'

sp q

(2.17)

where the mixed, or charge-radius spectral func-
tion p ls

1

over p must have the form

ri„„(q)= (q, q„-g„,q')ii(q') . (2.19)

(-q'g, .+q, q. ) (q')

= Q (2v)'&'(p„—q)(0(4„*[n)(n~8„' ~0) . (2.18)

Notice that the amplitudes in Figs. 1(b) and 1(c)
must vanish at q =.0, i.e., the dispersion integrals

This follows from electromagnetic gauge invari-
ance. However, the global SU(2) symmetry (as
well as experiment) does not forbid the cor-
responding pure weak amplitude in Fig. 1(a) from
having nonvanishing divergence. In this notation
we may now summarize our results for the neu-
tral-current fermion-fermion scattering ampli-
tudes. %e obtain, for scattering of one fermion
F of charge Q from another of charge Q'

A@22 (q) =j~2 "j~.„h' ds spte(s)

2.2
" dsP(s)+ 2 p'p +hq 3Fp 2s-q

(-e,')
2 1 2 I' ds Pem(S)+ep J ~ 2

sp s-q

dS P(S)
)em +hq j3 e2

s s' q
(2.20)
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with

(2.20a)

In the low-energy limit we find

yy —J3 gg ~A ds pg s — g I "Jpip +pomp ~gg @go p s
p o

2.22 ~ em SO
+gemgg~2—

1

I+s,ef" —p). (s)
Sp

e:f",, p, (s)

2 dsI+e,' f"—p, (s)
Sp

(2.20b)

from which can identify the Fermi constant t

W2c =a' f dsp, (s). (2.21)
Sp

From the electromagnetic term we have the fami-
liar result for charge renormalization

" ds, + p (s) (2.22)

or

2g&2sin'e, =he' p(s) .ds

Sp
I

Notice that from this point of view sin'g~ peed not
be positive (or bounded), although empirically it
is. Thus with these identifications, the low-en-
ergy neutral-current amplitude takes the form

(2.24)

p, (s)= (2.23)
Sp

where Z2= e'le, ' defines the charge-renormaliza-
tion contribution coming from virtual weak quanta.

The mixing term is related to the Weinberg
angle [cf. Eq. (2.6)]

the inequality

p'(s) ~pe(s)p, (s),
which in turn leads to

(2.25)

P Ps' I Pom, s
Sp Sp Sp

(2.26)

fe, dsp„(s)
P2) =

f" p, s

as the mean mass which mediates the chaxged-
curxent weak processes, we then find from Eqs.
(2.21), (2.23), and (2.24) that the inequality in
Eq. (2.26} becomes

(2.27)

or

v 2g sin'g~ (1 —g2)
&CV P, gr

(2.26}

2 Oo 00

p(s) ~ ds p,„(s) „p, (s'),
Sp s Sp Sp

thus demonstrating the positivity of X.
Interesting bounds follow from Eqe. (2.26). De-

fining

61IZZ, = Q)) 2 (j22 —2 Sin' p~ j", )(j'„~, —2 sin'6)~ jem~, ) (1 g )1/2
p„~ ~(37.4 GeV)

Sln 6}~
(2.29)

2

+jpj'~ ——,+4XGv 2 since~ Notice that in the standard SU(2) SU(1) scheme

with
Pw =~a y

g3 = cos 6)~ y

(2.30)

f, p (s) f ds'p~(s')

f, p(s)

—1&0.

That X is positive follows from a Schwarz inequal-
ity relating the matrix elements of currents ap-
pearing in p~(s), p, (s), and p(s). The definitions
in Eqs. (2.14), (2.16), and (2.19) lead directly to

p, ~ «175 GeV. (2.31)

Furthermore, notice that p, ~ measures directly

and Fq. (2.29) reduces to the familiar formula for
the intermediate-boson mass ~~.

Equation (2.29) has important consequences.
First of all, for sin' g~ o 0.20 one has, even for
g3=0,
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the deviation of charged-current amplitudes from
the value given in the Fermi theory. From Eqs.
(2.12), (2.21), and (2.27)

(q')=G(l+, + ) (2.32)

Vw- 30 Ge~

we already find

(2.33)

Hence pv is what is defined in charged-current
phenomenlogy as the "intermediate-boson mass".
Here we obtain a strict upper limit on its mag-
nitude. Furthermore, this upper bound is only
attained at the price of setting g, =0, an assump-
tion which implies a very large vacuum polariza-
tion contribution. This in turn implies a large
colliding-beam cross section for producti'on of
weak quanta. Indeed, with the experimental limit
(from charged-current neutrino reactions) of

dispersion relation

( ) d (0)
s ds I ds (s )
m s'(s' —s)Sp

ds'p, (s'))d„(s'})'
s'(s' —s)

(2.39)

As s-~, d„(s)-e,' and

e —e = — p (s')ds
0 em

Sp

1

ep' so S" —S'

(2.40)
e4 " ds'

, R„(s').
0

In other words, we retain the familiar relation

1-Z, » 0.04, (2.34)
ds

Z ' —1 = R (s')
Sm s' (2.41)

which is a significant contribution to charge re-
normalization relative to standard vacuum polar-
ization insertions. Recall that those are given by

because we have assumed that the right-handed
electron does not have any intrinsic weak cou-
plings. Using the inequality in Eq. (2.29), we

obtain our main result

( )
o„(e'e -X)

Rg s — -47l' CV

Ss

(2.36)

from the states X' containing weak quanta is

(2.35)

with R the famous ratio measured in colliding-
beam reactions. The sum of all contributions
thus far measured (up to v's „-7GeV) gives only
eZ, -0.03.

Given that the "standard" assignment of right-
handed electron as a weak SU(2) singlet is correct,
we can easily relate p, to colliding-beam cross
sections. For e'e collisions for which e is
right-handed (and e' is unpolarized), the contribu-
tion to

R„-=R (s)
S0

1- P~ s~n ~I -1
(37.4 Gev)'

(2.42)

—R„(s) lsd r(Z-e„e')J ds

2%805agee m

tan2 g
R

(2.43}

Again the bound becomes an equality if one in-
cludes only the contribution of a standard" p
resonance in Rs(s}. Using the Breit-Wigner
formula, one finds the result for &0 in the standard
model to be'3

R„(s)= 12w'p (s)
ds'p (s')e, +

,
eo s —s+$6

Now consider the function

1
dgs) =

1 „„ds'p. (s')
+g

ep ~so S —S

(2.37)

(2.36}

R =-, (Rz+R„)»10. (2.44)

ff one inserts pv'=m ' into Eq. (2.42), one gets
precisely the same result.

Thus we see that the main qualitative conclusions
of gauge theories follow'. the low-energy form of
the charged-current weak interactions must break
down in the energy region (Q')'~'& 175 GeV;
furthermore, this breakdown must lead to large

cross sections characterized by

It is essentially a J =1 helicity amplitude for
electron-positron scattering. It is analytic in
the cut s plane" and satisfies a once-subtracted

In the gauge theories this large e'e cross sec-
tion is concentrated in a discrete gp resonance
(or set of resonances). However, in the genera). -
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izations we consider, this need not occur. But
the above result does depend on the assignment of
eR as a weak singlet. To remove this dependence,
we now consider gz(s). Here the situation is
complicated by the presence of the intrinsic weak-
interaction terms. However, we may still use
similar techniques by defining d~(s) in a w'ay

parallel to that used for ds(s). The quantities
d~(s) and d„(s) are essentially the appropriate
helicity amplitudes e'~ sing for e e' scattering in
the J =1 state. We define, utilizing Eq. (2.20) and
normalizing in accordance with Eq. (2.38),

d~(s) „, " ds's'pcs')
s s —sSp

and thus, from Eqs. (2.47), (2.49), and (2.51),

d~(~) —d~(0} o. ds ~ ( )
3m s ' 3g

, (I-A)'
1-Z3 Z3

(2.52)

Without some control over A and/or Z„ this
gives no useful bound. Ne may do somewhat
better by first defining the dispersion ~s in the
spectrum of charged weak quanta as follows:

dS p(S )
S& S —S

, ,„ds'p, (s')
1 +ep

"Sp S —S

(2.45)

f"—(s —g((')'p(( (s)
(ss)'-=

f,", pw(s)

(2.53)

Here p, ~' is defined by Eq. (2.27). It follows that

As before, d~(s) satisfies a once-subtracted dis-
persion relation

( ) d (0)
S

~t
dS 1m'�(S ) (2 48)

v J s'(s' —s)Sp

Because 1m'(s), by unitarity, is related only to
c~(e'e -weak quanta) we must arrive at the same
result, Eq. (2.40), as for d„(s)

ds's'p (s')=h*S„*(s, wads'p„(s')
(&s)'

A

= G p ((s%2 1 +
(as)'

(2.54}

We now may return to Eq. (2.49) and use Eq.
(2.54) instead of the inequality, Zq. (2.51). Then
Zq. (2.52) is replaced by

( ) d (0)
se dsRg(s)
12m', s'(s' —s)

Letting s- ~, we again have

00

d~(~)=e' 1+3, It~(s')
s S

0.

We can read off d~(~) from Eq. (2.45)

(2.47)

(2.48)

n G p, 'W2
1

(n.s)" (I —A)'

- 75GV (2.55)

Putting this together with Eq. (2.42) for gs gives,
for the standard model,

00 P4 OO 2

d~(~) =h' ds's'p„(s')+e0' 1-h
J

ds'p(s')
Sp I S0

Z =- —Z(s)
ds
s

We now define the pure number

(2.49} s (( S 's(s'S, ":.

2(r ( (37 GeV)

A=A ds'p s', (2.50) + — ~' 1 e(~. -75 G V~. (2.58)

h' ds's'p s' ~
A' e'A'

dS
( )

1 —Z3

(2.51)

which measures the amount and nature of proper-
vertex-function renormalization. From Eq. (2.25)
one find the Schwarz inequality

For the alternative ("hybrid" ) assignment of es
to an SU(2) doublet, we obtain

-( 2

—1 g(g —75 GeV) .
t, 75 GeV

(2.57)

These are plotted in Fig. 2. For the hybrid mod-
el, we in general lose a useful bound if g~ is too
light. However, we have only considered general
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i05

lQ

~~/ v)~ io'

cn lo~

LLI

O

theories the photon at short distances no longer
couples to the charge of the fermion but rather to
the hypercharge. This is implied by the fact that
at short distances the original unbroken SU(2}
symmetry is restored. Inspection of E(I. (2.20)
shows that in order to have the photon-exchange
contribution be SU(2} invariant as q'- ~, we must
have the proper vertex be SU(2) invariant. But in
that limit, for a left-handed fermion,

(2.56)

with

Q= —+F= T3
2 (2.59)

(00 I I I I I

20 40 60 80 I 00 I 20 I 40 I 60
{Gev)

FIG. 2. Lower bound for R= f (ds/s)R, which mea-
sures the production of weak quanta by colliding e'e
beams. The formulas are Eqs. (2.56) and (2.57). The
range of the weak force p z is given in Eq. {2.32). INote:
a similar plot given in Ref. 6 is incorrect. ]

A and &3. There may in fact be some reason to
prefer specific values for A, in particular A =0 or

Recall that A determines the structure of
the proper vertex function at asymptotically large
momentum transfer. As we shall elaborate upon
in Sec. IV, in the case of SU(2) (3)U(1) gauge

we see that asymptotic SU(2} symmetry implies
This is a requirement one might impose

even in a context more general than that of the
gauge theories.

On the other hand, it is folklore in conventional
electrodynamics that if the bare charges of sources
are equal so also are the physical charges. If the
weak interaction is "softer" than electromagnetic
and remains nonunified, we might expect that as
q'- ~ the proper vertex function should be pro-
portional to, the charge of the source; this is
clearly effected if A =0.

For these cases, the bounds are stronger and
easily obtainable from E(I. (2.55). For the stan-
dard assignment of es as an SU(2) singlet

Pw Pw
2 2 4 -1

75 G y 37 G y 2

1 p, l) sin 0~
3m

"~ -
75 GeV

'
4

'
(37 GeV)'

This leads to stronger bounds on g than in general, as follows:

)t(s) - —— + 1 — -"," —
1I (staodard model, A=o),

+ 1 —
( ),

—lI (ararld model, A=0),

(2.60)

(2.61)

(2.62)

�

3@ 1 p, ~ 5 pg sin gyp

o 2 72GsV 2 n (27GeV)' I'
(standard model, A'= —', ), (2.63)

P 8' ~$' 1, 75 y1—
&2(y (37 GeV)'

Pw Pw ~w+ — 1 —
(

v
}f —1 (hybrid model, A= —,'). (2.64)
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III. THRESHOLD BOUNDS IN COLLIDING-SEAM

REACTIONS
Eq. (2.41), we can solve for p, , '

While we have put an upper bound on the energy
at which charged-current weak interactions ex-
hibit structure, it does not automatically follow
that the same energy should apply to the e'e
cross section. It is in fact true for the vacuum
polarization. To see this, we return to Eq.
(2.25), writing it as

2=
P em Z3

f"—R„(s)
0

f"—,A„(s)
Sp S

f" —R„(s)
0

p'(s)
( ) p, (s) (3.1)

(3.7)

Therefore
"

As

S

ds
p(s) ~ ds p~(s) „p, (s').

0 S0 -0'

Denote the threshold for production of weak quanta
in e e annihilation by so~. Then, using Eq. (3.7)
and (3.4),

We define

f—p, (s)
2=

ds
f , p, —(s)

(3.2)

(3.3)

v n(1 —Z, )
Z3s0 ~ p m Qv2sin g~

and

mn(Z, ' — ) n' " ds'
G&2sin g~ 3GW2sin'g~

0

(3.8)

and, using the same information as leading to Eq.
(2.29), find the same result

(37 4 GeV)
(

g
) ( )Sln g~,

mn(1- Z, )
Gv 2 sin g~

(3.4) We again see that in the standard SU(2) g U(l)
gauge theory, where Z~=cos'g~,

00 /

ds(0) = „d„(s) =-e' „p, (s')ds, , s"
0

e'(1 —Z, )
2

P em
(3.5)

On the other hand, from the dispersion relation
for d„(s}, Eq. (2.39), we have

00 f

d,'(o) =-
Sp

-e ds„Rs(s'}.
w s sSp

(3.6)

Upon using the expression for Z3 in terms of 8„,

However, this does not imply the same mass
scale for the important physical thresholds in

collisions. We may more closely relate the
result in Eq. (3.4) to observables by considering
the electron-positron amplitude ds(s) defined in

Eq. (2.38). Its derivative at s =0 is

( )~g, 37.4 GeV
sin g~ cos g~

(3.10)

1.5 GeV' " ds—R(s)sin'g~
0

Unlike the case for p, , ', we have not been able to
bound (so )' ' from above.

Of course, if the spectral function p has only
cuts and no poles, the threshold must lie.no
higher than p,~. The only problem occurs from a
possible upward level shift of the lowest-lying
discrete resonance, because of the electromag-
netic mixing.

(3.11)

IV. CONNECTIONS WITH GAUGE-THEORY RESULTS'4

The considerations in the previous section have
a great deal of similarity to recent work in the
renormalizable gauge theories. It has been
shown that generalizations beyond the original

and the inequality becomes an equality. In general,
putting in numbers gives (for the standard model
only}

(,~)i(2 0 GeV' "" ds' (,)
"

sill gt~ I „s~l Sp



p)) —p, i
—0~ j ~2 ~ (4.1)

(ii) There exists one zero eigenvalue of p, ,&'

with eigenvector (the photon) p&, which is known

P1g P1 =0 ~ (4 2)

(iii) The photon is mixed with the U(1) genera-
tor

po=-vzv0. (4.3)

Then without loss of generality, the mass matrix
of generators of Q may be assumed to have been
diagonalized, and the problem reduces to the
study of the mass matrix for which the only off-
diagonal elements are in the first. row and first
column; in other words

but

go = V, o' 02(in general), (4.4)

SU(2) Cm U(l) model are possible, without losing
the original predictions for neutrino-induced
neutral-current processes (but not for neutral-
current processes in general). The most general
such study has been given by Georgi andWein-
berg, "who have replaced SU(2) 8 U(1) with SU(2)
SU(1)Q, given a specific form of spontaneous
symmetry breakdown. In this section we shall
review their work in a way which helps to expose
the similarities of their argumentation with the
arguments in the previous section,

We begin, following Georgi and Weinberg, by
considering the mass matrix of the neutral
bosons &, which mix with the U(1) generator Wo.
The basis used will be appropriate to the un-
broken theory, with index 0 reserved for the U(1)
generator, index 1 for the neutral SU(2) genera-
tor, and all indices greater than 1 for the genera-
tors of t".

The main assumptions needed in the theorem of
Georgi and Weinberg are

(i) the (real symmetric) mass matrix i1,~2 re-
sulting from spontaneous symmetry breakdown
does not mix the neutral SU(2) generator with the
generators of G. This occurs if the Higgs-struc-
ture is (2, 1)+(1,X}.

T(s) =(s —i1') . As usual, we divide i1' into a
diagonal part and a perturbation

p. =p. +X, (4 6)

(P )(~
=—i1,- 5,~, 2=0, 1, . . . , N

~y, g=0 j+0
A.;)=AD)=—( X; j=0 i40

otherwise

and write [with T, = (s —g ) ']

(4.7}

f
T01 T10 I 2} Toohs- p, ]

(s —p ') " (s —y, ') (s —p. ') '
i

Furthermore, construction of Tpp is not. hard be-
cause the off-diagonal interaction g, iterated
twice, brings one back to the "ground state" g =0.
(It is a standard "bubble sum. ")

1 1
TOO 2 +

(s —g,') (s —p,,'}
1

x + ~ ~ ~

(s —g ) (s —go')i=l

2
2 N ~i

S —i10 —Q(-1
( 2)

(4.10)

Next we use the assumption that there exists a
massless state, which must contribute a pole in

+00 Thus

N

PO g 2 (4.11)

T (s) = T,(s) + To(s)XT0(s) + T0XTPT0+ ~
~ (4.8)

It is sufficient to find the matrix element Tpp The
structure of the perturbation matrix shows that
for i,j~1,

2= 2
p&&

——
p,

& 6i» p, j ~ 1. (4 5)

This is in fact the classic problem of mixing of a
single state (i =0) with a "continuum" (fi & 0})."
It is therefore possible to construct (in the origi-
nal basis} the propagator matrix of the gauge
bosons, and directly verify the results proved
much more efficiently by Georgi and Weinberg.
However the additional information we obtain will
facilitate the comparison with the work in the
previous section.

The main problem is to construct the matrix

~00

with

N

Z '= 1++
i=1

1

N~'=' P, '(s —i1,.')

z as $~0p1 . $

(4.12)

(4.13}
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Inasmuch as
pp=~Z, p, = — *, WZ (i 1).

Pj
(4.16)

T,,- ' ' (i, j=O, . . . , N) as s-0
s

we can read off the photon eigenvector to be

(4.14)
We can now construct the (neutral-current)

amplitude for scattering of a fermion E from an-
other fermion E'. Let the couplings of & and &'
to Wj be gj and g,', respectively. Then omitting
spinors, etc. , the amplitude has the structure

N
f /7l

Z gjg~T j
j,j=O

(4.16)
l - 1 gs l l l i,

(S —Pl )
I

The various factors have a direct diagrammatic interpret tion. The first two are the unrenormalized
proper electromagnetic vertices of I' and + . The third factor is the unrenormalized photon propagator.
The final term on the right is the intrinsic weak interaction. It is straightforward to now "renormalize"
the various factors.

Complete Photon progagator:

2
~N

l P2(S +2)
1s 1 —Zsg, -,

z
P~ 1s 1 —sp;-l

( 2)

(4.17)

Fermi on proper vertex:
N N N

i Z-l/2 Qg p +S Q (p, (
—s) (4 18)

Evidently the charge eF of the fermion + is given by

and
j,=O

N

FF' =

I=1 "s 1 +sQ —S)

+ ~ gjg'j~ (s —p, ')

(4.19)

(4.20)

It is clear from the structure of Eq. (4.20) that
the "unperturbed" poles at s = g j' do not appear
in the full. amplitude BR, but only the poles in T«
associated with the true eigenstates of the mass
matrix.

The theorem of Georgi and Weinberg now fol-
lows by inspection. If there exists a fermion P'

(such as v„) which is neutral and a singlet with
respect to Q, then e = 0 and gj = 0 for i ~ 2. Then
as s-0

gg 81P1 glgl gl 1 p
FF 2 SF 2 2 Cl SF Pl)'

Pl

(4.21)

Since the only term on the left-hand side of (4.19)
which is 7.'3 dependent is g, p„we have

eZ(F) eT(F')e 3g'1 =
p

~ g'1 =
p

and thus

(4.22)

2

otf,~r ' ' (T '-p'q ) (4.23)

with the T3 T3 term unchanged in strength from the
unbroken theory, "and with sin9~ identified with

Pl'
The connections with the previous section are

now also evident. We see that the full amplitude
is merely the sum of the "unperturbed" or in-
trinsic weak coupling associated with exchange of
the unmixed bosons of SU(2) g Q, plus a photon-
exchange piece which contains nontrivial form
factors and vacuum polarization contributions. As
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s- ~, the "photon-exchange" term turns into the
U(1)-boson exchange

N8'ogo + ~ AN'j (4.24)s ~ s
j= 1

Thus the photon couples at short distances to weak
hypercharge.

As mentioned already in Sec. II, this property is
novel and need not occur in the nonunified general
description we outlined, where we might expect
bare charge to be proportional to physical charge.
The distinction is cast in objective terms in the
value of A = fds'p(s') introduced in Sec. II.
is required by the SU(2) U(l) Q gauge theories,
or generalizations which produce SU(2) symmetry
at short distances. The condition p =0 might cor-
respond to the nonunified version. An objective
distinction (for the case of e„a weak singlet) oc-
curs already in colliding-beam reactions, where
one has, as

o(e„e'-p, p, ') 4 A=-,', SU(2)SU(1)SG
o(e-e+ &-&+) ( gauge theories '

1 p =0; nonunification

(4.25)

Before concluding this section we mention that
Georgi and Weinberg demonstrated that at least
one neutral gauge boson must have mass no
larger than the mz = (37.4 GeV) (cos 8„sin 8~)

' of
the standard model. This follows directly from
the structure and positivity properties of T».
However, we have not succeeded in generalizing
this result (c.f. Sec. III).

V. FINAL COMMENTS AND CONCLUSIONS

We reiterate the main results.
l. A weak global SU(2} symmetry supplemented

by a universality hypothesis and by an electro-
magnetic mixing contribution suffices to describe
all neutrino-induced neutral-current phenomena
in a way identical to the standard model.

2. The amount of electromagnetic mixing is
measured by sin'g and is very large, leading to
a contribution to the charge-renormalization con-
stant of order unity.

3. The Fermi structure of the weak interaction
must break down at characteristic masses
~ 175 GeV, just as in the renormalizable theories.

4. One can relate the breakdown of the Fermi
theory for charged currents to the behavior of
colliding-beam cross sections. For a given value

p, ~ of what the charged-current phenomenologist
calls m~ (the charged intermediate-boson mass),
one can bound the contribution of production of
weak-interaction quanta to the colliding-beam R

in the manner shown in Fig. 2. For a reasonable
range of y~, the lower bound on f," (ds/s)R(s)
is ~100 to 1000, given the "standard" assignment
of e„as an SU(2) singlet.

5. This picture is quite compatible with re-
normalizable gauge theories. However, it does
not require them.

Within this generalization, what kind of concrete
alternatives exist to the usual renormalizable
theories' Two general classes can be envisaged.
The first puts unexpected structure into the inter-
mediate bosons themselves but leaves the coupling
to fermions predominantly via a local current. "
Then the colliding-beam cross section (or for that
matter, quark-antiquark cross section) into weak
quanta. might have a structure similar (but on a
much larger scale) to charm production: some
narrow resonances followed at higher energies
by a continuum of 9'-9'pa. irs or pairs of con-
stituents of W's (if that concept makes sense).

A second, more extreme alternative puts struc-
ture into everything. Not only would there be
)=channel contributions to fermion-fermion scat-
tering, but also possible s- and/or u-channel
pieces. If this were somehow to be the case, it
might be necessary to assume that the dominant
part of the amplitude be helicity conserving in
order to understand the vector nature of weak
processes at low energies (s, t «10» GeV'). Then
the principal additional terms in the effective
Lagrangian would contain operators with deriva-
tive couplings (e. g. , py„s„p) corresponding to
higher-spin exchanges. The relative importance
of such terms would increase with increasing en-
ergy. A phenomenology of such terms has al-
.ready been given. '

We have no specific model to offer for either
alternative. And, despite the foregoing argu-
ments that credible generalizations of renor-
malizable gauge theories do exist, it is unlikely
that either the arguments or the alternatives we
have sketched have enough force to induce many
theorists to abandon gauge theories. There are
strong, albeit mostly subjective, reasons favoring
the gauge-theory approach, some of which we
list below.

(i} An underlying local gauge principle. Both
quantum electrodynamics and general relativity
have this feature. Maybe all successful theories
do.

(ii) Renormalizability. In my opinion this is
only a subjective criterion. However, in the
generalized context, the smallness of the proper-
diagram radiative corrections in Fig. 1(e),
despite the rather large effective photon coupling,
may be considered an objective argument in favor
of the renormalizable models, for which such
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terms are demonstrably small.
(iii) Intermediate-vector-boson hypothesis.

This general hypothesis (based, to be sure, on
objective evidence) argues iu favor of existence
of +=1 bosons to mediate the weak interactions.
While these objects might be composites and/or
strongly coupled to each other, it is not too big a
step to make them gauge particles.

(iv) Universality. That the coupling of W to
the fermion currents is universal is a con-
sequence of the gauge theories. However, a
hypothesis of invariance of the low-energy effec-
tive Lagrangian under permutation arvong fermion
types' suffices to obtain this result.

(v) Unification Whi.le the alternatives we de-
scribe indicate that there is much less evidence
for unification of the forces than we would prefer
to have, it is true that even the generalization
we discussed predicts the intrinsic masses of
weak quanta to be of the same size as in the
gauge theories. Therefore the coupling strengths
associated with the weak force are of the same
order as the electromagnetic. This is certainly
supportive of the unification idea. But is is con-
ceivable that even if the unification occurs it
occurs in a nonrenormalizable way.

(vi) Origin of gauge boson -and fermion mass.
In principle the renormalizable gauge theories

answer this question in terms of the Higgs mech-
anism. However, the lack of concrete success in
understanding the pattern of fermion masses and
mixings raises suspicions that something basic
is missing from the existing picture.

But whatever the theoretical pros and cons, it
ls experiment that must be the arbiter. The next
steps are clear: the form of the low-energy weak
Lagrangian must be further tested. Searches for
the ~ and g will determine whether they are
"classical. " Likewise, searches for the Higgs
sector will become increasingly important.
Nevertheless, it might take a long time to dis-
tinguish between renormalizable gauge theories
and their alternatives.
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