
PH Y SICA L RE VIE% D VOLUME 19, NUMBER 11 1 JUNE 1979
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We study the connection between exchange-degeneracy breaking and multiquark states within the
framework of a highly constrained dual approach. We show that M4 (baryonium) states emerge at the
daughter trajectory level as a consequence of small exchange-degeneracy breaking in the meson-meson
system (-5) and larger exchange-degeneracy breaking of the baryon trajectories in the meson-baryon system
(-e). The M4 states are coupled weakly to external mesons in proportion to the br'caking parameter 8.
Assuming M4 couplings to BB channels are strong, as determined by duality with normal mesons in the BB
system, consistency requires c —+5, thereby relating the larger breaking of baryon trajectories, to the
violation of the Okubo-Zweig-Iizuka-type rule for M4. It is shown that exotic baryon states, B„also emerge
from this scheme at the daughter level and that dibaryons will appear at the second daughter level.

I. INTRODUCTION

The old question of whether or not there exist
multiquark exotic states has been revived in the
wake of the many current successes of the spm-
ple quark model. The existence of such states
has been predicted in a multitude of different
theoretical contexts —as a consequence of
duality, ' in antinucleon-nucleon potential models,
in dual string models, "quark potential models,
dual unitarization schemes, and bag models
of quantum-chromodynamics (QCD) quark con-
finement. '~ That such a variety of approaches to
hadron dynamics requires exotic states is corn-
pelling. But perhaps most compelling is a re-
cent accumulation of experimental evidence for
the production of narrow high-mass mesonic states
in various baryon-antibaryon channels, ' '" a
circumstance envisaged by Rosner' ten years
ago, when he suggested the existence of certain
exotic mesons as a means of satisfying duality
in baryon-antibaryon scattering. Such mesons
would be primarily two-quark-two- antiquark
systems and would couple strongly to baryon-
antibaryon channels, with decays into normal
mesons suppressed by a generalized Okubo-
Zweig-Iizuka- (QZI-) type rule, first stated
concisely by Freund, Waltz, and Rosner3 (in
their second rule to which we will refer as the
FWR rule). With meson decays suppressed and
possible high values of spin, ' the qqqq states
would be narrow states when their masses are
near BB thresholds, as now seen in experimental
data. These states are now referred to variously
as baryonium or M4 (Ref. 7) or simply exotic
mesons. They will consist of states within nor-
mal flavor representations, called cxyptoexotic
states, and states belonging to purely exotic
flavor representations [e.g., 10-, 10=, and 27-

plets for mesons in SU(3)].
Accepting that multiquark exotic states exist,

a systematic means of determining their quantum
numbers, masses, decay widths, and production
cross sections must be developed. Several
approaches have been pursued thus far. ~ In
our view, however, the original connection be-
tween duality and exotic states' provides a fruit-
ful point of departure. Let us review the situa-'
tion regarding exotic mesons. Exotic mesons
must couple to BB in order to consistently can-
cel out dibaryon states. Yet in the solutions to
meson-meson (MM) and meson-baryon (MB)
duality constraints, SU(3) or SU(4) flavor sym-
metry, crossing invariance, and exchange de-
generacy can be maintained without exotic meson
poles" coupling to MM. This circumstance is
considered to be a manifestation of planarity and
the FWR rule. " Such a solution necessitates
a large spectrum of exchange-degenerate baryon
trajectories. ' However, the experimental situa-
tion indicates sizeable breaking of this exchange
degeneracy, and the possible absence of some of
the required baryon multiplets. The breaking of
exchange degeneracy is required by unitarity,
and ultimately may be calculable from a dual
unitarization program. 6"" ' If the baryon
trajectories are not exactly exchange degenerate,
the FWR rule cannot be maintained and exotic
meson exchanges must contribute to the MB
amplitudes. ' ' Factorization of Regge residues
then implies the presence of these same exotic
meson exchanges and resonances in the MM sys-
tem. Then, in turn, the. normal nonet meson
trajectories must not be exactly exchange degen-
erate, as expected from calculations of lowest-
order topological corrections to the singlets
(cylinder corrections). '6'" This chain of infer-
ences implies a strong connection between
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duality and exotic states and between exchange-
degeneracy breaking and violation of the FWR
rule. We will exploit these connections to deter-
mine some of the properties of exotic mesons,
and in the process, exotic baryons of the qqqqq
form (B,) and dibaryons of the six-quark form
will appear as well.

Our basic approach is as follows. We will
first construct exchange-degenerate dual reson-
ance spectra for MM, MB, and BB scattering,
satisfying the constraints of flavor symmetry and
crossing invariance, with minimal exoticity (i.e.,
only M4 states in BB), then exchange degeneracy
will be broken while duality, crossing, and
flavor symmetry are maintained. This neces-
sitates the introduction of exotic states in each
of the systems considered, whose couplings are
related to the breaking parameter. Using an
explicit dual resonance. model for the MM sys-
tem, ' '* we will find that the exotic M4 states
must appear on the first daughter trajectory of
the leading vector and tensor trajectories, as
anticipated in the topological-expansion approach
and suggested by exotic-exchange reactions. "
Carrying this result through to the BB system
then implies that the 1VI4 states be dual to the
normal states and vice versa, even with exact
exchange de gene racy.

This latter property of the BB system agrees
with a phenomenological study of finite-mass
sum rules for off-shell BB scattering. ~3 Com-
plete consistency among MM, MB, and BB
scattering requires a rich spectrum of M4 states
on the daughter trajectories, which contain al-
most exchange-degenerate pairs of 27-plets, in
terms of SU(3)-flavor representations. One of
the 27-plets violates the FWR rule strongly, the
other weakly. This indicates a possible rela-
tionship between our approach and a @CD bag-
model approach, in which two kinds of baryonium
states arise, ~ although we do not consider color
constraints.

In order to keep the duality constraints manage-
able, we have assumed exact SU(3) flavor sym-
metry throughout, and allow only pseudoscalar
mesons and spin-~ octet baryons as external
particles. Then we need consider only the leading
natural-parity mesons (and their first daughters)
as exchanges. We cannot study the full SU(6)
structure of the spectra, however. Furthermore,
to stay as general as possible, we have not con-
structed explicit dual resonance models for the
MB or BB systems, preferring to avoid problems
of parity doubling and sattelites, but have solved
the general duality constraint relations. This
leaves overall coupling strengths for each exotic
system unspecified, until they are fixed pheno-

menologic ally.
In breaking exchange degeneracy, we assume

some effective parallel displacement of multiplet
trajectories without evoking any particular dynam-
ical mechanism, realizing that such breaking
may actually be dependent on the square of the
mass. '6 We expect that the essential features of
the crossed-channel spectrum will not be al-
tered significantly by this simplification. A
simple relation that results in our scheme
between the amount of displacement of opposite-
signature trajectories and the size of FWR-rule
violation may also be modified in a real dynami-
cal calculation. But the attractiveness of this
result and the implication that baryon exchange
degeneracy is broken more severely, and in
proportion to the square root of the breaking
parameter, may be more general properties
that will emerge in a complete dynamical scheme.
Furthermore, the application of existing dual
unitarization programs to baryon states remains
incomplete. ' '"

The paper is organized in order of increasing
spin complexity. In Sec. II we construct an
explicit dual, SU(3)- and crossing-symmetric
model for MM scattering with exchange-de-
generacy breaking introduced in such a way that
the exact exchange-degenerate spectrum ' is
obtained in the limit that the trajectory displace-
ment parameter, 5, goes to zero. Requiring
positive residues for the emerging exotic daugh-
ter trajectories leaves two related M4 27-plets
and forces the 10+10 states to decouple.

The MB system is studied in Sec. III, by first
considering the simplest exchange-degenerate
baryon solution to the complete crossing-sym-
metric, spin-invariant amplitudes as proposed
by Equchi' and Fukugita. ' Breaking exchange
degeneracy for both meson exchanges, by 5, and
baryon resonances, by &, requires some addi-
tional baryon singlets in order to maintain the
same M4 spectrum. As a result, the splitting
parameters must be related by q - v i5, and B5
states must appear, presumably at the daughter
level. The couplings of the various exotics to
normal states are then determined, relative to
one another.

To close the system, BB is studied in Sec. IV.
The notion of BB duality is used to relate ex-
change-degenerate M4 couplings to BB to normal-
meson couplings, for natural-parity combinations
of helicity amplitudes. Consistency imposes re-
strictions on the coupling parameters. The rela-
tive strengths of the two different 27-plets and
the 10+10 states are obtained. Breaking ex-
change degeneracy forces dibaryons to emerge,
and, without an explicit calculation, their gen-
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e ral prope rtie s are discussed.
Finally, in Sec. V, the resulting exotic spectra

are discussed'4 and compared with other theore-
tical approaches. How this scheme relates to
dual unitarization is discussed, along with the
question of color symmetry. The obvious ex-
tension to a more complete treatment is con-
sidered, along with some more indirect ap-
proaches to the exotic spectra through duality.

Cs Ds = Cu' Du

C Du Ct Dt

II. THE MESON-MESON SYSTEM

The fully crossing-symmetric, SU(3)-invar-
iant, exchange-degenerate solution to the non-
exotic duality constraints for pseudoscalar-
meson nonet scattering is well known. " It in-
volves the exchange or resonance formation of
the tensor-meson nonet, exchange degenerate
with the ideally mixed vector octet. The solution
can be expressed suggestively in terms of Vene-
ziano functions" and SU(3) representations as

EVEN-SIGNClJRE s—CHANNEL POLES

ODD-SIGNATURE s-CHANNEL POLES

Cs

A(s, t, u) =P„[(C,+D,) V(n(s), n(t))

+(C, —D,) V(n(s), n(u))

+(C„-D„)V(n(u), n(t))],
where

r(1 —n{x))r (1 —n(y) )
r(1 —n(x) —n(y))

(2.1)

(b)

FIG. 1. Quark duality diagrams for pole residues.
(a) Planar diagrams for.g-t, s-o, N-t dual amplitudes.
(b) Diagrains for s-channel pole residues on leading
trajectory.

tion is indicated in Fig. 1, and results from the
correspondences

for x, y =s, t, or u, and n(x) =no+n'x The fa.c-
tor P„' is an overall coupling strength and

C, =-', [ll, +—", IS„]„,
D„=12[8„]„,

(2.2)

with the notation [B]„corresponding to the Rth
irreducible SU(3) representation in the x

14=s-, t-, or u-channel decomposition. The par-
ticular combinations of representations are
crossing eigenvectors25:

C8+Ds =C t+ t ~ Cs s =Ctc+Dtl~

(2.3)—D =C —D

and thereby give rise to nonexotic poles in all
channels. The C„gives the residues of the even-
signature tensor-trajectory poles in the x chan-
nel; the D„gives the odd-signature vector-trajec-
tory pole residues. These symmetric and anti-
symmetric couplings will arise for all the daugh-
ter poles as well as the leading poles on the tra-
jectory.

The crossing eigenvectors C„+D„are in one-
to-one correspondence with the simple quark
duality diagrams2 for meson-meson scattering
with only quark-antiquark intermediate states
in the appropriate pair of channels. This rela-

+D - (M,M~M+I~) +(M,M~M~~),

C, —D, - (M,M~M~M, ) +(M,M~~M ~),

C„—D„-(M M~~M~) +(M,M„M~M,),
(2 4)

where M, is the pseudoscalar-nonet matrix for
external meson g, and ( ) is the trace. It is
therefore evident that C, +D„C,—D„C„-D„are
plzx in s-t, s-u, and u-t channels, respectively.

-Now we consider breaking the exchange degen-
eracy of the vector and tensor trajectories. We
do this, without breaking SU(3), by supposing
that the tensor trajectory is displaced upward
by a constant amount, n, (s) =n(s) +5/2, and the
vector trajectory downward, n (s) =n(s) —5/2.
Whether this breaking is due to topological
corrections to the planar diagrams'' '" or some
other unitarity corrections will not concern us
here, nor will we consider the possibility that 5
is a function of s.' Although these dynamical
questions are of crucial importance, it is our
view that the xelgtiovshiP between the gross
features of the hadron spectrum and the breaking
of exchange degeneracy may be comprehensible
from more general considerations, as we will
show.

Given the two trajectories in each channel,
we next require that duality constraints still be
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satisfied; i.e., that exchanges in one channel are
dual to resonances in the imaginary part of the
crossed-channel amplitude in a local sense.
Hence the resonance poles on n, (s) are dual to
both n, (t) and n (t) Regge exchanges; and cor-
respondingly for the resonance poles on o. (s).
Where a single Veneziano function represented
the s tdua-l amplitude [in Eq. (2.1)], now four will
be required, each having an SU(3) factor.

Let C,"(C,' ') be the SU(3) coefficient of the
o.,(s), o.,(t) (n, (s), n (t)) dual amplitude expressed
in terms of s-channel representations and let
D,"(D,' ') be the SU(3) coefficient of the
o.' (s), a, (t) (n (s), o. (t)) dual amplitude. Then,
to guarantee that the leading trajectory poles

have the desired SU(3) structure and that the
exchange-degenerate solution [Eq. (2.1)] is ob-
tained in the limit that 5 0, we require

C,"+C,'-' =C„D"+O' '=D

(2.5)

C(+) +D(+) C C(-) +D(")

Along with these coefficients, there will be
analogous SU(3) coefficients for the s-u and u t-
dual amplitudes, but these latter will be ob-
tained by imposing s-t, s-u, and u-t crossing
symmetry on the full amplitude. The amplitude
will thereby have the form

A(s, t, u) =ps {[C,"V(n, (s), o.,(t)) +C,' ' V(n, (s), n (t) )+D,"V(n (s), n, (t) )+D,' ' V(o' (s), n (t) )]

+[s-u terms]+[u-t terms]], (2.6)

with the additional constraints that C,"be an even eigenvector under s tcrossing [w-ith all other SU(3)
coefficients related via Eqs. (2.3) and (2.5)]. This last requirement follows from the symmetry of the
dual function under interchange of its arguments, and the requirement of overall crossing symmetry.

The most general crossing even eigenvector that satisfies the additional requirement that there be no

abnormal charge-conjugation contributions (i.e., no [8„]or [8„]terms) has the form

C,'~ ={a~[1],+a,[8„],+(15a& —6a, —6a&o) [27] ]+{(-Ba& +5a, +4a&0)[8„],+a&0([10],+[10],))
=—E, +E, , (2.7)

where the first term in brackets, E„must be even signature while the second, F„must be odd, ' and the
coefficients Q, Q asap are unspecified. The full amplitude thereby has the structure

A(s, t, u) =P„{[(E,+F)V(n, (s), n, (t))+(C, E, —F,) V—(o.,(s), o. (t))

+(C, —E, —F,) V(n (s), o.'.(t))+(D, —C, +E,+F,) V(n (s), o. (t))]

+[(E —F) V(n, (s), o..(u))+(C, —E, +F,) V(n. (s), o.'(u))

+(C„—E,+F,) V(e (s), n, (u) )+(D„-C, +E,—F,) V(o. (8), n (u) )]

+[(E„—F) V(n, (u), n, (t))+(C„—E„+F„)V(n, (u), a (t))

+(C, —E„+F)V(n (u), a, (t))+(- D, —C„+E„—F„)V(n (u), u (t))]] . (2.8)

Note that E„+F„have the same crossing proper-
ties a,s C, +D, [Eq. (2.3)],

Es+Fs =Et +Et& Es Fs =E» +F» &

trajectories. This can be seen by expanding
the dual amplitudes in terms of their poles
and the parameter 6. For n, (s) near J; for ex-
ample,

E —F =E —F . (2.9) V(n, (s), n, (t) )

The fully crossing-symmetric dual amplitude
with broken exchange degeneracy has the desired
structure on the leading trajectories in any chan-
nel; n, (s) has only even-signature poles with re-
sidues proportional to P„C, and n (s) has only
odd-signature poles with residues proportional
to P„D,. However, the structure of the daugh-
ters is significantly different from the leading

1
(J-1)![J-o..(s)j

where the remaining terms are lower powers of
o. (t) and of order 62. Then there will be poles at
the first daughter level, whose residues are
PxoPortiongl to 5, that would not be present in
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C,(b~z,) +FJ6(b~z, ) + ~ ~ ~,

a, (s) =J odd:

C~J[ao —bq+2(J —1 —6)](b~z,)

+E,J6(b,z,)'-'+ ~ ",
a (s) =J odd:

(2.11a)

(2.11b)

D,(b~z, ) +(C, —,'D, —E,)J6—(b~z,)
~ '+ ~ ~ ~,

(2.11c)

a (s) =J even:

D,J[ao —b~ +-,'(J'- 1)](b~z,)~ '

the exchange-degenerate case. Furthermore,
these new poles must contain exotic SU(3) repre-
sentations.

The explicit pole structure, down to the first
daughter level, that arises from Eq. (2.8) fol-
lows: Up to the overall factor

2&z'

(J—1)![J- a,(s)]

and with z, = cos8„bz ——2k, a' =~[J- a(4ti )], we
have the residues of the poles on the leading tra-
jectories and the first daughter trajectories:

a,(s) =J even:

to 6. These latter will contain exotic SU(3) rep-
resentations and will be called exotic daughters
or M4 states. Note that each daughter term
satisfies the correct charge-conjugation and sig-
nature relation, including the term in (2.llc),

I

since

C, --'D. =-,' [1].+-', [8..].+-", [27]., (2.12)

is an even-charge-conjugation set of representa-
tions.

Yo further specify the residues of the exotic
daughters, which still depend on the parameters
a„a„a« in 8, and F, [Eq. (2.7)], we require that
those residues be positive. For the odd- signa-
ture poles of (2.1la) and (2.lid), positivity
forces the [10]+[10]poles to decouple; aio must
vanish. The coefficient of the [8„],term must
be positive in (2.11a), but is unconstrained in
(2.11d) where it can mix with the normal daughter
term. Similarly the coefficients of the [1],and

[8„],terms must be positive in (2.11c) but are
unconstrained in (2.11b) due to mixing with the
normal daughter terms. Lastly, the coefficients
of [27], must be positive on both exotic daughters.
The resulting positivity constraints are compati-
ble and can be expressed as

—F,J6(b~z, )
~ '+ ~ ~ ~, (2.11d) aio

——0,

where the remaining terms are of higher order
in 5 and at the second daughter level or below.
Note that with a, =z, the term a, —b~+-,'(J- 1)
is equal to —,'a(4p, ), where p, is the average (un-
split) pseudoscalar-octet mass. The daughter
poles consist of terms that were present in the
absence of exchange-degeneracy breaking [the

C, term in (2.11b) and the D, term in (2.11d)],
which we will call normal daughters, and terms
that arise from the splitting. and are proportional

—~~ g )~Os

—a~a) —a5 2
8 s 1 5 s'

(2.13)

These constraints leave most of the E, and I;
terms in (2.11) small compared to the leading
terms.

The residues of the various poles in the ex-
pansion can be written explicitly in terms of the
remaining SU(3) representations, in order to
see the effects of the preceding constraints.

a,(s) =J even:

I [1]8+~3 [8«]8](bzza) +(—8ai+5a8)[8.0]8J6(bdza) +' ' ' ' (2.14a)

a,(s) =J odd:

f[& (ao —bz +2(J —1))- 6( 3
—ai)][1] +[ 3 (a& —bz +~ (J- 1))- 6( 3

—a,)][8„]+36(5ai —2a )[27],].

XJ(b~z )&-i+. . . (2.14b)

a (s) =J odd.
F

12[8«],(biz, ) +f(6 —ai)[1],+(3 —a,)[8„],+[
&

—3(5ai —2a,)][27],)J6(biz, ) + ~ ~ ~, (2.14c)

a (s) =J even:

[12(ao —bz+~z(J —1))+6(8ai —5a,)][8«],J(biz, ) '+ ~ ~ . (2.14d)
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Now it can be seen that with the constraints
(2.13) satisfied, at least one 27-piet must be pre-
sent at the daughter level. This can be under-
stood as the mechanism by which duality is re-
stored in the presence of exchange-degeneracy
breaking in this model. In essence, exchange-
degeneracy breaking has mixed the u-t planar
diagrams in with the s-t and s-u diagrams,
thereby introducing (qqqq) or M4 intermediate
states into the s-channel amplitudes as indicated
in Fig. 2. For arbitrary allowed values of a&

and a„a plethora of new states is generated at
the daughter level: a C =-, odd-signature octet
at a, (s) —1, a C=+, even-signature singlet,
octet, and 27-piet at o.,(s) —1. Furthermore,
additional terms (proportional to 5) have ap-
peared as modifications to the normal daughter
residues, which may be interpreted as addi-
tional poles; a C =+, even-signature singlet and
octet at ai.(s) —1, a C =-, odd-signature octet
at o. (s) —1. The states are shown in Fig. 3.
Whether or not these latter poles are to be
treated as separate entities, which can mix with
the normal daughters, depends on the require-
ments on the spectra that arise in the meson-
baryon system, to be considered in the next sec-
tion.

The residues of the poles are listed in Table I.
With the constraints (2.13) on a& and a„ the resi-
dues are strongly bounded. The largest coupling
is that of the 27-piet on a —1. Even with 5 on
the order of,'0, this pole can couple with as much

cx+(s)-I' EVEN SIGNATURE

— 2C+ E ~(-—+ —a- as) ) f+y~~+)gt+Ig

~ (s)-I ODD SIGNATURE

F' ((F( s
,
+Fq( &-( F-i. i —i+i -i+i

~(s )
-

I EVEN SIGNATURE

C, -ZD, -E, (--&a, +—a, ) ) f ~) (+/Q( )g]
+(I-—~(+-~+-0 ) +10 4 4

e 9~ gs-
~(s)-. I. ODD SIGNATURE

-F,- —,', (F „-F .( i i i:i -&pi -
&Qf

FIG. 2. Exotic pole residues on daughter trajectories,
proportional to exchange-degeneracy-breaking para-
meter 6.

~ f[ij [W3)

~ [[i] 4 ))

g 1,27

~ I: [s-])

(Gev )

~ [[s..))
~ I.[s..))
o [[s-1)
~([i) [s-l [»l)

M (Gev )

FIG. 3. The meson spectrum after exchange-degen-
eracy breaking. O and ~ represent parent and normal
daughter poles, respectively; O and a represent exotic
daughter poles. Note that ~ and 0 have the same M2
value.

as half the strength of the normal singlet tensor
meson, while its partner —the 27-piet on n,
—1—has less than —,

' its strength, at most. For
the particular choice of a, =a, =0, the spectrum
of M4 states has its simplest form; even-signa-
ture singlet, octet, and 27-piet on ~ —1. How-
ever, the values of a, and a, must be consistent
with the requirements from meson-baryon scat-
tering, which we will explore.

The most important features of the preceding
results are that these new states, that we iden-
tify with M4 or baryonium states, couple to
ordinary mesons with strengths proportional to
5, the exchange-degeneracy breaking parameter.
Thus the coupling of these M4 states to mesons
is obtained as a "planarity-breaking" effect,
whereas the coupling to BB channels will be of
normal strength. We anticipate that this simple
connection between the breaking of the generalized
QZI rule and the breaking of exchange degeneracy
will be a feature of more realistic models as
well. Furthermore, in our model, the M4 states
lie on trajectories one unit below the normal
trajectories, as expected in several other
schemes for multiquark states. '+'~~ This has
interesting implications for duality in the BB
system, as we will see.
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HI. THE MESON-BARYON SYSTEM

An SU(3)-invariant, exchange-degenerate solu-
tion to duality constraints, that satisfies crossing
constraints as well, is more difficult to obtain
for the meson-baryon system. ' Constructing
explicit dual dynamical functions for the spin
amplitudes, requires complicated parametriza-
tion of combinations of Veneziano amplitudes,
leaves considerable ambiguity, obscures the
underlying symmetry, and requires more baryon
states than have been observed experimentally.
Therefore, rather than considering explicit dual
models as a starting point, we will consider the
SU(3) structure of the invariant amplitudes for a.
simple solution to the dual, crossing-symmetry
constraints. Such a solution was obtained several
years ago by Eguchi.

Eguchi's solution begins with seven baryon tra-
jectories; four exchange degenerate trajectories
with positive-signature times parity, or 7P=+,
called the "I"terms, and three vP =- exchange-
degenerate trajectories labelled "II," in the fol-
lowing pattern:

I: (82(3 @10)~ —(1$8„)„(7P=+), (3.1)
II: (8,(,)~ —(,(3@10)~ (7P= ), -

where superscripts are the signature and sub-
scripts on the octets are the F/D values. The
relative couplings of these various representa-
tions to the octet meson-octet baryon external
particles are fixed so that neither I nor II con-
tribute to exotic representations in the t channel
and so that I crosses into -II in the u channel.
Hence, the "s-u dual" part of the invariant amp-
litudes, A'(s, u) and B(s, u) are combinations of
II- I and II+I, respectively. All couplings to
mesons or baryons are fixed thereby.

Eguchi s solution is given explicitly by

I =-:[ll.+-",, [8,»,].+-.' [8 ].+-.'[1o].
=2[1],+-,' [8„],+—", [8..],

——,'~5[8.,],——,
'

v 5 [8,.]„ (3.2)

I =- —,
' [1].+—",, I 8.„,],——,

' [8„],+-,' [lo].
=—,', [8 ~ ]„-3 [8 g ]„-10[10]„,

11=-—,', [8 „,],+—,', [8 „,].+1O[1O],

=-,'[1]„-—",, [8,„,]„+-,' [8„]„-—,'I lol„

(3.3)

for the s-u dual parts of the invariant amplitudes,

11=—,', [8 «,],+—,', [8 «,],+10[10],

=2[1] —5[8 ] +3[8, ] +3M5[8„],—v 5 [8„],
for ihe s-I; dual parts of the invariant amplitudes,
and

where the definition

[8z/o]~=3 D [8»]8+12F [8«]8

+4M5FD([8.,],+[8„],),
E+D=1, (3.4)

has been used. The crossing matrices of Rebbi
~ and Slansky" have been used, with the phases of
u- channel representations altered to correspond
to Eguchi's choices ([8„]„,[8„]„,[10]„,[10 „all
acquire a factor of —1). The couplings of the t
channel meson poles are obtained from II'I,
corresponding to s-channel helicity nonf lip and
flip couplings, f„with the normalization given
by

'I.1] +d"~5[8..] —3f'[8,],
—d v5 [8..]t+3f [8 ]t (3.5)

where superscripts + and —refer to even-signa-
ture (tensor) and odd-signature (vector) poles,
the f/d ratios become —

3 and +—,
' for the nonf lip

and flip couplings, respectively, for both T and
V, in rough agreement with phenomenology.

The problem with this or any other solution to
the meson-baryon duality and crossing constraints
is the necessity of unobserved baryon multiplets
in the spectrum. Furthermore, the exchange de-
generacy of the observed baryon states is signifi-
cantly broken. The two defects could be connec-
ted, in that the unobserved states may become
weakly coupled or their ma. sses may become lar-
ger or their widths may become very broad as
exchange degeneracy is broken by some dynami-
cal mechanism. As with the meson-meson sys-
tem, we will assume that such a breaking occurs,
by whatever means, and require that the resulting
exchange-degeneracy-breaking pattern satisfies
the duality and crossing constraints.

We first assume, for simplicity, that a single
pa. rameter, e, determines the breaking of the ex-
change-degenerate baryon trajectories (3.1). The
pattern of breaking will elevate 8 and 1& on the
7P =+trajectory, n, (s), to n,'(s) =n, (s)+e/2; lower
10 (unobserved at J= —,') and 8„ to a, (s) =n, (s)
—e/2; raise 88 and 10~ on the rP=-tr je atorcy to
aJ(s) =n«(s)+e/2; lower 8~ (unobserved at J'=-,')
to n, , (s) =n«(s) —e/2. " To guarantee that the spec-
trum of meson states in the crossed t channel con-
tain the same representations (in particular, no 10
+10 states) as in the meson-meson system (as re
quired by factorization), it is necessary that some
additional baryons be introduced onto the broken
trajectories. The simplest way to do this, without
vitiating the desirable features of the scheme, is
to introduce additional singlets on n, (s), a,;(s) and
n~~(s). These singlets can mix with the same sig-
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nature octets and thereby lead to observable and

possibly desirable effects. The signatures of these
additional singlets are not determined by the t-
channel desiderata and will be left free, to begin
with. The broken pattern thereby becomes

ration is easily accomplished by identifying these
combinations of II's and I's with the appropriate
terms in the exchange-degenerate expressions in
Eq. (3.2). We obtain

(II +II )+ (I, +I ) =4[1],--,'[8„],——,
' ~5[8„],

I+: (s,t,)
' —(1)y,

I-: (10)+—(Ie S„);,
II +: (1 s,t,)' —(10)

(1)a
—(s,t,)s,

(3.8)

=N+;

(II, +II ) —(I +I ) =~2[8„],+ 2 ~5[8 ],

(II,'+D') + (I', +I' ) =—", [8„]t+-,' ~5[8.,],
(3.11)

where the singlets' signatures may be mixed.
The SU(3) factors that multiply s tdual a,m-pli-

tudes for the s-channel poles corresponding to
the four baryon trajectories are then

n i(s):

ni (s):

n (((s) '

n, , (s):

where

v, =2[1],+@[8„„],;
W, = --'[1], +-,' [8„],+-,'[10], ;

Y =--'[1],+„[8 t, ], +10[10],

z.=-,'[1],+~[8 „,]„.

(3.7)

I = V, + W, and II = Y, + Z, , (3.8)

I=I, +I,'+I +I',
II=D, +II,'+D +II',

(3.9)

where I, are SU(3) coefficients of the (n', (s), n, (t))
dual dynamical amplitudes, I,' are coefficients of
the (n'.,(s), n (t)) dual amplitudes, II, are the coef-
ficients of the (n,',(s), n, (t)) dual amplitudes, and
II', are coefficients of the (n,',(s), n (t)) dual ampli-
tudes. To obtain the chosen pattern of s-channel
poles, these new coefficients must satisfy

in order to obtain the degenerate limit of Eq. (3.2).
The negative coefficient for the singlet contribu-
tions to W, and Y, will be altered by mixing, pre-
sumably to restore positivity for the residues.
With exchange degeneracy broken, as in the me-
son-meson case, each s-t dual term, I and II, is
now split into four terms, since both s and t chan-
nel trajectories are split. Hence we write:

=N
7

(II' +II') —(I' +I') =-—', [8„],+a-~5[8.,],

where N, (F,) represent the nonf lip (flip) coupling
of the even-signature or odd-signature mesons.
With these relations, and (3.10), we have

I,'= V, —I, I = (N~, F) —I-

I' = W —2(N+ —F~)+I„;
II~ = Y~ —II+, II =2(N++F+) —II+,

II ' = Z, —
2 (N, + F~) + II+;

with

V, + W, =2(N++N —F E)—

(3.12)

(II —II ) + (I —I ) = 2 (II + I ) —N, ,

and for flip coupling is

(II —II ) —(I —I ) =2(II —I ) —F

(3.13a)

while for the n (t) daughter, the nonf lip coupling
1s

Y, +Z, = —,'(N, +N +F, +F ) .
The residues of the t-channel exotic daughter

poles that are generated by exchange-degeneracy
breaking will be determined by the differences of
the coefficients, so that the n, (t) daughter residue
for nonf lip is

+I' = V„ I +I' =W

II + II' = Y, , II + II ' = 8 (3.10)
(11', -ll') + (I', - I')

= -2 (II, +I,) + 2 (Y, + V,) —N, (3.13c)
The form taken by these new coefficients is con-
strained by various requirements of duality and

crossing, as we will see.
The leading t -channel poles have residues

which must be consistent with the meson-meson
system. Thus (II, +II )'(I++I ) must correspond
to pure tensor-meson nonf lip and flip couplings for
the leading n, (t) poles, and (II', +II')'(I,'+I') must
correspond to pure vector-meson nonf lip and flip
couplings for the leading n (t) poles. This sepa-

and for flip coupling is

(D', —ll' ) —(I.,'- I' )

= —2(II, —I,)+ 2(Y, —V,) -F (3.13d)

It is assumed that these residues will each be pro-
portional to the breaking parameter c, since, as
in the meson-meson system, the first-order break-
ing corrections involve differences of dual func-
tions and hence daughter poles. Now these exotic
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and (3.14)

daughter terms should correspond to the exotic
daughter spectrum in the meson-meson system
[Eqs. (2.14)]. To compare these spectra, let

2(II, +I+) = n', [1],+ n„[8„],+ ~5 n„[8„],
+ ~5 n'.,[8„],+ n„[8,.], + n„[27], ,

normal daughters, or as additional poles. Assum-
ing the former is the simpler interpretation, since
the number of new mesons in the spectrum is much
smaller. Furthermore, the simplest exotic spec-
trum allowed in the meson-meson system then can
be chosen for the meson-baryon system: C =+,
even-signature singlet, octet, and 2V-piet on e
-1. This choice of simplicity corresponds to

2(II, —I,) =f,[1],+f„[8„],+ ~5f„[8„],
+ ~5f.,[8.,],+f,.[8,.],+ f„[27]„

+27 +as +aa ~ (3.17)

I'. —I'. =.-'[1] —'. [8..]t+ l ~5[8,1

+~ M58..)&
-~ [8..]~

~ [27]&.

Then the exotic daughter residues become

n, (t) —1, nonf lip, even signature:

(n, —4) [1),+ (.n„+-,')[8„],
+ (,n„+~s) ~5[8„],+ n„[27], ;

n, (t) —1, nonf lip, odd signature:

ri., v 5 [8„],+ n'„[8,.], ;

o, (t) —1, flip, even signature:

(3.15)

and expand F,+ U, into t -channel representations

I,+ V, =7[1],——", [8„],-~ ~5[8,.],
+-,' ~5[8„],+~[8„],+~[27], ,

with the other parameters undetermined.
The couplings of the M, states to the baryons can

be extracted from the residues in (3.16) by fac-
toring out the M4 couplings to mesons in Table I.
Since we have not used a specific dynamical model
for the meson-baryon system, , the strength of an
M4 coupling to baryons can not be compared di-
rectly to an ordinary meson coupling; only the
relative strengths of the various M4 states can be
compared. To illustrate the procedure, we first
consider the normal meson couplings.

With the overall strength of the meson-meson
amplitude P~', and the singlet tensor-meson res-
idue [on o., (t)] normalized to 1 xp~', the effective
couplings of the normal mesons to pseudoscalar
mesons become (see Table I)

f,[1],+ (f„+', ) [8„],
+ (f..—s') ~5[8,.]&+fs7[27)g '

o., (t) —1, flip, odd signature:

f..~5[8..), f..l 8..), ;

n (t) —1, nonf lip, even signature:

(- n, +~) [1],+ (-n„-—",)[8„],
(- n..-".)~5[8..), (- n.,",)[»),;

(3.16)

g', =P, g„'..=(!)"'P„, g„„,= p„-, (3.18)
v'2

where the superscripts refer to signature. For
the meson-baryon system, the residues of the nor-
mal poles are proportional to K, and I', (3.11).
Let the overall normalization be chosen so that the
singlet nonf lip residue is 1xp„p. Then we have

g &mgs(1) = p&sp3~ gevsg+„(8 ) = sp&ps~

o. (t) —1, nonf lip, odd signature:

—n„~5[ „8],+ (- n„+6)[8„]„.
o. (t) —1, flip, even signature:

(-f +-')[1] + (-f..-'. )[8.,]
+ (-f„+s~) ~5[8,)& + (-fs7 —s) [27)s'

g„'„,g'„(8,) =- s~5p„p»

g&s&&1 gy (1)= 0~ g~usgy (ss) = s PNPB &

g~&ls gq (ss) ——,~5p„p»
(3.19)

a (t) —1, flip, odd signature:

(-f.,+ 5)~5[8.,], + (-f„-5)[8„],.
I

These daughter residues ai e to be compared with
those in the meson-meson system of Table I. As
with the latter, we expect normal daughters to oc-
cur as well: C =+, even-signature singlet and
octet on n, —1, and C=-, odd-signature octet on
n —1. Then the corresponding terms in (3.16)
may be interpreted as order c corrections to these

gAEdfsgs( s) s ~~p&t&PB) g&&&&&sgs( a) s PA&PB &

i

g&s&&&st(ss) —
s ~~PAEPB7 gAMsg& (ss) = —s p&ps ~

where gI„',",~&&(R) refers to the even or odd signa-
ture, nonflip or flip coupling of the meson belong-
ing to the R representation, symmetrically (d-type
coupling) or antisymmetrically (f-type coupling)
to BB. Factoring out the meson-meson cou-
plings, we obtain
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Msg'„(1)= P~, g'„(8,) = —4~ P~, g'„(8,) = —4~ P~,

3Ms
g,'(1) = 0, g,'(8,) = —4~ P„g,'(8,) =+,~P„

2 2
(3.20)

Ms
gn (8s') =

4~2 pat gn. (8a) =
4~2 pa

(i.e. , the poles in Table I whose residues are pro-
portional to 5). Hence, we consider (8) and (27)'
on n, (t) —1, and (1, 8, 27)" on o. (t) —1. Normal-
izing the singlet residue to sy„'~6(7 —6a,), the re-
sulting .V, couplings to mesons mill be

k~~i = ~by„-,'(7 —6ai)' ',

3Ms
g~ (8,) = 4~ P~, g~ (8,) = —4~ P~,

or, using (2.5) to define the f and d couplings, with
f+d= lq

k', = ~Cy
2

(2 —3a,)"',1
2 2

km~- = ~by~-'(8 —»ai+ 4a.)"
k„„,= ~by„(-8,+5,)' ',
k„'„„=~by„-,'~2(sa, —2a,)'~',

(3.22)

3 2 n

ay'(8)=-
2

pa=gal(8) d
=+

3
1 ' 3.

f
(3.21)

as expected from Eguchi's model.
We now repeat this calculation for the exotic

daughter or M, spectrum, restricting ourselves to
those poles that do not appear as normal daughters

where y„ is related to p„ in the explicit Veneziano
model we have used by y„= [(2Z —1)/bz]'~' the k

couplings refer to the n (t) - 1 daughters and the
k couplings refer to the n, (t) —1 daughters. The
meson-baryon system residues, obtained from Eq.
(3.16), are normalized so that the singlet nonf lip
residue is ey„y~-,'(25 —4M,). Then the singlet non-
flip coupling to BB will be

TABL E II. Exotic-meson coupling s.

Trajectory Signature Representation

27

Coupling to mesons
(units of p&)

4

I;„„,: ~~{2 3a,)«'
4

k&&2z. &(9 —10ag+ 4a )

k~~8: (-sai+ 5as)"'

Couplings to BB
~

~

units of —p&

(25 —4n g)
(7 —6a~)&/2

(3-4f&)
kf( ) (7 6 )$/2

(11+2n )
A, „(ss). -W

(2 3 )( /2
S

(13+2n,.)g+„(sa): -v 10
(2 3 )$/2

(31+2f )
fgf (8s): -vY

(2 S

(3 —2f„)kf(8a): v 10
(2 3 )f /2

S

(27
1 (27 —4+ 2z)
3 (9-10ag+4a )&/2

(63+ 4f2Z)
3 (9 —10a~+4a )&/2

k-„(8~): W(

k~yzz: 7&2(5ag —2a )

k„(Sa):

kf(ss):

kf(sa):

k'„(27):

kf(27):

Pl Qa

( Sa, +5a.)«2

fas
(-Sa,+ 5a,)«2

faa
( Sa, +5a, )~/2

2~ +2Z
3 (5ag —2as)& /z

f2Z
T (5a& —2a )&/2
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(3.23)

while the singlet flip coupling becomes

3 —4f,
&g(1) =~vs(7 6, )./. ~ (3.2

The remaining couplings to BB are listed in Ta-
ble II, along with the meson-meson couplings.
Note that the resulting (f/d) ratios for the octets
become [using Eq. (3.5)]:

nonfli ss

flip 3 3~ ss

for the even-signature octet on o. (t) —1,

1 n„
3 n.. '

(3.25)

(3.26)

for the odd-signature octet on a.(t) —1. The over-
all octet coupling strengths become

2&2
v 5 3~5(2 —3 )s

2vY
~f (6) ~6 Ys 3~5(2 3 )1/2 ( + 3 flag fga)

s

(3.27)

for the even-signature octet, and

(-3n„+n„)
Wr ~' 3( 6& + 5 )'~ '

s

( 3f„+f„)-' 3( an, + 5 )'" ' (3.28)

for the odd-signature octet.
Obviously, any further statement about these

couplings requires knowledge of the remaining free
parameters. The n's and f's will be involved in
the residues for baryon-antibaryon scattering,
and will be constrained thereby. However, the
exotic couplings are generated by BB duality with
exchange degeneracy unbroken. This was one of
the original motivations for postulating exotic
states. ' In one current view, "exotic resonances
are dual to normal-meson Regge exchanges, and
normal resonances are dual to exotic Regge ex-
changes, in correspondence with the quark duality
diagrams, Fig. 4. Coupled with our result that
the exotic mesons lie on a trajectory one unit down
from the normal mesons, we will investigate this
construct in greater detail below, but, for the
moment, we observe that, as a consequence of
BB duality, the coupling of exotic mesons to

I I
I

M~ M

FIG. 4. Duality in JIB scattering.

baryons is of the same order of magnitude as the
coupling of normal mesons to baryons. Hence,
the factor q jW6, appearing in the couplings of M~
states to BB, must be of order unity. This is one
of the most interesting consequences of our ap-
proach.

Recall that |) is a measure of the splitting be-
tween the vector and tensor trajectories. Taking
the p and A, trajectories as representative of the
broken SU(3) octets, the separation of their inter-
cepts (as determined by a Regge fit to n p —v'n vs
wP - gn) is'about —,', or 10%." This implies, in our
scheme, a suppression by ( —,',)'/' in the couplings
of M4 states to mesons, or a suppression of yp in
partial widths into mesons, as compared to normal
meson widths. Furthermore, since g -VY, the
splitting of the baryon trajectories is predicted
to be of order 0.3 or 30%, which is in rough agree-
ment with the larger exchange-degeneracy breaking
among the observed baryon trajectories. Hence,
the observed pattern of exchange-degeneracy
breaking and the small coupling of exotic mesons
to ordinary mesons (i.e. , the breaking of the FWR
rule for baryonium) are intimately connected. The
accuracy and simplicity of this result suggests
that this will be a feature that transcends the
crudeness of our model.

Another point concerning the couplings to mesons
should be noted. For the spectrum that we have
chosen, the coupling to mesons of the "5-type"
exotic 2T-piet [Eq. (3.22)] is an order of magnitude
bigger than the cryptoexotic singlet and octet
coupling due to numerical constants alone, and the
constraints on the parameters a, and a, [Eq.
(2.13)]. Hence the "h-type" exotic states will be
broad in comparison to the cryptoexotic states —a
result that may explain the difficulty of seeing
exotic flavor states experimentally.

A final point concerns the breaking of exchange
degeneracy in the meson-meson system. If we
had assumed that only the baryon spectrum is
broken, we would have obtained the same exotic
meson spectrum as in (3.16), with n, = n . Hence
a 2V-piet would have to appear in the t channel of
the meson-baryon system. Factorization would
then require a 27-piet daughter coupling to meson-
meson. But the only way for this pole to appear
in an exchange-degenerate dual meson-meson
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n„(s):
n, (s):
aii.(s):
aii (s}:

V.=(n- »[I].+ i2 [8~/3]„

W, = (-q+ —')[1],——' [8„],+ —,
' [10],,

(3.29)
r, =(~ —,')[1],+ —,', [s „,], lo[lo]„
z, =(-(+-,')[ll, ——,', [8 „,]„

where ii(g} is a measure of the undetermined
strength of coupling of even- (odd-} signature
singlets to n„(s) (n», (s)}, and the degenerate
limit constraints are satisfied by

system would be as a leading pole. This incon-
sistency is resolved by splitting the exchange de-
generacy of the mesons, as we have done.

Next we consider the baryonic channels for the
exchange-degeneracy-broken form postulated in
(3.6}. The s-u dual amplitudes must give rise to
residues for the same spectrum as in (3.'I), with
appropriate sign changes for signature. The cor-
responding SU(3) factors are then

and

II„= d, B,.

I„+I,=- Y„, I,',+I,' = —Z„,
(3.34)

The crossing matrix, X~"', allows the expansion
of I,.into u-channel representations [P]„, so that

27

g C",X„","q,[P]„,
R=l P=1

where qP = -1 for [8„]„,[8„]„,[10]„,[16]„. Then
crossing symmetry is implemented by requiring

27

pcs~($ U)q dP
R=l

which is equivalent to I„=—II . Then all the II,
terms [in (3.32)] are determined through crossing
of the I, terms. Furthermore, because of rela-
tions (3.33) and the crossing requirements,

I= V + 8', , II= Y,+Z, . (3.30)
II,+II, = —V„,

so that

II',+II' =- 8'„,

The s-u crossi.ng-symmetry requirements in the
degenerate limit are

v, + w, = (7„+z„} I,' =m, + Y„+I...
II,~= —I„,, II', = Y +I„„

(3.35)

7,+Z, = —(V„+ W„), (3.31} II, = —V„+I„„ II,' = —W„- Y, —I„,,

where Y.„ is the same linear combination of repre-
sentations as 7, [in (3.29)], but. in the u channel
rather than the s channel.

Each s-u dual term, I and 0, is now split into
four terms,

which leaves I„the only independent term.
The leading normal poles have the required

SU(3} factors, by construction:

n, .(s), even signature:

(I.+I,')+(I„+I,',)= V, + V, =@[1],+ —", [8.,&,], ;
I= I„+I,'~+ I, + I,',
II = II,,+ II,',+ II, + II,', (3.32) n„(s), odd signature:

(I,+I',) —(I„+I,',) = V, —V, =(2- il)[1],;

II„+II,', = Y„ II, +II,'=Z .
(3.33)

The s-u crossing requirements on these terms
can be expressed as the condition that I„,I,'„I, , I,'
when expanded in terms of u-channel representa-
tions, have the same form as -II„,-II, , -II,'„-II,',
respectively, expressed in terms of s-channel
representations. This is illustrated by the fol-
lowing. Suppose

r,.=g c."tz],
R j.

where I„are SU(3) coefficients of the (n„(s),
n», (u)} dual dynamical amplitudes, expressed in
terms of s-channel representations, I,', are co-
efficients of (n„(s), a„-(u)), II„are coefficients
of (n, i,(s), n„(u)), and II,', are coefficients of
(n„,(s), n, (u)}. These terms must satisfy:

a, (s), even signature:

(I + I')+ (I, +I,' ) = W, + W, = -q[l],+'5[10],;

n, (s), odd signature:

(I +I')-(I, +I,')= W, —W, =(q- 1)[1],+-', [8„],;
n„,(s}, even signature:

(II,+ II,') + (II„+II,',) = I;+7,
=(( I)ill, +-,'[8 „,],;

n„.(s}, odd signature:

(II,+ II',) —(lI„+II,',) = I;—7,= —$[l],+ 20[10],;

a„(s), even signature:

(II + II') + (ll, + II,' ) = Z, + Z, = -($ —1)[1],;
n«(s), odd signature:

(II +II') —(II, +II,' )=Z, -z, = $[l],++'[8 i(,],.
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The additional daughter poles that appear be-
cause of exchange-degeneracy breaking will have
residues involving differences of s-t dual func-
tions with factors like I,—I,', and differences of
s-u dual functions, like I„-I,',. In the absence
of a particular dual model, we might expect, as
with the meson-meson system, that the contribu-
tion of differences of s-t terms will be of order
6 [since cz,(t) and n (t) are involved], and the s-zz
terms will be of order q [since a„(u) or zzzz, (zz)

are involved], which is in turn, of order ~6. This
leads to some confusion with regard to how these
daughter residues are to be extracted (and
whether the couplings to ordinary meson-baryon
states are of order 6z~' or 6z~'}. The confusion

may have its origin in the problem of removing
parity doublets, which arises in baryon channels
when amplitudes are functions of s and u rather
than Ws and Wzz. Without a specific model, we can
only say that the additional daughter residues will
be linear combinations of the s-t factors and the
s-u factors with coefficients that will depend on
spins, the parameters of the particular model,
and 6 and q. But this statement alone allows us to
investigate the SU(3) structure of these additional
terms.

The contributions to both signatures of daughter
poles arising from the exchange-degeneracy break-
ing of the s-t dual amplitudes will involve

zzz.(s):
nz (s):

&zz.(s):

nzz (s}:

I,—I', = 2 I,—2[1),—~~~ [8,2(3], ;

I —I' = —2 I,+ —", [1],+ —', [8, ] + —,' [8„],+ —,
'

v 5 ([8„],+ [8„],) + ~' [10],——", +11],+ +'' [27], ;

II, —II,' = 2II,+ —', [1],——,
' [8,(,],—10[10],;

II II'= 2II, —4 [1],+ —"[8„],—4 [8„],+ ~ V5([8„],+[8„],)+ —", [10],+ —", [10],+ '~~[27] .

(3.37)

The corresponding contributions due to the s-u dual amplitudes involve

o', ,(s): I„-I,', =21„+(2 q)[I], —;;[8„„],;

nz (s): I, —I,' = —2l,„+(q —4f —
8 )[1],—2($ —6)[8„]+2($+ ~)[8„],+4v5 ([8„]+ [8„],)

+ 2(5+ 2)[10],+ 2(5 - 2)[1o],——'; (5 - 6 )[27],

zzzz. (s): II,.—II,', = —2I„,—($ —2)[1],—&[8 zi, ],+ 10[10],;

nzz (s): II - —II -=2 I +($ ——,
'

q —4)[1] —2(q —~~~)[8 ],+2(q —zz)[8o, ] —~4W5([8„],+ [8„],)
+ l(n 8)[1o],+-lÃ], ——", (n+ l)[27], (3.38)

The terms I„II„ I„are unspecified in the preced-
ing. Whatever the form of these terms, it is clear
that exotic representations [10]and [27] will re-
main at the first daughter level. Whether these
exotic baryons (8,) will appear with both signatures
on the daughter trajectory of n„, n, , n«„or
n«, will depend on the choice of parameters and
the particular dynamical realization of duality.

For the simplest choice of new parameters,
I.=O, II.=O, I,.=O, the [10]and [27] baryons will
appear on the lower trajectory daughters, n, and

n», with both signatures, in general. Hence,
from our point of view, exotic baryon states that
couple to the ordinary, nonexotic meson and baryon
states, must appear at the daughter level in order
to maintain duality in the presence of exchange-
degeneracy breaking of the ordinary mesons and
baryons. Because the leading baryon trajectories
are split more strongly than the mesons, the
coupling of the exotic baryons to nonexotic meson-
baryon channels may be close to full strength

(i.e., 6-10%, q -30%, qz~'-50%). So, such
6aryons will be broad and difficult to disentangle
in nonexotic meson-baryon channels.

IV. THE BARYON-ANTIBARYON SYSTEM

The difficulty of the implementation of duality
constraints for the BB system is the original im-
petus for postulating exotic mesons. ' To recapitu-
late the argument, in the BB system, the s- and
t-channels are identical and the u channel is the
dibaryon channel, for which there were no known
prominent resonances (at least until recently" ).
The s-u duality constraints thereby require strong
exchange degeneracy among the meson states in
the s channel in order to cancel the imaginary
part of the u-channel amplitude. If these mesons
are chosen to be the nonexotic vector and tensor
nonets, then crossing into the t channel produces
additional exotic meson states which must also
fall into strong exchange-degenerate patterns.
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The s-t crossing symmetry then requires these
exotic states in both channels, with couplings to
BB of normal hadronic strength. That such states
were not seen below@ the BB thxeshoMs lead to the
speculation that they did not couple to ordinary
me sons.

We have seen that exotic mesons are "gener-
ated" by the breaking of exchange degeneracy in
the MM and MB systems, and that they appear
at the first daughter level, weakly coupled to MM.
Consistency thus requires that these be the same
states that appear in BB. In order that they agree,
the meson states in BB must satisfy a form of du-
ality. That is, the leading nonexotic mesons on
o (s) are dual to exotic mesons on ~(t) —1 in the
crossed channel and vice-versa. This is suggest-
ed by the quark duality diagrams of Fig. 4 and by
the analysis of finite mass sum rules in certain
inclusive processes 2' An immediate implication
of this hypothesis is that an exotic-exchange reac-
tion, such as PP -Z-Z or -'--'-, has asymptotic
behavior determined by o (f) —1.

An example of such duality, in the absence of
spin complications, is the amplitude

(4.1)

where B is the beta function, N, is a combination
of nonexotic representations in the s channel, and
M, =N, includes exotic representations in the s
channel generated by crossing the nonexotic states
from the t channel. By considering the pole struc-
ture or the asymptotic behavior in either channel,
it can be seen that N, is proportional to the residue
of the exchange-degenerate poles on n(s), while
M, is proportional to the residue of poles on
n(s) —1. This example is included in order to
clarify our notion of duality, and to serve as a
guide in discussing the BB system. We will not
construct an explicit dual dynamical model, but
will examine the SU(3} structure of the system,
as we did in the MB system without breaking ex-
change degeneracy. Our primary purpose here is
to use the BB system to provide additional con-
straints on the couplings of the exotic mesons to
BB.

The scattering amplitude for BB-BB reactions
consists of 32 independent terms which are com-
binations of spin- and SU(3)-reduced amplitudes, "
satisfying P and C or T constraints. These am-
plitudes may be chosen to be invariant amplitudes,
definite spin amplitudes (as in Ref. 32), or hel-
icity amplitudes. The Reggeon couplings obtained
from the MB system were expressed in terms of
s-channel helicities, so that it is efficacious to
work directly with helicity amplitudes. Further-
more, we are interested in couplings of faetoriz-
able natural-parity exchanges and resonances,

which reduces the number of amplitudes. We will
implement the duality hypothesis by assuming the
normal singlet and octet mesons are exchanged in
the t channel and so generate s-channel exotic
states B. ecause of SU(3) crossing, the s-channel
states belong to the [1], [8„], [8„],([8„]+[8„]),
([10]+[10]},and [27] representations, and these,
in turn, can only contribute to five out of seven
possible independent linear combinations of hel-
icity amplitudes, which reduces the helicity struc-
ture to that of the antinucleon-nucleon reactions.
Finally, then, the natural-parity-exchange con-
tributions to the s-channel helicity amplitudes
at asymptotic energies can be written in terms
of the couplings obtained f»m Eguehi's model in
Eq (3.2.0}. The amplitudes (to first order in f
and leading order in s) are thereby of the form

f f
++q J + q +

. g ([.";(R)]'+[g,(R)]')[R] s "', (4 2)
R

++y+ +y++ + g++ ++y +

R

+g„(R)g&(R))[R]-,s

where the sum is over nonexotic SU(3} represen-
tations, the notation for the couplings is identical
to that in Eq. (3.20), and the helicity amplitudes
are in standard notation. " Because of the CP
constraints, " [8„],and [8„],must appear in the
even combination ([8 ],+ [8„],so that the nonf lip
&& flip term must be symmetrized accordingly.
The requirements of strong exchange. degeneracy
are

g„'(R) =-g„(R), g~(R) =-g~{R), (4.3)

which are satisfied by the couplings, providing
the additional singlet of odd signature (which does
not couple to MM) is introduced for completeness.

Now duality requires that the asymptotic am-
plitudes of Eq. (4.2) be built up by M, exotic re-
sonances on a(s) —1 [e.g. , the M, term in Eq.
(4.1)]. The net M, residues are thus proportional
to the expressions in Eq. (4.2) with the represen-
tations crossed into the s channel. These resi-
dues will be expressed in terms of direct channel
helicities, but to compare with the corresponding
crossed-channel exchange couplings, the helicities
must be crossed into the t channel. In other
words, we want those combinations of s-channel
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helicity amplitudes that give rise to pure nonf lip
or flip vertices in the crossed channel at corres-
ponding asymptotic energies in the crossed chan-
nel. Such combinations are easily expressed, "
for natural-parity resonances, as

nonf lip-nonf lip: f„„,
2M

nonf lip- flip: f„„+ f„,, (4.4)

4M 4M'
flip-flip: f....+ f„,+ f„-t

Then the M, resonance couplings of Table' ll sat-
urate these combinations of amplitudes, by the
duality hypothesis, at the daughter level. Hence
for the M4 resonances,

g $[k„'(R)]'+ [h„-(R)]'+ [k„(R)]'+[k„-(R)]2][R),-f,.„,
p ([k;(R)]'y [k,-(R)]'+ [kf'(R) p+ [ky(R)]')[R],

(4.5)
4m 4m'

++ ~ ++ a ++~ + f...-t

P I[k„'(R)k;(R)+k-„(R)k;(R)+k„'(R)k;(R)

+k„(R)k~(R)] [Rj,-f„„+'2M
++, +- p

v

where the k'(R)'s (k'(R)'s) are the couplings of the
even- or odd-signature M, states in the [R] re-
presentation lying on o, —1 (n, —1), as expressed
in Table II, and it is assumed for this discussion
that (y, —(y -0.

Before implementing the duality constraints we
must decide what the spectrum of M4 states will
be in Eq. (4.5). To begin with, every represen-
tation in 88 must be present, since the expan-
sion of the exchange terms of Eq. (4.2), with the
couplings fixed [Eq. (3.20)], populates all of the
possible s-channel representations. Hence the
([10]+[10]) terms must be present, although such
states do not couple to the MM system. Such ex-
otic states would obey the FWR rule exactly in
our scheme. Furthermore, additional odd-sig-
nature states, that would couple to pseudoscalar-
vector-meson systems, must be introduced to
cancel out dibaryons in the u channel. Hence there
must be odd-signature 27-plets [k (2V), k (27)] to
accompany the two even-signature 27-plets
[k'(27), k'(27)] that arose in the MM and MB sys-
tems. Although one odd-signature 27-piet might
be sufficient, it is more natural to parallel the
strong exchange-degeneracy pattern of the normal
mesons by requiring two, with

k„'(27) = —k„(27), k~(27) =-kq(27),

k„(av) =-k„-(27), k;(27) =-k;(av) .
I

For the octets and singlets, the situation is more
complicated due to possible mixings and confusion
with the daughters of the normal mesons. We
will ther'efore concentrate on the exotic repre-
sentations in implementing duality constraints.

Expanding the exchange contributions to the hel-
icity amplitudes [Eq. (4.2)],. with fixed couplings
[Eq. (3.20)], into s-channel representations and
equating these with the M4 resonance contributions
[Eqs. (4.5}]gives the duality constraints on the
27-piet,

([k„'(27)]'+[k„'(27)]']G,=",2,
' G, ,

f[k;(av)]'+ [k;(2v)]'] G, = —,', G„
([k„'(27)kq(27)]+ [k„'(2V)k'(27)]]G = ~~ G, .

(4.V)

k„'(27) = 49, k~(27) = 12,

k„'(27) = -94/(5a, —aa, )' ~',

k~(27) =-38/(5a, -aa, )'~'.
(4.9)

Thus the BB couplings of the (o,-1) 27-piet exot-
ic, or the k(27}, is at least twice as large as the
coupling of the (n —1) 27-piet, exotic, or the
k(27). Stated another way, the k(27) exotic reson-
ances contribute more to the building up of the
normal exchanges in the duality sense.

There are two important implications of these
results. First, we see that there must be at least
two 27-plets in order to satisfy the meson and
baryon duality constraints. Since the coupling of
k(27) to mesons is proportional to (5a, —aa, )'~'
(see Table H), this multiplet is more weakly
coupled to mesons, but more strongly coupled to
baryons than its counterpart, k(27). The limit
5a„=aa, is not allowed, however, since the k(27)
does not couple to mesons in that limit, which

The overall strengths G, and G, on the left- and
right-hand sides are unspecified without a dynam-
ical model, but the relative strengths G, /G, will
be fixed by these constraints. The coefficients h

and k are functions of n», f», and (5a, —aa, ),
as determined from MB duality in Table H. With
0 &5a, —2a, ~ —,', as required for meson residue
positivity in Eq. (2.13), the nonlinear constraints
(4.7) yield unique solutions for n», f», and

G, /G„ for each choice of 5a, —aa, Over the full
range of allowed 5a, —2a, values,

n„=-100, f„=-40,
(4.8}

(G /G )' ' = 74/(5a —aa )' '

are good approximations within about 8/o. The
resulting couplings are approximately
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N-F
arc cos — =48'.

IN I IF I

(4.11)

Comparing with the sizes of the 27-piet couplings,
Eq. (4.9), both k and k (10+10) couplings to BB
are comparable to the k(27) in magnitude. The
(10+10)'s, which do not couple to mesons in our

''scheme, are thus possible narrow exotic states
near the BB threshold.

In all of the above discussion we have assumed
exact exchange degeneracy for the BB states.
Consistency with MM and MB requires thai the
degeneracy be broken. While such an investi-
gation has begun, it is considerably more com-
plicated, due to the spin structure. Certain qual-
itative results must emerge, however. By break-
ing exchange degeneracy while maintaining duality,
the imaginary part of the u-channel amplitudes
will become nonzero. Hence dibaryon states must
emerge, with couplings proportional to the same
splitting parameter, v 5. These states will lie at
the second daughter level, since the exact ex-
change-degeneracy limit must restore duality be-
tween leading poles and first daughter mesons.
To maintain s-u duality when the first daughter
degeneracy is broken would require these second-
daughter states in the u channel. Then, because
of spin complications, these dibaryons would lie
on trajectories that could be depressed one more
unit of angular momentum ——,

' unit of angular mo-

requires n =f=0 to satisfy factorization and does
not allow BB constraints to be satisfied. The k(27)
will thus be a candidate for narrow states in the
BB system near threshold, whereas the k(27)
will be broad. Neither of these will be narrow
far above the relevant thresholds.

Duality also requires ([10]+[10]) multiplets to
couple to BB, the relevant constraints being

j[k„'(10)]'+ [k„'(10)]') G, =+,' G, ,

{[kq(10)]'+[k~(10)]')G, =—'„' G, , (4.10)

2{[k„'(10)k'(10)]+ [k„'(10)k'(10)])G, =—,' G, ,

where the h's and k's are the couplings for two
positive-signature (10+10) multiplets. Because
of factorization, two such multiplets must be
present, at both signatures. Since these con-
straints do not determine the ~'s and k's com-
pletely, it is convenient to treat (k„,k„) and (k&, k&)

as two 2-vectors, N and F. Then the constraints
imply [along with G, /G, from (4.8)]

~

N
~

= f[k„(10)]'+ [k„(1O)]')'~'

=80/(5a„—2a )' ',
IF ~=([kp(10)]'+ [ky(10)]')'"

= 71/(5a, —2a,)' ~',

mentum for each unit of baryon number. 'This
would suggest that a leading dibaryon trajectory
would be at n(u) —3, at least before SU(3) splitt-
ing. Hence the first manifestation in nucleon-nu-
cleon of such states wouM be near the threshold,
with total spin 1, near the mass of the spin-4
k(2040) meson. The next recurrence would be a
spin 2 object near 2.4 GeV/c'. Whether or not
these correspond to some recently reported dinu-
cleon resonances" remains to be explored.

That dibaryons appear via breaking of exchange
degeneracy in the BB system, and that exotic
mesons and baryons emerge from the same mech-
anism in the MM and MB systems, suggests a gen-
eralization to more exotic multiquark states that is
reminiscent of string models and dual models. '
That is, if we consider duality constraints applied
to reactions with exotic external particles, ex-
change-degeneracy breaking will require yet more
exotic exchanges on more depressed trajectories. ,

'These new exotics will appear as normally coupled
objects in yet more complicated exotic reactions
through duality in the exact exchange-degeneracy
limit. Such an algorithm for muliiquark states
will never terminate —giving rise to an infinite
family of more and more massive exotics. For
the present, however, this is highly speculative.
Further study of such a scheme requires a more
careful treatment of the BB system.

V. CONCLUSION

We will now summarize the essential results
that have emerged from our scheme for deter-
mining the properties of exotic states and com-
pare these features to other approaches. 'To begin-
with, exchange-degeneracy breaking in the MM

system requires exotic mesons on daughter tra-
jectories. As suggested by Chew' and Veneziano
and Bossi, this gives the M, trajectory an inter-
cept of --& and a normal slope. This intercept
also arises in a multiperipheral approximation for
exotic exchanges" and in phenomenological fits to
exotic- exchange reactions. "

The FWR-rule-violating decay widths of the M4
states into normal mesons are proportional to 5,
the effective exchange-degeneracy-breaking para-
meter for the normal vector and tensor nonets.
This connection makes sense in terms of dual
unitarization since M4 states are expected to
arise in M~ dual amplitudes through some of the
same planarity-breaking corrections in the topo-
logical expansion that break exchange degener-
acy. '"""'"That is, the cylinder (torus) correc-
tion, that splits opposite-signature singlets
(nonets) in one channel, has exotic flavor in the
crossed channel, and thereby contributes to
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building up crossed-channel exotic states, in the
sense of fin'j. te-energy sum rules. It should be
noted, however, that the approximate calculation
of the cylinder correction" gives rise to the con-
jectured f-Pomeron identity, "and so the calcu-
lated breaking'parameter for the f-&u trajectory
is mass dependent. Our constant 5 can only be a
rough approximation to this dynamical effect.
Furthermore, ~since we do not distinguish different
sources of breaking, our 6 represents the average
splitting of the SU(3)-degenerate nonets. Even if
the f-&u splitting is indeed large, as it would be at
f = 0 for the f-Pomeron identity [o'&(0) = az, ,~,„„(0)
=1, n„(0)p~], our parameter 6 would be on the
order of —,', (taking an average over the full nonet
and ass~ing small breaking of yp for the other
nonet~mbers). If the f-Pomeron identity is not
correct, as some phenomenological" and theoret-
ical considerations" suggest, 6 will be somewhat
sr@aller. Another measure of the splitting is the

-'difference between the p and A, intercepts of -~~0

as determined from w P -n'n, ~, respectively. "
'The direction of the splitting was chosen so that

the tensor nonet trajectory was elevated by 6/2,
while the vector trajectory was suppressed by 6/2.
This direction is not arbitrary in our MM model.
Positivity constraints on the exotic daughters can
not be satisfied with the other choice, unless more
degenerate multiplets are introduced. This direc-
tionality agrees with the observation that the f tra-
jectory is raised.

The positivity conditions also require the de-
coupling of the (10+10) from the MM system, as-
suming a minimal set of exotic poles. Yet these
states must couple to BB via duality. Why the
FWR rule is maintained for the (10+ 10) system in

our scheme is not clear, but implies that these
exotics are the best candidates for narrow states.

As a result of factorization for M, exchanges in
the MM and MB systems, and duality for BB, the
effective splitting parameter for the baryon tra-
jectories, &, is considerably larger than that for
the mesons, 6, since e-v 6. This is an intriguing
relation that follows from our scheme in a natural
way, and is probably more general than implied
by this context. The actual splittings of the baryon
trajectories are roughly of this order (-30%), but
the precise orderings depend on dynamics. " The
actual spectrum of observed baryon states is not
settled as yet, either. "'" We have used the sim-
plest spectrum for implementing duality, ' but
more general forms can be treated in a similar
manner. The method we have used for studying
the relation between M, states and the broken
spectrum of baryons is suggested by some of the
conjectured topological corrections for the
baryons, ""although a consistent scheme for in-

corporating baryons into dual unitarization is still
being sought. "

The spectrum of M, states that emerges from
our MM, MB, and BB duality constraints is rich,
but not complete, since we have only considered
the leadio. g natural-parity states. However, these
states are similar to those natural-parity states
predicted in the diquark color-confining model of
Chan and Hogaasen. ' 'The states that couple
strongly to BB must be a nearly exchange-degen-
erate 27-piet (of both signatures), two (10+ 10)
multiplets, and at least two nonets that mix with
normal daughters. These correspond to the T
states of Chan and Hogaasen contained in the near-
ly degenerate [2, 36], [1, 18] [1, 18), and [0, 9)
(where the first number refers to the spin of the
diquark-Bntidiquark system and the second num-
bers are the degenerate flavor representations
36 = 1+ 8+ 27, 18 = 8+ 10, 18 = 8+ 10, 9 = 1+8).
The exotic 27-piet (k type) and (10+ 10) couple
weakly to mesons as in the T states. We have an
additional 27-piet trajectory (h type), however,
that couples strongly to mesons and weakly to B&
and wo~ld correspond to broad meson resonances.
Since we have not incorporated color into our
scheme, we do not know if including color would

suppress the meson couplings so that this h(27)
would become a Chan-Hogaasen M state. 'The M

states presumably couple weakly to both mesons
and B& since they consist of color-antisymmetric
diquarks and antidiquarks. ' On-the other hand, it
has been argued that ~4 states that couple strongly
to mesons emerge naturally in the bag model' for
low relative orbital angular momenta. " The
small-angular-momentum h(27) poles and the
mixed nonets may fall into that category. Settling
these questions will require a careful consideration
of the couplings Bnd a comparison with known

candidates for the states. Broad, low-mass
exotic state coupling to many mesonic channels
may be difficult to disentangle phenomenological-

ly, ' although there is evidence for cryptoexotic
low-mass mesonic states. ""

With our spectrum of M4 states on daughter tra-
jectories with normal slopes of -1 GeV ', we ex-
pect narrow nonet, (10+ 10) and k(27) states near
the BB thresholds. In particular we expect, in
order of increasing widths, spin 3 resonances
near 1.9 GeV, spin 4 near 2.1 GeV, spin 5 near
2.4 GeV, and spin 6 near 2.6 GeV. 'There is
plenty of activity in the nonstrange-meson-re-
sonance data around these values. " 'The narrow
S resonance at 1.935 GeV may have spin 3, al-
though spin 2 may be preferred, and probably
consists of at least two states to account for its
suppression in PP -nn relative to PP -PP. The
T(2190) and U(2360) a,re broad and have spin
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assignments at 3 and 4, one unit below our ex-
pectation, but these spins are not firmly esta-
blished. At the moment the phenomenology of
nonstrange baryonium candidates is confused by a
plethora of possible states, "'"and we only await
the determination of some spins to pin down the
tr3jectory. For strange states there is one
striking candidate, the I meson at 2.6 GeV with
I'=20 MeV, seen in the decay mode K&H'LI'H ."
Even with the strangeness + 1 trajectories split
from the nonstrange M, trajectory, in our scheme
such a state would have to be at least spin 4. Many
more strange states must be seen, or course,
for any multiquark model to be believable. More
urgent is the necessity of seeing unambiguous
exotic flavor states. A determination of the un-
specified parameters in our scheme will allow us
to predict some of the exotic widths, branching
ratios, and production cross sections.

Exchange-degeneracy breaking in the M& sys-
tem also gives rise to exotic baryon daughters,
with couplings to ordinary MB states of order vV,
which is -2 of normal strength. Hence the FWR
violating decays of 8, states may have broad
widths. The 10 and 2V plets would be difficult to
disentangle from background, although possible
~* resonances in the AW system have often been
conj ectured.

'The dibaryon states that appear at the second
daughter level as a result of exchange-degeneracy
breaking in the && system may contain the re-
sonances that are reported in pp phase-shift
analyses. " More definitive statements about the
dibaryon spectrum require a consistent treatment
of the invariant amplitudes, so that the spin is
properly taken into account. Such dibaryon states
are predicted in string' and color bag models" as
well and in various potential models" for quark
clusters. ~ The coupling of dibaryons to ordinary
baryons will violate the FWR rule and will be
proportional to W6, just as in the M, coupling to
ordinary mesons. Allowed decays of dibaryons
(with sufficient mass) will be into BB, states,
since dibaryons will be dual to ordinary meson
exchanges in the BB, scattering amplitudes.

It is obvious from the last statement that the
generation of more and more complicated exotic
states arises by using exotic states as external
particles in dual systems. For &&„dibaryons
(6q) arise in the s channel dual to normal mesons
in the t channel and to M4 states in the u channel.
But M, (3q3q) states also arise in the u channel
dual to normal mesons in the t channel. And these
same M, states will appear in the MM, system
when exchange degeneracy is broken, at the se-
cond daughter level, since M4 is Bt the first
daughter level. This procedure, wh. ich is illus-
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FIG. 5. Generation of more exotic mesons. (a) BP
.and S5B allowed diagrams with M, M4, M6 intermedi-
ate states. (b) u-t dual diagram that enters s-channel
pole residue at second daughter level due to exchange-
degeneracy breaking.

trated in Fig. 5, can continue indefinitely, with

M,„states appearing on —n+1, coupling with
strength —

v 5 to MM, „„and with normal strength
to ++2 y

Similar rules can be obtained for states
with baryon number 1, 2, 3, etc. We are led
thereby to a dual scheme for constructing metast-
able multiquark systems on lower trajectories
which is similar to string, ' color bag, "and
cluster models, "but in which violation of FWR
rules' through exchange-degeneracy breaking
determines the daughter. trajectories on which the
multiquark states lie. How such a scheme relates
to previous dual models and dual unitarization with
color' remains to be explored.

At a more pedestrian level, completeness re-
quires that we consider the full SU(6) system of
external and internal states; i.e. , both pseudo-
scalar and vector mesons hand spin--,' and spin-2
baryons as external particles, along, with lower-
lying pseudoscalar and axial-vector mesons as
internal lines. 'Then the question of whether the
baryon spectrum is in the form (56)—(70) for
all f or (56) & even —(70) & odd can be consider-
ed, "by using a more general spectrum as the
starting point for breaking exchange degeneracy
in the meson-baryon system.

Secondly, the parameters for the M, states must
be determined by a phenomenological fit to the
existing baryonium candidates. This will be some-
what arbitrary at. this time, and will require some
ad hoc procedure for SU(3) breaking, but will
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thereby determine decay widths and branching
ratios for the exotic states and will enable esti-
mates of production cross sections. Furthermore,
the &, spectrum will be constrained as well by
this procedure. To pin down the dibaryon states
a more thorough treatment of spin in the BB sys-
tem must be undertaken. Considerable work re-
mains for our scheme to make contact with ex-
perimental data. We believe that because of the
many desirable features that emerge from the
calculation presented herein, additional efforts
will be rewarded by a deeper understanding of the

connection between duality, exchange-degeneracy
breaking, and multiquark states.
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