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Available data on the deuteron electromagnetic form factor are analyzed with a view to obtaining
information on its asymptotic behavior and extrapolating into the timelike region. For data analysis we adopt
an N/D method where the N and the D functions are assumed to represent the anomalous and the two-pion
cut contributions, respectively. The D function is represented by an effective-range-type formula and the N
function by optimized polynomial expansion in Laguerre polynomials in terms of a parabolic conformally
mapped variable. Contrary to the earlier cases of data analysis on the proton and the pion form factor by
such representation, the presence of the exponential weight function for Laguerre-polynomial expansion of
the N function provides a very effective method of parametrizing the data with economy of parameters.
Existing data on A(t) are consistent with an asymptotic behavior exp[— 0.931(Int)*]/t3. The deuteron
charge radius is computed to be 2.02 fm. The formula smoothly extrapolates into the timelike region without
showing any evidence of resonance peaks. The magnitude of the form factor near threshold of the process

e *e ~—dd is found to be |4 (14 GeV?)| = 1.765 X 10~°.

I. INTRODUCTION

The asymptotic behavior of an electromagnetic
form factor of a hadron is an important subject of
current interest. The simplicity and importance
of this subject have resulted in an enormous
amount of work in this field.! Apart from supply-
ing information on the compositeness or elemen-
tarity of a hadron, the asymptotic behavior of its
electromagnetic form factor reveals, to a certain
extent, the dynamics of interactions at short dis-
tances. Although there exist some models and
model-independent results, it is very important
that meaningful results be obtained from data an-
alysis. The deuteron is the simplest of the defin-
itely known composite systems, and its electro-
magnetic form factor provides an ideal illustra-
tion of the continuity between nuclear and particle
physics at the microscopic level.? The success-
ful description of the deuteron form factor in a
manner similar to the hadron form factors would
also indicate the possibility of applying the tech-
niques of particle physics in nuclear physics.
Further, values of the form factor in the timelike
region below the threshold of the process e*e-
—nh*h- are not directly accessible to currently
known experiments. Therefore it is extremely
useful that analytic parametrization of the space-
like data yields magnitudes of the form factor in
the timelike region on extrapolation. It is the
purpose of the present paper to show that a sim-
ilar scheme of parametrization, previously adopt-
ed for the proton® and the pion* form factors,
succeeds in parametrizing the data on the deuter-
on electromagnetic form factor and supplying use-
ful information.

In applying the theory of analytic approximations
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to describe the proton form-factor data, a mod-
ified N/D method was proposed® incorporating
correct analyticity in {, correct threshold behav-
ior, the lowest inelastic branch point, and leading
to an asymptotic behavior (In#)™/#" with m and n
being integers. Although analysis of the spacelike
data could not distinguish between two types of
fits with m =2 and n =2 or 3, extrapolation to the
timelike region revealed a better p signal and re-
production of the Frascati datum point in the case
of the fit with m =2 and » =3, thus indicating a fall-
off faster than the traditional dipole. Strong sup-
port, in evidence of faster falloff than the dipole
fit, has been advanced by many authors.’-® Using
such a technique an analytic formula was proposed
for the pion electromagnetic form factor including

‘p-w interference which succeeded in describing

both the spacelike and timelike data. Data analy-
sis indicated asymptotic falloff faster than the
single pole. From the best fit to the data, mean-
ingful information on the pion’s charge radius and
the p-w interference parameter was obtained.
Such a formula for data analysis has been found
useful elsewhere.’

Although experimental data on the deuteron
form factor A(¢) are available in the spacelike re-
gion only up to |#|=6 GeV2, it is possible to ob-
tain information on its asymptotic behavior from
data analysis since the deuteron is known to be a
much more loosely bound system than the proton
or the pion. Our analysis shows that the anoma-
lous and the two-pion cut can accout for almost
all the ¢ dependence of the data on A(¢f). The data
are well fitted with a formula having an asymptotic
behavior of the form exp[—a/(Inf)?]/#% as opposed
to the (In#)™/¢" type of behavior observed in the
case of the proton and the pion form factor, and
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the power falloff ¢ '° predicted by the dimensional
quark-counting rule (DQCR).2''° Such exponential
modifications of the asymptotic behavior are sup-
ported by asymptotic freedom and quantum chro-
modynamics (QCD). From the best fit to the data
on A(¢) we compute the charge radius of the deu-
teron to be (7,)=2.02 fm. Unlike the case of the
proton and the pion, extrapolation into the time-
like region yields no signals for meson reson-
ances. The magnitude of the form factor near the
threshold of the process e*e”—dd is found to be
1.765x10"° The result of our extrapolation can be
tested from the results of future colliding-beam
experiments.

We plan the paper as follows: In Sec. II we sum-
marize some results relevant to the present work.
In Sec. III we develop the formula for parametri-
zation. Section IV deals with results of data an-
alysis and extrapolation of the form factor into the
timelike region. Conclusions from this analysis
are summarized in Sec. V.

II. SOME RESULTS ON THE DEUTERON FORM FACTOR
A. Definition of form factors

In our notation the four-momentum squared of
the photon ¢ =¢2%=-@Q? is positive (negative) for the
timelike (spacelike) region. In the one-photon-
exchange approximation the covariant decompos-
ition of the elastic form factor of the deuteron is
written as'!

1 .
1"“(75)=(—2'5'5‘2—DT)T72— (D’|3*| D)
=—eG,()(e’ -€)d*
+Gy(H)[e" (e’ +q) — €™ (e - q)]

(c-9)e’ - q)
=Gy() =y d¥( . (1)
In (1) € and €’ are polarization vectors for the in-
coming and outgoing deuterons of momenta D and

D’ satisfying the conditions

€.D:€’.D’=O’ €2=¢”=_1
and (2)
d“:D’“+D”’, q“:D’"—D".

In our notation M, m, and m, are the deuteron,
proton, and pion masses, respectively, and B is
the binding energy of the deuteron.

We assume the Lorentz-scalar functions G, (t),
G,(t), and G,(t) are analytic in the complex ¢ plane
with right-hand cuts only. The anomalous cut
starts from ¢{,=16mB and the two-pion cut from
t,=4m.. Besides these, there are other inel-
astic cuts lying farther away from the origin in
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the ¢ plane. The physical form factors, which

are called the charge form factor G,(¢), the quad-
rupole moment form factor Gy(#), and the magnet-
ic form factor G,(f), are defined in terms of G,,
G,, and G, as'

t
6M 2

G (1) =G,(8) -~ Go(0),

Go(t) =G, (1) - Gy(D) + <1 - 4;42 > G,(1), (3)

G,(t)=G,(1) .
From experimental values these three form fact-
ors are normalized as

G,(0)=1,

G,(0)=1.71 (in units of e/2M), (@)

and
Go(0)=25.84 (in units of M%),

The differential cross section for elastic e-d scat-
tering is given by the Rosenbluth formula

do (dc ) [ 0 ]
—~ === At f)tan? 2L
79 a0 /. (#) + B(t) tan’ 51 (5)
where the elastic form factors A(¢) and B(f) are
related to G,, G4, and G, in the following man-

ner'?:

4 2
AW=cz2+ S _ ! (1 t)c,f, (6)

18M* ~ 6M2 \ ~ 4M?
B(t) = _t_<1 L )c 2 0
TTB3MZ N\ T amzE) M

1t is obvious that A(#) and B(¢) also possess the
same analytic structure in the ¢ plane as any one
of the form factors G,, G,, and G,. Extensive
data on A(f) are available!® in the spacelike region
extending up to 6 GeV2. We will develop a formula
for parametrizing A(f) in the next section.

B. Some theoretical models and asymptotic behavior

During the past few years some attractive mo-
dels have been proposed for the deuteron form
factor. For a hadron with » constituents the di-
mensional quark-counting rule (DQCR)° predicts
an asymptotic behavior of the type

1

F () 7 (8)
Taking the deuteron to be a six-quark system the
form factor A(f) falls off at large ¢ like #-'° in this
model. Recently Brodsky and Chertok? have plot-
ted the function f(¢) =t [A(¢)}/? against |¢| using
experimental data'® on A(f). Existing data'?, on
the deuteron form factor do not show constancy
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of the function f(¢) for large |¢|. Schmidt and
Blankenbecler!* have proposed a parton-model
description of the form factor having the same
asymptotic behavior as DQCR. Although the two-
parameter formula proposed by the authors agrees
well with the data for low- and high-Q? values,
agreement for the intermediate Q% values is poor.
Recently'® a covariant model has been proposed
including spin which contains four parameters and
yields a fit similar to that of Ref. 14. To the best
of our knowledge there has.not been any work yet
in.the literature which deals with data analysis
and reports values of x2/DOF for the deuteron
form factor.

Besides these works we summarize below some
asymptotic results relevant for the present anal-
ysis. Although Broadhurst'® proved asymptotic
upper bounds of the form (Int)¢/¢#*1/2 for the
Dirac form factor of the proton, where p is the
exponent in the threshold behavior of the structure
function vW,, the same result can be derived for
any composite object if one ignores spin.!” The
Drell-Yan-West relation'® saturates this upper
bound without factors involving powers of loga-
rithm. In earlier works form-factor parametri-
zation was proposed by formulas which asymp-
totically saturate such bounds. West® has demon-
strated using data on A(f) for |£]|>2 GeV? that
A(t)<ct2 for large |t|, falling off faster than the
prediction of DQCR. An asymptotic falloff of the
type :

At [%] N ©)

has been obtained in the dynamical model of fac-
torizing quarks.!® Repetition of the same calcu-
lations as that adopted for the proton using local
duality and asymptotic freedom” would yield the
asymptotic behavior

A(f) < exp[-const X (In?)?]. (10)

Quantum chromodynamics (QCD) predicts such
type of modifications to DQCR asymptotic behavior
arising out of quark form factors. In particular
duplication of the analysis of Coquereaux and
Rafael® would yield the asymptotic behavior

A(t) e 00+ @ exp[- 42 (Inf)(In Int) ], (11)

where € is an unknown constant stemming from
corrections introduced by binding of the quarks.
All the asymptotic results mentioned here are con-
sistent with the lower bound?° '

A(t)>exp(=b|t|*/?) (12)

derived as early as 1965.
To summarize, we have noted that although
DQCR predicts asymptotic behavior ¢71° for A(f),

there is enough theoretical evidence in support of
a faster falloff for large |#|. In the next section
we propose a formula for parametrizing A(¢)
which has the potentialities of yielding most of the
asymptotic behaviors cited in this section.

III. FORM-FACTOR PARAMETRIZATION
Following earlier works?® we propose
A(#)=N(t)/D(?), (13)

where D(t) represents the two-pion cut and has the
form

DO =L +h(t)+ L (14)
with?!
L0=3 a,. (15)
2 K
h(t) =~ vl In[(¢/t 2+ (t/t = 1)M2]
R .
-1 F (16)
for n>2 and
k=(ét—m,,2)1 /2. (17)

Justification for this choice of the D function has
been discussed earlier.>** Unlike the proton and
the pion cases where the other cuts in the ¢ plane
are farther than the two-pion cuts, in the deuter-
on case there is an anomalous cut which is closer
to the origin and extends from f,=16mB to t=co,
We assume that the N function represents the an-
omalous cut. In the absence of our knowledge
about the function on the anomalous cut we adopt
the ideas of analytic approximation theory.®'* of
data analysis®?-?* and map the anomalous cut onto
the boundary of a parabola® with focus at the orig-
in, in the Z plane where

Z(t) ={Inl(=t/t /24 (=t/t,+ 1722 (18)
We note that for |¢|—e
Z()~(In|¢] ). (19)

In the Z plane the image of the physical region is
the entire right half of the real axis, a physical
region appropriate for Laguerre-polynomial ex-
pansion and the image of the cut coincides with the
figure of convergence of Laguerre polynomials.
We can now represent the N function by Laguerre-
polynomial expansion with the appropriate expon-
ential weight function®'?* exp(—aZ),

N()=exp(-az) Y C,L,(20Z). (20)
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In (20) « is a constant which fixes the size of the
parabolic figure of convergence. Further, since
the entire cut ¢ plane is squeezed into the interior
of the parabola in the Z plane, the series (20) con-
verges at the fastest rate.Z Now we can truncate?®
the series for the purpose of data analysis by re-
taining only the first N significant terms and re-
write (20) as

N(t)=exp(-aZz) ﬁ: e, Z". (1)
m=0

The presence of the exponential weight function
has been emphasized in the context of diffraction
scattering.?® Recently it has been shown that such
an expansion of the scattering amplitude yields a
unified description of slopes of diffraction scatter-
ing for all energies.?® When one takes into account
energy dependence of « in scattering processes,
such a representation has been shown to describe
scaling of the cross-section-ratio data remark-
ably well.?” In earlier works3'* on form factors
the experimental data were consistent with this
weight function being unity (¢ ~0). In the present
case, however, we will see in the next section
that the presence of this weight function is essen-
tial for the economic parametrization of the form-
factor data. With the formulas (14)-(17) for the
D function, the subtraction procedure,? and the
representation (21) for the N function we observe
that for any m and n the formula (13) has the po- .
tentiality of satisfying the asymptotic behavior of
the type

(1nf)™

A(t) i

exp[-a(lnf)?]. (22)

For ¢ =0 formula (22) saturates Broadhurst-type
bounds, but for m =n=0 it yields asymptotic be-
havior (10) obtained by using local duality and
asymptotic freedom.” For m =0 and ¢ =0 it yields
asymptotic behavior predicted by DQCR for n=10,
In view of these potentialities it will be interesting
to see how this formula fits the data. In the next
section we report our result of unbiased data anal-
ysis using the formula (13).

IV. RESULTS AND DISCUSSION
A. Data analysis and asymptotic behavior

We have collected 59 data points on A(¢) from
the literature.!® At first we tried to make a data
analysis with a bias from DQCR and our earlier
analysis®* taking a=0. It may be noted here
that to attempt to fit the data on A(¢) with formula
(13)-(21) with @ =0 would require at least 11 para-
meters for the D function if DQCR is correct,
while it requires at least 13 parameters to be con-
sistent with asymptotic behavior*® of the type ¢2.
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In addition, other parameters are required in the
N function to account for the possible presence of
logarithmic terms. Using a search program it
appeared to be almost a formidable task to find
the unknown parameters a;’s and e,;’s with correct
signs®® with an IBM 1130 computing system. We
found that inclusion of as many as six parameters
in the D function yielded®® a total y* value more
than four times the accepted value for a good fit
and for a good fit the data required more para-
meters. We next carried out an unbiased data an-
alysis with o as a free parameter. To our sur-
prise, a good fit was obtained with

@ =0.931,
€,=a,=1.0 GeV?,
a, =-6.507, (23)

a,="74.289 GeV 2,
a,=0.192 GeV -4

with only four parameters in the D function. We
note that unlike the other case®® the series in the
D function in the present case starts converging
after the third term. For this fit x2/DOF=1.58
for 54 degrees of freedom.?® The fit is shown in
Fig. 1. Inclusion of other parameters ¢; with ¢

> 1 did not improve the fit significantly. The asy-
mptotic behavior for the fit (23) is

A(t) cexp[-0.931(Int)2]/# . (24)

From the present analysis it is very clear that the
presence of the exponential weight function for the
Laguerre-polynomial expansion in the N function
serves as an important factor for the economic
parametrization of the form-factor data. As has
been already pointed out, the presence of this
weight function gets strong support from predic-
tions of asymptotic freedom? and QCD.?

-

B. Extrapolation into the timelike region, computation
of charge radius, and 0,+-_, j4 near threshold

The theory of analytic approximation by conform-
al mapping ensures stability of extrapolations from
interior points onto the boundary.?? Although the
D function has not been approximated previously
by conformal mapping, we assume that it is a
good approximation and stable against extrapo-
lation, from our earlier experience, particularly
from the extrapolation of the proton form factor.?
For extrapolation it is necessary to state that in
the timelike region .

t 1/272
Z(l‘)=—[tan'1(t—97> ] , for i<, (25)
a

and
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FIG. 1. Fit to the deuteron form-factor data on A (¢) in the spacelike region. The data points are from Ref. 13.

2
Z(f)= =~ +incosh™(t/t)}/?

+[cosh(¢/t ) /2P, for t>¢,. (26)

Thus the magnitude of the N function increases up
to £=¢, where it reaches a maximum value of
exp(am/4) and decreases thereafter. Extrapo-
lation onto the region with £<Z, and up to £=0.11
GeV? is shown in Fig. 2. We find that the behavior
around the origin is very smooth. From the para-
meters given in (23) we obtain the derivative at the
origin to be

A’(0)=34.8 GeV=2. (27)

Now using the relation (6) and this value of A’(0)
we obtain the deuteron charge radius

<’Vd>= [GG(’;(O)]I /2
=2.02 fm . (28)

To our knowledge there does not exist any com-
putation of the deuteron’s charge radius from data
analysis.! As early as 19 year ago, Frazer and
Fulco® conjectured that the large value of the pro-
ton’s charge radius may be due to the exchange of
a pion-pion p-wave resonance.

In the present case the anomalous cut is closer
to the origin than the two-pion cut and has a dom-
inant contribution to the charge radius. From our
calculation we find that the anomalous cut contri-
butes nearly 81% to & 2) and the rest 19% is due

T y Y T T T T T T T L T

1A ()l

e N AN A

-006 -004 -002 (¢} 0.02 004 006 008 OI0

t (Gev?)

FIG. 2. Smooth extrapolation of the deuteron form
factor from the spacelike into the timelike region. The
peak in the timelike region appears at the start of the
anomalous cut.
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t ¢ GevD

FIG. 3. Extrapolation of the deuteron form factor into
the timelike region for large ¢ and for £>0.1 GeV?.

to the two-pion cut.

Extrapolation of the form factor A(¢) into the
timelike region up to the threshold of the process
e*e- —dd is shown in Fig. 3. We note that unlike
the case of the pion* and the proton,® there are no
resonance peaks in this case. This occurs be-
cause of the large value of a, relative to a, and a,
as demanded by the best fit to the data. ]A(t) | de-
creases rapidly for increasing ¢ and near thres-
hold it becomes

|A(14 GeV?)|=1.765 x10-°, (29)

From this value we calculate the cross section for
the process e*e” —dd near threshold to be ¢=~1.1

x 108 nb. Recently the proton form factor has
been measured® in the timelike region near the
threshold of the pp production from the process
pp —e*e”. Our extrapolated results on the deuter-
on form factor can be verified by the results of
future experiments. Questions may be raised
about the accuracy of these extrapolations. But
we believe these extrapolated results are accurate
at least in order of magnitude. Such a belief gets
strong support from the extrapolated results on the
proton form factor® and their agreement with ex-
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perimental values.?®3! The absence of vector-
meson signals in this case may be attributed to
the small coupling of these mesons to the deuteron.
Such small couplings may be due to the smallness
of the amplitudes for dd —i*h- where h*h- is a
charged-hadron pair occurring as intermediate
states in the form-factor diagram .32

The results quoted in this section are the extra-
polated results for which it may be necessary to
specify the error corridors. Owing to exigencies
of programming techniques, we have not been
able to specify errors in the parameters. The er-
rors in the experimental data contribute to the er-
rors in the parameters. An estimation of errors
in the parameters in such type of analysis was
carried out for the pion form factor? for which the
data both in the timelike and spacelike regions
were contaminated with relatively more errors
than the present case. But the errors in the para-
meters relevant for extrapolation were found to
be small. In the present case we hope the errors
are still smaller. :

V. CONCLUSION

Including the two-pion cut contribution by an ef-
fective-range type of formula in the D function and
the anomalous cut contribution in the N function by
means of conformal mapping and optimized poly-
nomial expansion, we have accounted for almost
all the ¢ dependence of the data on the deuteron
form factor in an effective manner. The presence
of the exponential weight function for the Lag-
uerre-polynomial expansion has yielded an effec-
tive method of parafnetrizing the data with an
economy in parameters., The present data are
consistent with an asymptotic behavior
-3 exp[—0.931(In?)?] which falls off faster than the
prediction of DQCR. Such type of exponential
modifications of the asymptotic behavior is expec-
ted from asymptotic freedom” and QCD.® The
charge radius of the deuteron is found to be 2.02
fm. Such a large value of the charge radius is
due to the anomalous cut. Unlike the earlier re-
sult on the proton form factor,® extrapolation into
the timelike region in the present case yields no
resonance peaks. Extrapolation of the form factor
onto the threshold of the process e*e” —dd yields
a small magnitude for the form factor implying a
small cross section for this process.
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where Fy (t) is the form factor of the hadron 2* and
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