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Acoustic radiation by charged atomic particles in liquids: An analysis

John G. Learned*
University of California, Irvine, Irvine, California 92717

(Received 14 July 1978)

A new analysis of the propagation of acoustic pulses produced by local heating of liquids due to ionization
by charged particles is presented. It is shown that the wave equations with loss dominate the pulse shape
after small distances and that, due to the bipolar 8-function behavior of the individual pulses, a net observed
pulse is just the time derivative of the received density of pulses from individual heating centers. Angular
distributions, signal-to-noise ratios, detectable volume, and numerical examples are discussed. One
important observation is that the effect of attenuation upon this type of radiation is to produce power-law
rather than exponential cutoff with distance. For example, in the thermal-noise-limited case the signal-to-
noise ratio defined herein only steepens by one-half power in falloff with distance due to attenuation.

INTRODUCTION

Substantial effort has been expended upon the
problem of acoustic radiation from the local heat-
ing caused by the traversal of a charged particle
or group of particles. ' ' The heating takes place
essentially instantaneously on both an acoustic and

a, thermal diffusion time scale. Herein the ap-
proach is taken that the bipolar nature of the pres-
sure pulse emanating from a tiny heated region is
known, but that detailed knowledge of its shape is
not necessary beyond a normalization constant. It
will be shown that the measurement of a macro-
scopic pulse arising from the sum of a large num-
ber of tiny pulses distributed in time permits cal-
culation of this normalization constant for these
individual microscopic source pulses. Once having
measured the constant in question, one may pro-
ceed to calculate the pressure pulse from any given
distribution of ionizing particles (assuming that
they have the same mixture of 5 rays that our first
measurement has). One is able to calculate the
magnitudes and angular distributions of pulses
from showers of charged particles, and detectable
volumes for them, for example.

An essential viewpoint of this paper, then, is
that one need not be concerned with complex de-
tails on the atomic scale of the acoustic-pulse pro-
duction, but that observation at finite distances
yields. signals whose character is controlled by the
propagation constants of the medium. Considerable
effort is required to solve the thermoacoustic
equations on. the microscopic scale, yet the details
are unobservable except in special situations.

Another critical difference in approach taken
herein, as compared with other published tech-
niques for calculating particle-induced acoustic
radiation, i.s the recognition of the importance of
working in the time domain. Because of the im-
pulsive nature of the source, the mathematics is
simpler in the time domain and calculations using

I. RADIATION FROM POINT SOURCES WITH
ATTENUATION

The equations that govern the propagation of in
acoustic pulse are three: equation of motion

(f=Ma):

p Q
8

0 x

equation of continuity (conservation of particles):

BQ„
Po ~" = Pe~ (2)

equation of state (Stokes):
K,

P, =p, '+ p, ~

numerical techniques are not subject to the diffi-
culties that appear when carrying out Fourier
transforms for transient sources.

Since this work spans several areas of special-
ization in physics, some details, unnecessary to
the expert, have been included and thus some read-
ers may wish to skip sections. For example, Sec.
I should not be necessary for those familiar with
underwater acoustics. Section II presents some of
the important characteristics of point-source ra-
diation, many of which apply equally to distributed
sources as shown in Sec. III. A specific geometry,
that of line radiation including the effects of a fin-
ite distribution of ionization around tracks (such
as those of relativistic heavy ions), is treated in
Sec. IV. A short diversion in Sec. V demonstrates
that the total acoustic noise resulting from cosmic-
ray muons in the ocean is negligible compared to
the thermal noise spectrum. Finally, in Sec. VI
the problem of acoustic radiation from cascades
of atomic particles is discussed and the results of
an initial calculation presented.

It should be emphasized that throughout this pa-
per I assume only the thermoacoustic production
mechanism to be significant.
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p pl, p=o,
(Oo j C 0

(4)

where uo K,/g and co=(K,/po)' '. (In water vo
=10" Hz and cc =1.5xlo' cm/sec. ) This simple
form will be adequate for our present require-
ments. (To appreciate the complex theoretical sit-
uation read Hunt's article on the propagation of
sound in fluids' or Morse and Ingard's classic
text, ' Chap. 6.)

A useful approach to the solution of the wave
equation is to take its Fourier transform

where

po = equilibrium density of the medium,

u„=particle velocity in the z direction and the
dot stands for time derivation (partial and

total the sa.me here),

p, =the pressure, subscript e standing for excess
over the equilibrium value,

K, =the bulk compressibility of the medium,

& =a constant relating to the viscosity of the medi-
um ~

The equation of state is debatable. (A mechanical
analog for this equation is a spring with parallel
dashpot whose force is proportional to the velocity
of the system. An electrical analog is a series
IA circuit). One can choose other models (as for
example Maxwell's equation), ' but the simplest de-
scription of the observed loss in water and most
liquids having a frequency-squared dependence is
given by this model. An accurate predictive de-
scription does not exist on account of complex
molecular relaxation phenomena in many liquids
(particularly sea water) and because of small, but
difficult to handle, thermal effects, shear effects,
etc. The Stokes form will suffice for most situa-
tions, though, for example, the observed absorp-
tion is about 3& times the classic prediction above
1 MHz in mater. We need only increase the ab-
sorption to match the observed value. The varia-
tion from frequency-squared dependence of the at-
tenuation actually observed in the ocean provides
the limitation for this model. It is not a serious
limitation, homever.

VFe may morry as to whether infinitesimal-ampli-
tude acoustical theory applies here. Near the par-
ticle tracks it may not, where some shock-wave
phenomena might need to be considered. 'The ef-
fect of a piling up of initial amplitude would be to
introduce higher-harmonic content which would be
severely attenuated by the medium, and hence un-
observable.

The wave equation in terms of the pressure can
be written

CO - ~ (d
V P(x, ((&)+i — P(x, (d) +

~

—P(x, ()&) =0,
~0 Ã0

where

Thus we can write

V'P(x, ~)+k'P(x, (d) =0,

where

1 B ( BP 1 B'P„7'P= r2
r Br ), Br r Br

if we replace P by P„/r.
We can also expand k since ~/~, «I:

(d 3k=a —1 ——
~

+ ~ ~ ~

8 ('do ]

(lo)

+i 1 ——
~

—+ ~ ~ ~

2 coop 8 (coo

We see that the dispersion will be slight for all the
frequencies of interest to us (&100 MHz). So also
will be the deviations from a frequency-squared
dependence of the absorption term.

Keeping only the terms up to O((d2/e2) we get

P(r ((&) p ( ())&e- &&w c/& "-( (c/2ca0& r1- - -2
0

So far we have only considered the source- free
wave equation. Neglecting loss we can write the
wave equation for a point source of heat" as

I .. P 8EV'P 2P =-- —
Co C~ 'dt

where P is the bulk coefficient of thermal expan-
sion, C& is the specific heat at constant pressure,
and E is the energy deposition in the form of heat.
The solution to this is simply a pulse of the form
of a time derivative of a 5 function if we make the
heat deposition a 5 function in time and space:

E =E,B(f)B(r), (13)

(14)

where z is a scalar quantity since this represents
spherically symmetric monople radiation.

(d 1

c (1 + i((&/(0, )' '

'Then we immediately have solved the x dependence

by

P(x, (d) =P, (~)e "". (9)
Moreover, let us settle the question of radial de-
pendence. In the case of a spherically symmetric
source
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A more useful solution is for the case of a Gaus-
sian distribution of heat

tt
p(r=0 t')=- — e "' ' ' ' r&0 (15)

v'2m o3

where A =p/4vg3, t'= t- r/c. This is a bipolar
pulse, the time derivative of a Gaussian, which we
will discuss further later on. It has Fourier trans-
form (gotten by completing the square):

p, =p(r = 0, (u) = i ' (oe " '/' .

Ne now have the complete Fourier spectral func-
tion as a function of r, including attenuation [see
Fig. 1(b)]:

AED
P(r, ~)=i '(uexp- t —+ +r 2+pc 2 j

To get the time dependence we retransform, ar-
riving at

AEP t t 3/3 ~2

r
where

t'=t-r/c (t&0)

and

)X/3

~=le + )
Notice that the function is the derivative of a Gaus-
sian in time near the observation point (near zero
in the retarded time) with a spread

v, r=0

( r )1/I'2

r large (»~,co'}
I,ceo]

Explicitly writing the function in the limit of large
r we have [see Fig. 1(a)]

( 1 t ) ( )3/3 0 t -( /3 )tAE t2
0 g 2 5/2

(19)

'This function has its extrema at

instead of 1/r. This situation is vastly different
from that encountered in the case of light, for ex-
ample, where the attenuation of a source goes as
the inverse square multiplied by an exponential.
[The reason for comparison of field strength in the
case of acoustics with intensity in the case of light
is that real detectors (say hydrophones and photo-
tubes} generally produce output amplitudes propor-
tional to the field strength in the acoustics case
(coherent pressure sensing) and light intensity (in-
coherent photon collection}. ] The cutoff in this
acoustic case is far more gentle, being a power
law. Notice also that the bandwidth will decrease
slowly, as 1/v r [see Figs. 1(c) and 1(d)].

2"'AE, &

P r, t dt=—
0 7T r 7

(22)

Thus the impulse at first falls as 1/r and then
faster as 1/r'/'. Another integral of interest is the
total radiated energy flux

E,(r) = P'(r, t) dt
pc

V@A E
pc

(23)

We see that the pulse energy falls off as r, in-
tegrated over the sphere, which represents energy
dissipated by the viscosity of the fluid (and other
mechanisms).

Another quantity of iriterest is the first moment
of the pulse

tP(r, t)dt =— (24)

at all distances. This integral does not suffer the
attenuation effects. Bowen made the same obser-
vation, 4 but arrived at it in a rather different way.
(We can identify this integral with his J„and find
the same value for A as deduced from the 5-func-
tion solution. )

It is worth noting that the efficiency for acoustic
energy radiation using Eq. (23) is

II. CHARACTERISTICS OF POINT-SOURCE RADIATION

Let us examine several integral quantities. The
impulse may be defined as

r yX/3

c) (20) E (r 0) c'P' E,
Eo 1, 6p pC (oc)

with value

AE
IP~(r large I=

(2 ~y/3 3 ~

2ge~ r (21)

See the sketch in Fig. .l(e). This shows the effect
of attenuation on an initially sharp pulse; the peak
amplitude in the attenuation zone falls off as 1/r'

9 ~ 10 9 E, (M eV )

[oc (pm)]3 ' (25)

where the numerical value (typical) is given for
fresh water at 20'e (see list of properties in Table
I). Notice that the efficiency ~, depends upon the
energy per unit volume where oc characterizes the
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initial deposition region. It is also perhaps worth
noting that if oc = 1 A and Eo is in the range 100 eV
the efficiency can be very high (though these equa-
tions are not sensible for that case). But at large
distances the apparent efficiency will be

E (r) c~/2~ 3/2p2

p0

E~ (MeV)
r"' (cm)

(26)

S'(f)df
8mC p'Pk T&

P2c
y6~3~2C 2pyZ

t
f(r, t) = dt'p(r, &'),

(27)

(29)

for a Gaussian source distribution [Eq. (18)]. Be-
cause ~ becomes dominated by the attenuation fac-
tor at large distances, the distance dependence

As expected, the parameters of the deposition re-
gion no longer appear (so long as they are small).
This efficiency roughly agrees with other esti-
mates. e Causing the deposition to be highly local-
ized makes the microscopic efficiency high, but at
large distances it is only the total energy deposited
that controls the radiation efficiency (as long as
the deposition region size is large compared to the
attenuation cutoff wavelength. )

Another set of integrals has to do with the. signal
to-noise ratios. Signal-to-noise ratios are defined
and calculated in various ways. " Ultimately in our
case one wants to calculate a quantity that repre-
sents the scale factor in a probability distribution
for noise faking a signal. One measure of this that
will suffice for preliminary estimates is the ratio
of instantaneous signal voltage to rms noise voltage
at the output of a hypothetical optimal filter at-
tached to the output of an ideal transducer. An
optimal filter is one which will maximize the "dis-
tance" between noise and signal in some space
(the analogy can be made rigorously). The stand-
ard recipe in electrical engineering is to "pre-
whiten the noise" and then use a "matched filter. "
One can think of sealing arriving signals to the
noise basis set and then measuring their projection
along the vector pointing in the direction of the
desired signal. The noise power in a three-dimen-
sional medium has a frequency dependence propor-
tional to the number of available states, which

goes as the square of the frequency times the band-
width. ' The signal-to-noise ratio' can be written

S/N= j d)1 (y, ()/XTp/2nc

i~ c
q(f )

0
I

e ufo ct -2/I2 r
I,2wr j (29)

Summarizing results up to this point: We have
formed a microscopic test pulse, a bipolar Gaus-
sian derivative, propagated it in accordance with
Stokes's equation and found that the time depen-
dence was controlled by the medium after small
distances. Moreover, we have identified several
integrals and their radial dependences, and via the
first moment of the pulse have established a con-
nection with the detail. ed theory of Bowen, demon-
strating the independence of the normalization con-
stant from the details of the solution to the thermo-
acoustic equations. We have also observed the re-
markably small effect of attenuation upon these
kinds of pulses.

III. COMBINING POINT SOURCES IN THE TIME DOMAIN

It will prove useful to have the following identity
for finding the pressure pulse [P(r, f)] arising
from the sum of many point sources:

8P(r, t) = constants && —s(t),Bt (3o)

where S(t) is the density of sources as projected to
the observation point r. Think of folding all the
sources onto one line r and arrival times t,

(31)

where the integral is over the whole energy depo-
sition range and where ~ is measured from the
observation point. Now the trick is simply that the
very short individual pulses differentiate the dis-
tribution function [S(t)j. To prove this we first
take the convolution of individual pulses and the
density function.), ((f)sd()- () )(.(, ).) (32)

goes to

S/Nccr '/', r»g'eoc.
The interesting result, which may have important
implications for the DUMAND (Deep Underwater
Muon and Neutrino Detector) project then is that
attenuation only adds one-half Power falloff in dis-
tance and, again, not an exponential cutoff (as long
as the noise power has thermal, or frequency-
squared, , behavior).

Another observation that will prove useful later
is that since the effect of attenuation in the fre-
quency domain is to multiply by a Gaussian in fre-
quency, we can equivalently account for the attenu-
ation effects by convoluting any pressure pulse with
the. Fourier transform of the loss function. %'e

shall call this a smearing function and it can be
written as
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This has Fourier transform

P(r, &u) = S(&o)P(r, &u) . (33)

Examining the spectrum of a. given pulse Ie.g. ,
Eq. (17)] we see that this is quite justified in gen-
eral, if

5 —5 t- — =i~e ' "'a ( r
Bt ( c (34)

If the pulse is sufficiently short, which is to say
short compared to the granularity of the distribu-
tion function, we can replace P(r, a&) by the time
derivative of a 5 function:

(35)

(i.e., &1 MHz even at an r of 1 km for water).
It is well known that multiplication of the Fourier

transform of a function by im is equivalent to dif- '

ferentiation in the time domain. Thus, the result
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is

P(r, f) =A&-6 's(t)
Bt, (36)

t'
( ) AE

42m ~'

At maximum this pulse has a value of

(39)

P(& f) =6x10-2'E 8 st
Sf rJ' (37)

where P is in dyn/cm, E is in eV, and r is in cm.
The ~ has been left inside the time derivative to
account for the special case of an extended distri-
bution, wherein the amplitudes of the micropulses
vary across the distribution of tracks (see Sec.
IV). (With the integral of s normalized to unity we
can set E equal to the total energy deposition. )
Observe that the first moment of the micropulse is
conserved in this case as well [Eq. (28)]:

Now we can see the importance of the parameter
A. If we use this theorem to measure A, given
that we know the dimensions of a burst of parti-
cles, then we both check the validity of the simple
thermoacoustic theory, and we may calculate back
to a single pulse and forward again to any distribu-
tion. One measurement should, in principle,
specify all further results. Using the numbers
given previously, Eq. (36) takes the value for fresh
water at 20'C of

(P ~=7.4xl0-26-
(4o)

for P in dyn/cm', E in eV, r in cm, and o in sec,
where, again, the numerical example is for fresh
water at 20'C (see Table I). Note that we have
come full circle. Equation (39}is identical with
the micropulse expression in Eq. (18). Thus the
equations for the "micropulse" apply for the
"macropulse" as well, in particular, Eqs. (19)-
(21) giving the effect of attenuation, and Eq. (28),
expressing the effect of distance upon the signal-
to-noise ratio.

IV. LINE DISTRIBUTION

We will now discuss the acoustic radiation from
a line source of ionization such as that produced
by a single charged particle moving in an essen-
tially straight line. First let us consider the case
of a 5 function of ionization along the track. The
pressure pulse for this case is gotten from

AE
(38)

(, , ),/, [u(t- f, ) —u(t- t,)],
0

15--

(41)

but only if r does not vary significantly over the
distribution arrival time (though even then it works
if one chooses an appropriate r) We mig. ht ob-
serve that the total radiated energy [Eq. (23)] is
not independent of s(t}, but is obviously maximized
by a 6-function distribution.

A word of caution should be added about the use
of Eqs. (36) and (37) in the cases where the source
size is small. One will have to take account then
of the stronger r dependence (--,' power) of short
pulses, as given by Eq. (19). Mathematically, we
would have to do the convolution using the smearing
function [Eq. (29)]. Practically, it will be of con-
sequence for sources of centimeter size observed
from greater than kilometer distances in water.

One of the most important distributions we shall
encounter is the Gaussian (either two or three di-
mensional which project as a one-dimensional,
Gaussian, or even four dimensional if there is a
Gaussian particle pulse distribution in time, as at
an accelerator. For the time distribution we
simply convolute with the spatial distribution, the
mean square deviations in time being added. } The
Gaussian distribution as illustrated in Fig. 2(a)
leads to a pressure pulse

PRESSURE
(IO 5dyri/crn )

T=. II C

Fe (fnin ionizing) in H~O

r= IOOcm

r = IOcm
x I/IOO

Tl ME (p sec)

I-05
I ~ ~ ~ ~ I ~ ~ ~

I ~ ~ ~ ~ I ~

-IO '--

FIG. 3. Pressure pulse from a relativistic iron nucle-
us traversing water, as seen at several distances.
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where

P (~}=AZ —e* 'df
Bt

=-i~AE 'f" s(f), ,
ct e dt

+tVt
=-i+A dt

x - &t -to&

x [u(&- t, ) —u(t- &,)]

-I
gosh ( ty/to)

=-i+A dec' "
cosh

This integral has a simple form when t, = t, and t,
~ 00

P(~) =
2

H', (~t,),m~A dE
(44)

where 00 is the Hankel function of the second kind.
In the case where observations are made at many
wavelengths from the track the behavior is

(n~ '~2
P(~)=~ A e" '0 '4' vt, »l

dx
(45)

while in the low-frequency region the behavior is
stronger with frequency:

dEP(~) = iu)ln((uf, )A-, (ut, «1.
dx ' (46)

This is illustrated in Fig. 2(c). It is interesting,
but not surprising, to note that the same solution
can be obtained by starting with the two-dimension-
al wave equation.

In order to account for the effects of attenuation
of the medium we may convolute the pressure as a

tp=R C y

u(x)=0, x& 0, 1, x&0,

& =I.dE/dx,

and the sketch [Fig. 2(a}] shows the other param-
eters. The pressure is then

i'(i) =i( .

I
/(( *(- i) i [i('t't.) —n((-i,))-

, „, [u(t t ) —-u(t. t,)]I. -t

0

(42)

This function, as illustrated in Fig. 2(b), consists
of a large compression spike followed by a smaller
rarefaction pulse with a long tail. This is typical
of the solution to a two-dimensional wave equation:
One finds functions that are asymmetric in space.
The Fourier transform can be easily obtained by
observing that

function of time [Eq. (42)] with the smearing func-
tion [Eq. (29)]. The smearing function, of course,
transforms the compression peak to a Gaussian,
but the rarefaction is more difficult. 'The pulse
from a finite line source becomes more symme-
trical with distance until it can be treated as a
point (when its projected length becomes small
compared to the minimum observation wavelength)
A more realistic model of the distribution of ion-
ization around a single track is given by'

2 '(

0.55(p)+0.5 e [') ['~, (47)dV dx [

'
(p+ p, )'

where

p0=1 p. m,

p„= 0.5R.(T.),
, Z

dx ~ A P'=-p Z ' — —,&constants&log terms

=energy loss per unit distance in the medium,

B,(T ) =range of an electron with the maximum
5-ray energy [T„=2 m(P~/m~)'],

Z~=charge of the particle,

Z„/A =average of charge-to-atomic-number ratio
of elements of the medium (by fractional
density),

p~ =density of the medium.

One sees that the resultant pressure pulse will be
sensitive to the details of this distribution, partic-
ularly the parameter p„which governs the low-
frequency content. Explorations of the acoustic
radiation at high frequencies could prove to be a
useful tool for investigating the ionization distribu-
tion around heavy ions, a subject which has played
an important role in the detection of ultraheavies
and a claimed discovery of a magnetic monopole in
cosmic rays (Ref. 14).

In order to examine the pressure pulse from
more realistic circumstances, a program has been
written which numerically intergrates the ioniza-
tion from a given spatial distribution, generating
the s(t) function. It then calculates the pressure
pulse and convolutes with the smearing function to
account for attenuation. Values are calculated for
various integrals, including the theoretical maxi-
mum signal-to-noise ratio, and the pulse is Fou-
rier transformed. This program was used to cal-
culate the pressure pulses illustrated in Fig. 3 for
fre'sh water at 20'e with a relativistic iron nu-
cleus as the source, as observed at several dis-
tances from the track. The temporal nature of
pulses appears similar for various media, results
of which are summarized in Table II. We see that
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TABLE II. Results of computer calculations for the pressure wave created by iron nuclei of 1.9 GeV/nucleon in the

liquids indicated. The resulting signal-to-noise ratios assume an infinite medium and thermal noise limited detection

system. The last three columns show the effect of localizingtracks to a2-mm rms diameter region. Distance is 10 cm.

Material

lgl

('C)
dF. /dx

(Me V/cm)

Single track
s/N [P i

(kHz} (dB). (10 ' dynes/cm )

2-mm beam diameter
S/N

{kHz) (dB) (10 dynes/cm j

CC14

H20
Hg
CSR

Acetone
Benzene
Liquid argon

25
11
25
25
25
25

186

2 190
1 670

13430
967

1 318
1420

686

663
2929
5823

204
443
520

4635

-27.4
—59.2
—18.1
-32.8
-33.0
—31.5
-15.3

9.94
1.44

1751.00
0.710
1.71
2.57

391.00

193
311
302
158
212
237
178

27 ~ 3
-58.8
-17.6
-32.4
-32.9
—31.4
-14.7

1.53
0.053

22.5
0.497
0.613
0.861
3.22

substantial gains over water can be appreciated in
terms of pressure very near the source, but that
attenuation takes most of this ba.ck for reasonable
distances (e.g. , centimeter distances for track de-
tectors). Further work is required for solid ma-
terials and gases.

V. TOTAL NOISE IN THE OCEAN

It is amusing to calculate the total amount of
noise produced by cosmic rays' in the ocean. A

short calculation follows, yielding an upper limit.
Let us assume that all the energy of cosmic rays
arrives randomly at the ocean surface and is de-
posited in packets, whose dimensions we need not
be concerned with so long as the dimensions of the
distribution are small compared to the wavelengths
at which we make observations. This produces an
upper limit because (for an average muon track
with energy 2 &&10' eV and actual range of 10 m) we
are assuming that the energy is deposited in a
small region, say 1 cm, and therefore has much
greater (10') acoustic radiation efficiency. If the
observation is made at a depth h the total noise
received from cosmic rays can be gotten by inte-
grating the received energy from each event (in-
coherent addition):

2mI(~) = 2mpdpI(r, &u) = P'(r, &u)pdp
pc

27TQ Eo ('d ~2~2
Ipe

pc

pdp exp[-(~'/(u, c)(p'+ k')'I']
t p +h"

"~ &+ +~/t 0~&
0 0

pe (1 + (d jl/Q)OC)
(48)

where 1 have used Eq. (17) for the spectral density,
where p=(r 2+)'k2I2where Io is the cosmic-ray
flux per unit area, and where E, is the average
cosmic-ray energy at sea level. In the low-fre-

quency limit (which again overestimates the noise)
we then have

( )
2m'' E,'(u'I,

pc
(49)

Now the minimum noise in the ocean, " arising
from the random thermal motions of the medium
is given by

4w '
N((u) =kT 2 df. (50)

3 2
0 0 q gyp" 13

8C, ' pkT
(51)

and thus negligible. This may, however, be mis-
leading because though the average noise is small,
some phase information has been neglected. A

more sophisticated calculation is requix'ed to ex-
amine the possibility of significant rate (above ran-
dom fluctuations) of pulses arriving from distant
muons of great energy that penetrate to the ocean
bottom, radiating relatively large amounts of
acoustic energy. To estimate this rate let us as-
sume that all muons arrive vertically and that the
ocean is a homogeneous medium of constant depth
and infinite extent, The average ocean depth is
about 4 km (Ref. 15) and the rate of cosmic-ray
muons reaching this depth is approximately I, =70/
km' sec." 'The energy lost in reaching this depth
is about E;„=3TeV. The average energy loss
rate is rising linearly in this region and is at a
rate of about 4 TeV/km at 10-TeV energy. " We
can thus assume an energy-loss spectrum that
goes as

d3J-

dEdA (y —1)&min &mg,

(52)

dA 0 E;„j

'The ratio of cosmic-ray-produced noise to thermal
noise power is then
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where y is the differential muon surface spectrum
( 8 7)18

The maximum signal-to-noise ratio for distant
pulses is given by Eq. (28):

some of the behavior of hadronic cascades:

=AEF, (p)F2(s) MeV/cm',
cK

(56)

d8/2P2E2 . E2
S/N = 0 —:A

16m' 'C 'pk T~' '

n=8. 5&&10 "cm' '/eV'.
(58)

A =3.66x 10 E
E = initial hadronic-particle energy (in QeV)

& 100,

If we fix a minimum signal-to-noise ratio then we
can solve for the energy required to produce a
signal of that level at that distance:

F (p) Po exp (P+Po)
(p, +p)' 2p '

F, (s) = s"e ',
SN g4 (54)

po Yos

The rate of events producing pulses above the
threshold S/N ratio will then be

min

-y+1
2~r drr '"&& '&I,

-

&Emtn
(55)

where r,„=(e1/S/N)2~8E;„' '. We see that the in-
tegral does not diverge with distance; the gain in
rate due to increasing area is overwhelmed by the
steep spectrum This .conclusion can change if (due
to direct muon production at the primary cosmic-
ray interaction and other possibilities) the spec-

I

trum should become flatter at very high energies.
It is thus easy to see that at no reasonable signal
levels and rates, even with arrays with substantial
gain, will the total rate due to cosmic-ray muons
at great distances be large. Note that we ignored
the complexities of long-range acoustic propaga-
tion in an ocean with a variable index of refraction.
'The conclusion of this paper is that the relative
amount of acoustic noise in the ocean caused by
cosmic-ray muons is negligible. (However, this
does not say that special detectors could not ob-
serve large rates of acoustically detected muons. )

VI. ACOUSTIC RADIATION FROM CASCADES OF

PARTICLES

Another important circumstance is the radiation
of sound from energetic cascades of particles. The
practical applications of this could be in the labor-
atory" or in the ocean.

Most cascades of elementary particles have sim-
ilar characteristics. They grow rapidly in particle
numbers and ionization, spreading out conically
and then decay exponentially. Their cross-sec-
tional distributions are characterized by a 1/p' de-
crease of ionization per unit volume. No simple
function has been derived relating these cascades
to known input parameters (e.g. , average trans-
verse momentum, particle multiplicity, etc. ).
Most available results are for Monte Carlo studies
which have been tested in various ways against ex-
periment. " The following function approximates

pm =&mS,

s =z/Z,

e = 2.993,

z =axial distance from first interaction in cm,

A. = 14.21nE,

0.045(18.4 —lnE) cm,
to

0.1 cm if E&9.8x10x6 eV,

y =160 cm.

This function approximates the correct behavior in
'water, as well as other materials, roughly, by
scaling the attenuation length A. by the ratio of ab-
sorption lengths in the materials and the radial
factors ro and x by the Moliere lengths. The en-
ergy dependence is approximate, as is the normal-
ization constant (A). No guarantees are made about
the accuracy of this function particularly when ex-
trapolated to high energies. It would be useful to
have such a function carefully fit to cascade Monte
Carlo results, particularly with respect to the
sensitivity to various models used to extrapolate
hadronic interaction characteristics to ultrahigh
energies. However, the author believes that the
function will be adequate for a first attempt at cal-
culating the acoustic radiation at substantial dis-
tances from such cascades. For the very near field
there will be sensitivity to details, plus at energies
below roughly 10-TeV fluctuations (substantial)
from shower to shower should really be taken into
account. At higher. energies the statistics will be
good but the dominant uncertainty will be the length
of the cascade.

We can identify four zones in the radiation pattern
as a function of distance from the cascade axis:

(1) Very near field. Within a few cascade atten-
uation lengths (A, ) of the cascade the behavior will
be difficult to calculate.

(2) Near field. The pressure wave falls off as 1/
v~r, as from a line of radiation. The radiation is
contained in a cylinder of height n~, where n -5.
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FIG. 4. Acoustic radiation from a 10~'-eV cascade in
te 'th model described in text. Pressure pulses

are shown at three locations 400 M distant from the cas-
At d tances of several kilometers the pulses

(within the beam width) will approach a common shape.
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FIG. 6. Maximum detection distance versus energy
for various signal-to-noise ratios.

(3) Far field. The fall of pressure with distance
is now as 1/r and contained in a zone of angular
width p, /y.

(4) Attenuation zone. Attenuation now takes ef-
fect and speeds the fall of pressure with distance
to 1/r'. Note that the angular width now must in-
crease in compensation because the apparent
source size is dominated by the medium. The ang-
ular zone is roughly

(re/(u, )'/'/X .
Notice also that the signal-to-noise ratio falls

off only an extra —,
' power in r in this region Isee

Eq. (27)].
The same computer program as that described in
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IG. 5. Contours of constant inherent maximum sig-
l t ' tio for a 10~6-eV cascade in fresh water
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noise ratio limit versus energy.
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Sec. IV has been used to calculate pulses from
cascades and to generate contour plots of pressure
and signal-to-noise ratio. Figure 4(a) shows pres-
sure pulses from a 10' -eV cascade at 400 m along
the perpendicular to the peak on the cascade axis.
Figures 4(b) and 4(c) show the pulse as received
+10 m from this point, parallel to the cascade axis.
One sees a sensitivity to position, which may be
used to unambiguously determine the cascade sense
of motion. Figure 5 presents a plot of contours of
constant (inherent maximum) signal-to-noise ratio
for a 10"-eV cascade. Figure 6 contains a plot of
contours of constant signal-to-noise ratio on an
energy versus maximum detection distance plot.
Notice that the breaks into far and attenuation re-
gions are gentle and only slowly varying with en-.
ergy, occurring at about 400 m and 4 Km, respec-
tively. Finally, most relevant for the DUMAND

project, Fig. 7 gives the effective volume versus
cascade energy for various signal-to-noise ratio
limits. 'This is the volume within which such a
cascade may be heard with signal-to-noise ratio
greater than the stated value. There are many un-
certainties in these calculations, but the behavior
with energy is inescapable. 'The volume increases
nearly linearly with the cube of the energy out to
spectacular values of "insonification" volume. One
must be careful because of the assumption of ther-
mal noise and an infinite homogeneous ocean.
Moreover, at great distances the attenuation is
substantially greater than that predicted by an
extrapolation of simple frequency-squared depen-
dence from high frequencies downwards. These
calculations represent upper limits for signal-to-
noise ratios at kilometer distances in the ocean.
(The temperature of 11'e in fresh water corres-
ponds to about 4'C in salt water in the deep ocean
in terms of the coefficient of bulk thermal expan-
sion. )

SUMMARY

We have shown that acoustic radiation from
atomic particles traversing liquid media can be
usefully treated as the time-domain addition of the
microscopic pulses from the ionization region.
One need not knom the details of the radiation on
the particle scale so long as it approximates that
due to point heating of the medium (i.e., no micro-
bubbles). At most conceivable observation dis-
tances the temporal structure of the pressure pulse
will be controlled by the characteristics of sound

propagation in the medium.
Using the techniques developed herein, applica-

tions have been made to various distributions in-
cluding the two situations of greatest current inter-
est, the line radiation from heavy ions and the
more complex radiation from a nuclear cascade.
Perhaps the most striking result is the lack of a
sharp cutoff of attenuation with this kind of- radia-
tion which leads to a power-law decrease (rather
than an exponential decrease) with distance. This
suggests that detection of particles at distances far
into the attenuation region may be possible.

Further work is required (and is in progress) to
account for variations of the attenuation coefficient
from exact proportionality to the square of the fre-
quency as well as better approximations to the ion-
ization distributions of both cascades of particles
and around individual particle trajectories. As
yet, there is no experimental evidence in the U. S.
for any mechanism other than thermoacoustic as
used herein. Observation of microbubble produc-
tion or other phenomena would be exciting and re-
quire a new analysis. (It should be added that we
do have one piece of evidence not consistent with
the simple thermoacoustic picture. ")
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