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Simplifications of conformal supergravity
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We show that all dependent gauge fields of conformal supergravity follow from constraints on curvatures
{rather than from a mixture of constraints and field equations). We also give a simplified form df the action
and show that if regarded as a one-loop counterterm of Poincare supergravity, it is {at least) quadratic in
field equations.

I. INTRODUCTION

The purpose of this paper is to introduce some
simplifications of a previous article on conformal
supergravity, ' hereafter referred to as I, and

, some new results. In I we gave the action and
transformation rules of the fields and proved
complete invariance under both local supersym-
metries, denoted by Q and $. Crucial to our re-
sults was the fact that many of the gauge fields
of the superconformal group were not independent
but could be expressed as functions of the other
physical fields either by constraints on group
curvatures or by a nonpropagating field equa-
tion. In this paper we extend and simplify the
results of I in the following ways:

(i) We show that all the dependent gauge fields
can be found from solving constraints on curva-
tures. As well as being interesting in itself, this
result is also useful for computational purposes.

(ii) We show that the conformal supergravity
action can be written as an expression (at least)
quadratic in field equations of Poincare super-
gravity. We also give the action in a more ex-
plicit form than appears in I. Throughout we use
the conventions and many of the results of I.

II. THE CONSTRAINTS ON CURVATURES

The action of conformal supergravity can be
written as an expression quadratic in the curva-
tures of the superconformal group. It is

—8R„.(Q)r,R„($)

+ 4iRq „(A)Rp~ (D)]

—
Seg "~g"'R„„(A)Rp,(A)I. (2.1)

[For conventions, see I. In particular, g = 1 and
Rz ($) =&,Q~+ while R»(Q) =a„g„+~ ~ ~ .] The
fields appearing in this action a.re the gauge fields
(&u&,» e,» f,» b»A» g, Q&) corresponding to the

superconformal generators (M„,P„&„&,A, Q~,
$ ). But only e &, f&, A„, and b„are independent
fields; the remainder can be expressed as func-
tions of these independent fields through the set
of constraints

Rq„,(P) =0,

R„,(Q)r" = o,

(2.2a)

(2.2b)

R„„(Q)+,'e 'R„„(-Q)r,=0, R„„(Q)o""=0,

R„,(Q)rg+Rg„(Q)r. +R,g(Q)r„= 0, (2.3)

The first two constraints of Eq. (2.2) can be
solved for v&,, and Q„. The solution is given in
I. The third constraint of Eq. (2.2), which is new,
can be solved for the proper conformal gauge
field f,„. The solution is

A

f»= --'(R.
p

—6g„P)+BR),„(Q)rg"

-(ie-'/16) R„,(A), (2.4)

where R&„, is R„„,(M) without the "ef" terms. '
Since &u = a(e, g, A, b) and P =Q(e, g, A, b, v) and
f=f(e, g, A, b, v, Q),. it is irrelevant in which order
one solves the constraints. We recognize Eq.
(2.4) as Eq. (2.7) of I where it was found as the
algebraic field equation of f,&. So we have two
ways of obtaining Eq. (2.4): (1) as a field equation
of conformal supergravity; (2) as a constraint
or superconformal group curvatures. This is
reminiscent of the status of the equation

Cv&,&
= 2[e, (e&„,„—e» „)+ea es e, q ze ~]
—(a —b) (2 5)

Rv~ao(M)&" &', —a R~p(Q)rA" +4i& 'Rpv(A) = o.
(2.2c)

The algebraic meaning of these constraints is
that they eliminate the lower spin parts of the
curvatures; for their geometrical meaning we
refer to I. These constraints also imply the
following useful relations:
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R,„.,(M)e'" -=R„,(M) = 0, (2.6)

which simply requires all contractions of R(M)
to vanish. This ensures that R(M) is just the
Acyl curvature rather than the usual Biemann
curvature. To see that (2.2c) is the supersym-
metric generalization of (2.6), consider the be-
havior of these constraints under S supersym-
metry. Equation (2.6) is not S invariant but (2.2c)
is S invariant. In fact all these constraints of
(2.2) are invariant under M, K, D, S, and A
gauge transformations in that they rotate into each
other. This implies, just as for &u„„and P„, that

5zf, &
=0 (idem for M, K, D,A) . (2. I)

in pure Einstein gravity. (Similar remarks apply
to Poincarh supergravity. ) One can deduce this
equation either (i) as the e„,~ field equation or (ii)
from the constraint R„„,(P) = 0 (the P curvature
of the Poincarh group).

It is apparently a coincidence that these two
methods coincide in this simple case because
if one considers other actions they no longer co-
incide. In fact, if one considers 8'-type actions,
then &&„propagates and cannot be eliminated
algebraically by its field equation, and one can
only obtain the desired relation for (d„,b by im
posing a constraint. This is one of several rea-
sons why we regard the "constraint" (or second-
order) formulation as preferable to the "field
equation" (or first-order) formulation for &v„,~.
Another reason is that only the second-order
formalism arises naturally from superspace. '
Specifically, the spin connection does not appear
in the vector superfield H„(x, 9). (Note also that
if cu„,~ were an independent auxiliary field, it
would require at least 18 more fermionic auxiliary
fields as opposed to the six bosonic auxiliary
fields of the second-order' formalism. )'

This analogy with the spin connection leads us
to prefer to deduce (2.4) from the constraint
(2.2c), rather than from the f, &

field equation.
Since the results of the two methods coincide this
is only a preference, not a necessity. But again
the above analogy with +„,& suggests that there
may be other theories containing the gauge field
f,&

but where f,„cannot be eliminated by its field
equation. For example, we could consider gauge
theories of higher groups containing the con-
formal group such as Sp(8). In such theories we
would see that the constraint formulation was the
more fundamental and that it just happened to
coincide with a field equation in a particular
model.

The meaning of the new constraint (2.2c) is that
it is a supersymmetric generalization of the
constraint

R (M)-"+R (M)-" =0

Rq„(M) " R„q(M)""-= 2ie 'Rq„(A) —.
(2.9a)

One observation that may. have significance is
that if one defines a new spin connection

I 1 AC
4)l 05=(dl ab

- aiepabc
'

and defines a Lorentz curvature R'„~(M) in terms
of it, then the constraint (2.2c) becomes simply

R' (M)"" =0. (2.9b}

This connection ~&,& is surprisingly equal to the
quantity that appears in the commutator algebra
of Poincarb supergravity. '

To complete this section we will give some de-
tails of the calculation of 5f, „. We use the
obvious theorem that 5of,„smt ube such that the
variation of the new constraint vanishes under the
complete Q-supersymmetry transformation. In
the variation of this constraint we use

5o (constraint) = 5P" (constraint)

+ 5c'(constraint) . (2.10)

5P"g'(constraint) is determined straightforwardly
from the covariant rotation of curvatures into
each other, while 5~(constraint) is determined

That is, under S supersymmetry (or any of the
other symmetries) f,&

transforms according to
the group prescription. However, under Q-super-
symmetry gauge transformations, none of Eqs.
(2.2) are invariant. This implies (again just as
for &u&„and Q&) that 5of,„t0. Using the methods
of I applied to the new constraint, we can deduce
5of,„. We leave this calculation to the end of this
section. [Recall that 5of,'& was not needed for the
proof of Q invariance of the conformal super-
gravity action in I because its contribution to M'

is multiplied by 52/5f, „, the f,&
field equation.

This field equation vanishes identical/y because
of the constraint (2.2c).]

%ith the modified 5 transformations given by
5o =5''" ' +5, the three constraints of (2.2) are
maintained. One can see why the R(Q)yf term
is needed in (2.2c) from the fact that R(M) con-
tains derivatives of &&,& which will produce 8&e
terms when we include the contribution of
5ou&&, ~ to 5oR(M). These are canceled by the
5og& =&&e term in R(Q)yg Since .no other B&e
arise (because 5&u&, „5cg&,5qf, &

do not contain
thein) the supercovariantization of R(M) is just

(M)=R&„, (M)+ 'R, (Q)yg„—
r'R. g(—Q)r„0.. (2 8)

With this notation the constraint (2.2c) can be
written in the particularly simple form
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by substituting the known results for 6~u&,, and

Cop„(given in I) and the unknown 6of &. This
gives the following equation for 6of &.

'@fan =- 'Roy(-$)~a"q —24eap( n8($)g"'e. )

—,.~.„(S)y,&o+ 8 ('pR. '(Q))V„'o

+(»I32)(R.&(Q)y„y,~&)A'+ ,'. (R—.o(Q)y„'o)b'

+ exp1icitg„ terms. (2.11)

D„R""(Q)—(»/4)R""(Q)A„y, +2R""(Q)&„

=3'R""($)y„y,+ explicit/„ terms. (2.12)

We ignore terms with explicit undifferentiated
g„'s on the grounds that these will simply serve
to supercovariantize the final result, Now we use
the Bianchi identity for R(Q), e""' D@"(Q)=—0,
and (2.2b) to get

If one now takes y„ times Eq. (2.12), the left-hand
side vanishes by (2.2b) except for explicit g&
terms. Hence w'e have

R" (S)o„s=explicit/„ terms. (2.14)

So (2.13) becomes

&of.„= ~R—„($)o,'eo ——,' R,„(S)y,gq

+ explicit/& terms. (2.15)

We now introduce the supercovariantized R&„($)""
which is

R„„(S) "=R„„(S) ,'iy-„y-'[yg„„(A) --,'R„„(A)]

+li&~y'[yPxu(A) —aRi~(A)] (2 16)

since there is only a derivative on O'Q& in QR($).
Now we may write 5of.„ finally as

This allows us to write (2.11) as

Oofy=-&R, (S)o,'eo ,'A,—q(—)Sy,e o

-16eapRafB($)c 'o

+ explicit(„ terms. (2.13)

'ofa~= 2Rp~(S) "ca&o 8Rap($) y5'g' (2.17)

As we pointed out previously, this result was not
needed in I, but we find it convenient to give it
here because we will need it in a later publica-
tion' dealing with new results on tensor calculus.
The normalization is as in l .

III. THE ACTION

Substituting the solution of the constraints for f,„ into (2.1) gives the following expression:

d'x{e[R„„(M)——,'R „(Q)y„&'][R""(M)——'R "(Q)y"g']

+ ,' [iR„„( M)
—-—,'R„„(Q)y„g']R""(A)--'.eR„„(A)R""(A)

+4&"""Pqy,y,D„Q„+,'i(„Q„R-"(A)+si(a,A„)qpQ„e"""

—Ss(y py, y„)A~"" —(y„c.,@p)y py p"y.e "' --;eR(M)']. (s.l)

[This is Eq. (2.8) of I with misprints corrected. ] Now the three equ'ations

Rq„(M) —2Rg p(Q)yqg——=Rq, (M)"" =0, (3.2a)

p=0, (3.2b)

(3.2c)

are equivalent to the e'„, g&, and A& field equations of Poincarb supergravity. Thus, if (3.1) is regarded
as a one-loop invariant of Poincarh supergravity, we see that it is quadratic in field equations (at least).
That this is expected can, be seen as follows: We should be able-to, write the conformal supergravity action
as a linear combination of the R„„'and R' invariants of Poincare supergravity up to a total derivative (by
a super-Gauss-Bonnet theorem' ~ '). But these invariants are constructed via the "tensor calculus"'by
.squaring two supermultiplets, each of which vanishes on-shell. Hence these invariants must be at least
quadratic in field equations. This argument is verified explicitly by our action (3.1).

Finally we give another form of the action in which the dependence of the action on the Ricci tensor and
the field strength tensor for A& is explicit:
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In this expression R„„(E)is the Ricci tensor (with
torsion, so it is not symmetric), P» is 8 pA„
—B„Ap, and S„„is the curl of gp defined in I.
Finally we recall that the field 5& may be set
everywhere equal to zero in the action, since it
cancels anyhow.

IV. COMMENTS

We have shown that the proper conformal gauge
field f,p may be expressed in terms of the other
independent fields via a constraint on curvatures,
just as for z„„and P„. This constraint happens
to coincide with the f,p field equation of the con-
formal supergravity action so that the equation
for f,p

obtained here is the same as that in I,
as it must be. But there may be gauge theories
of higher groups such as Sp(8) for which a con-
straint is necessary if f,„ is to be eliminated,
just as R(P) = 0 is needed in conformal super-
gravity (and pure Weyl gravity) if e„,~ is to be
eliminated. It is not excluded that a supersym-
metric R'-type action exists with +„,& as an inde-
pendent field (although, since the auxiliary fields
of first-order Einstein supergravity are unknown,
one cannot obtain it as a one-loop counterterm),
but to construct it we would need many more
fermion fields in order to balance the boson and
fermion degrees of freedom. This would be a
very nonminimal approach and it seems much
more natural to impose R(P) =0. Likewise we
consider the constraint for f,p to be a more
natural way to formulate the theory. Indeed, in
the proof of Q invariance of conformal super-
gravity in I, we needed to use the equation for
f,„so that we were not able to really consider
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de e(Rp„(E)R""(E) —SR'(E) ',—[F—„„(A)]'+4e""p'g py, y~D„Q p

+3R,„(E)(g~o~.k, -4„~~A &) ——:R(E)((~o~A.) -R„.(E)(R~„(Q)rA~)

+ (,'iTt-r(r.E s 2-E-as)S"'+PA'r"(r, +~s 2-P~s)S'~+i0"r~(r5Ects 2Pns)S'"1

+R„„(E)c"'P'spy,P, ',—(q—„o""Q„)'—3i~""P'Ppy, &„A„

+ 2 (4p r 54 p) (4 r 54' 0—r 54 ) + 4 p 4'vg p Y 54a&

(S„ .,4 ')(0" '"e, ) (c. ""e„)(c,""4,) (0—„ .A ')(0, ""0,) - (c. ""4„)(C~'"4.)
—(k„o.ok.)(lpr~. ~4.)~""'+ (4~o ""0„)(f,r,4.)~""

(t-„o~A ')(8pr,4.)~""' '(g-„r-,t,)(R""(Q)r 0)
+ ((„o,0" g~-""0„)R'"(Q)rg, + l(R,.(Q)r„0')(R&„(Q)rA'")). (3.3)

f,p at any time as an independent field. If f,„ is
regarded as an independent field (which is sub-
sequently eliminated by its field equation), then
the invariance of the action is unknown. Probably
this invariance exists just as an invariance exists
in both first- and second-order forms of Poincarb
supergravity, but one can see at once that the
algebra of gauge transformations on e'„, fp, A&,f,p,
b„cannot close in this case. To see this, one
need only count the off-shell degrees of freedom.
After subtracting for 6 local Lorentz, 4 general
coordinate, and 1 scale invariances, there are 5
components of e,„ left; after subtracting for 4Q
and 4S invariances, there are 8 components of
(„ left; after subtracting I for chiral invariance
there are three components of A& left. This al-
ready gives an equal number of boson and fermion
fields so that no auxiliary fields are needed to
close the algebra if these are the only fields.
(This counting also applies if one includes the
dilation field b„, since it is eliminated by the
proper conformal gauge invariances. ) In fact it
was shown in I that the algebra does close. How-
ever, if f,„ is another independent field, one
needs 16 more auxiliary fermion fields to close
the algebra.

~M. Kaku, P. K. Townsend, and P, van Nieuwenhuizen,
Phys. Rev. D 17, 3179 (1978).

V. Ogievetski and E. Sokatchev, Nucl. Phys. B87, 207
(1977); S. Ferrara and B. Zumino, ibid. B134, 301
(1978); W. Siegel and S. J. Gates Jr. , Nucl. Phys. B
(to be published).

3S. Ferrara and P. van Nieuvrenhuizen, Phys. Lett. 74B,
333 (1978); K. Stelle and P. West, ibid. 74B, 330(1978).
S. Deser, J. Kay, and K. Stelle, Phys. Rev. Lett. 38,
527 (1977).
P. K. Townsend and P. van Nieuwenhuizen, phys. Rev.
D (to be published).


