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Crossingwymmetric four-body unitarity condition
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The four-bo~y unitarity condition is studied in the case of a crossing-symmetric scattering process where
the scattering is essentially iterated four times. It is found that there is a substantial enlargement of the
analyticity domain in the cos8 variable for fixed energy for the absorptive part of the scattering amplitude
over what one obtains from the elastic unitarity alone.

As is well known, the unitarity. of the S matrix
implies a set of nonlinear relations in the sense
that the absorptive part (or the discontinuity) of
the scattering amplitude is expressible as folded
products of two blocks of transition amplitudes
suitably summed (or integrated) over the phase
space of a set of appropriate intermediate states
on the mass shell. It is generally recognized that
unitarity is a powerful tool in enlarging the analy-
ticity domain of ImT. ' The use of the elastic uni-
tarity is well known. ' '

The purpose of this paper is to study some of
the implications of the inelastic unitarity. We have
in mind, in particular, the use of four-body uni-
tarity, although the result pertaining thereto could
conceivably be extended to more general cases.

Four-body unitarity is thought to be intractable
since a general study would call for the (as yet in-
complete) knowledge of the analyticity properties
of the (2 in)-(4 out) s'ix-point functions (Fig. I).
Our working assumption here is that there is a
process among those included in Fig. 1 where each
of the two-particle to four-particle blobs is domi-
nated in the crossed channel by one-particle ex-
change. This process (Fig. 2) which has manifest
crossing symmetry in all channels involves only
the iteration of the (2 in)-(2 out) scattering ampli-
tude itself. This appears to be ari eminently sol-
vable problem. The solution can be compared with
the known results for the analogous problem in

perturbation theory on account of the close analogy
between the structure of unitarity singularity and

Uiat of perturbation singularity. " Since the four-
body scattering problem (corresponding to Fig. 2)
in perturbation theory was solved some time ago
by the present author, ' it would seen worthwhile

to undertake the study of the crossing-symmetric
four-body unitarity problem.

Our primary aim here is to examine the analy-
ticity of ImT in the scattering-angle cos8 variable
(in the center-of-mass frame) for fixed energy
variables. More specifically, we wish to answer
the following question. If one starts with the Leh-
mann ellipse analyticity in cos0 for the scattering
amplitude T, what is the outcome for ImT as a
result of the action of the four-body unitarity de-
picted by Fig. 29 The answer to this question is
given in the statement (8) below.

Our main -observations are the following:
(A) In integrating over the set of intermediate

states on the mass shell, the dominant (or singu-
lar) contribution comes from the extreme values
of the azimuthal angles (p = 0 or w). Every such
azimuthal condition implies the coplanarity of a
set of three momentum three-vectors. Thus, for
example, in %he c.m. frame, the singular contribu-
tion comes from the case in which all the inter-
mediate-state momentum three-vectors lie in the
same scattering plane. This implies that a linear
addition law holds for the polar angles as it does
in plane geometry rather than in solid geometry.
This result is well known for the elastic unitarity
case' 4 and obviously has general validity in the

sense of pure kinematics for the phase-space
volume integral. ' One simple way to visualize
such a singularity is by an appeal to the connec-
tion between physical singularity and stationary
points in the classical path integral. This readily
yields that stationary points correspond to the ex-

FIG. 1. Four-body unitarity in general. FIG. 2. Crossing-symmetric four-body unitarity.
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FIG. 3. A set of independent momentum vectors in the
intermediate state and a convenient momentum flow dia-
gram showing the choice of the scattering angle at each
stage. 8 is the overall scattering angle in the c.m,
frame.

. treme values of P =0 or s.
Thus, in the present crossing-symmetric four-

body unitarity case, one such relation for the po-
lar-angle addition law reads generically

4

cos8q = cosh($ —tp~), 0 & pq & 2' (2)

with a-=cosh), the semimajor axis of the ellipse
with unit foci, our analysis shows that as a con-
sequence of Eq. (1), ImT is analytic in a much
larger ellipse in cos8 (for fixed energy s ~ 16m')

where each 6), is a suitable scattering angle as-
sociated with the intermediate scattering.

(B) For the case under study, the intermediate
process is arranged in such a way that there is in
effect a fourfold iteration of the (2 in)-(2 out) scat-
tering amplitude, once at each vertex. If the scat-
tering amplitude at each stage T, = T(cos8, ) has the
analyticity in the cos8» variable in the (small) I eh-
mann ellipse parametrized by

FIG. 4. Vectors Ki3, k30, k02 drawn in the c.m. frame
po+p&= 0. Singular contribution from four-body unitarity
comes from the complete coplanarity of all three-vec-
tors in the scattering plane, hence 8=+ 0&.

given by

cos8 = cosh(4$ —ip), 0 & p & 2s

with the new semimajor axis

a'4' = cosh4] = Sa' —8a'+1.

Recall that the action of elastic unitarity yields
that ImT is analytic inside the large Lehmann el-
lipse with the semimajor axis''

We briefly sketch here the steps that led to the
above statement (A).

Statement (A) can be seen explicity by a straight-
forward integration scheme in the c.m. frame.
We have, from Fig. 2, after dropping inessential
kinematical and numerical factors,

ImT = dkg3d~30dk(glkg25 ~$3 & 5 @03 w ~ k(yp ~ ~ k/2

3

X dk, B,(D, D„) 'T T, T T, Ilit p, + Q k, )l =0 m~l

where

= constx 6(5~p) " '" —" 6(Z„+E„+g„+~„—~s)
13 03 02 12 Do& D (6)

D„-=k„—m = (p, -k, -k») ™
We have chosen as independent variables the momenta k„, 030, 0„. It would be helpful to keep in mind

a flowpath (Fig. 2) p»,= k» r,—k» r, k„, p, . We label all the angles involved by the corresponding in-
dices, thus 8„,= e $„,p, ), 8» „=& (k», k„},etc. , and 8=&(p„p,) is the overall scattering angle in the
c.m. frame p, + p, =0. The scattering angle at the intermediate stage for each T~ will be chosen as the
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angle between the incoming and the outgoing momenta in the above chain (Fig. 4).
The removal of the energy conservation 5(Q~E -v s ) factor can be done quite efficiently, for example,

by the method of Byers and Yang' in their treatment of the phase-space volume integral. We get from (6)

Imr = C(~)fdd„dZ„dd lic„Ides« d„c,,osc„„d,
cosc „d,d„d„d,, .(,&„(S.„,, S...„,O„,„))"*[D„II„l'

x T1 (cos813 1)T3(cos830 13)T0 (cosH» 30)T2(cos8» 2) .
We now insert under the integral the identities

(7)

1=- dcos81 2~ s81 2 cos81,1cos8 sin81 Is 8c 13,1

xd cosH»~5(cosH» 2
—cosH» „cos80, , —sinH», 0sinH», cosp», ) .

The integration over the azimuthal angles. in (7) can be easily done using
27r

d(t) 5 (cosc( —cosp cosy - sinp siny cosp) = 2 O(X)X '~ 2,
0

where

cosa cosy

X(cosa, cosp, cosy) =- cosn 1 cosp

cosy cosP 1

= —[cosy -cos(n + p)][cosy —cos(o, —p)],
and e(X) is the step function which sets the range for the physical values of the angles. These factors are
understood in (7) and (11). Equation (7) now reads

Imt = c(pd) J dd„dd„dd Ik„ld eood„, s'I (coss„,)d coos„„I',(coos„„)

xd cos8„„T,(cos8» „)dcos8», T,(cos8„,)
13 s2 ID 01 23] ~X( 30,139 02 s30I 02,13) ( 02,2! 02 .30& 30,2) ( 13,2 I 13,1 I )]

I

What we have done can be summarized as fol-
lows. The eightfold phase-space integration in
Eq. (6) has been parametrized into a threefold in-
tegration over the energy variables and a fivefold
integration over the angles. By formal manipula-
tion we have converted the integration over the
azimuthal angles into that over some other polar
angles, resulting in the appearance of the crucial
kinematical factors X(cosn, cosP, cosy). Of the
three sets of X factors in (11), the vanishing of a
single X factor amounts to the requirement of a
certain sub-two-body unitarity condition. The
action of the crossing-symmetric four-body unitar-
ity condition gives the singular contribution to
ImT when the three sets of the X factors vanish
sgslQltQs80Qslg. This requirement can be also ver-
ified, for example, by an appeal to the formal
analogy between the unitarity singularity and the
perturbation singularity. In perturbation theory it
is obvious that the Landau singularity calls for a
set of simultaneous loop equations. When re-

stricted to the c.m. frame, these loop equations
imply the simultaneous coplanarity of three sets
of momentum three-vectors. This completes the
proof of our statement (A).

Once we have derived the addition law (1) as the
singular contribution to the unitarity integral as a
consequence of the crossing-symmetric four-body
unitarity condition, the enlargement of the analy-
ticity domain for ImT follows in the case of Leh-
mann ellipse analyticity as stated in the state-
ment (B) above. One way to do this would be to
follow the technique used by Mandelstam' in three
steps: (i) Write down a Cauchy integral formula in
the cos8„variable for each T„ inside the analy-
ticity domain in terms of the boundary points on
the ellipse. (ii) Integrating over appropriate angles
gives the composition law for the angles, Eq. (1).
(iii) This implies that if each constituent angle
cos8, lies on an ellipse, the overall cos8 will lie
on a much larger ellipse, given via the addi, tion
law, Eq. (3).
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