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Equal-time commutators in continuous dimensions
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Motivated by the recent re-examination of the Goto-Imamura-Schwinger term in continuous dimensions,
we re-examine the familiar canonical equal-time commutator of the interacting field. Two methods of
calculation are available: the equal-time limit taken before or after the spectral integration. The technique of
dimensional regularization enables us to compare the two methods in a well-defined way. %'e establish how
the unambiguous result is obtained.

I. INTRODUCTION

The method of continuous dimensions was in-
vented first to regularize divergent Feynman in-
tegrals. ' Later it was applied also to the Green's
functions. "More recently the application was
extended further to the calculations involving
spectral representations. ' '

Of special interest is the application to the dual
string model; a possible remedy was proposed to
remove the difficulty of the critical dimensionality
(26 or 10) of space-time. " The essential ingre-
dient of the method is completely analogous to
that in the calculation of the Goto-Imamura-
Schwinger (GIS) term in spinor quantum electro-
dynamics. For this reason the GIS term was ex-
amined carefully from the new point of view. "

It was then concluded that the GIB term vanishes
in the regularized calculation, contrary. to the
long-held belief that it never vanishes because of
the positivity of the spectral function. We analyzed
the method of dimensional regularization on the
basis of the concept of hyperfunctions' (or distri-
butions") showingthat negative contributions are
introduced automatically at infinite energy, the
same feature shared by the Pauli-pillars regulari-
zation method. "

As has been argued frequently, however, the
result depends crucially on how one defines the
GIS term. ~ Even if one confines oneself, for the
moment, to the formulation in terms of the spec-
tral. function, there are two different methods:
Going to the equal-time limit before or after the
spectral integration. For later convenience we
call these "method B" (for before) and "method A"
(for after), respectively. It is one of the advan-
tages of the method of continuous dimensions that
one can compare the two methods in a well-de-
fined way. Our conclusion may be summarized as
follows. 4'

In method 8 the vanishing GIS term follows for
any dimensionality of space-time N+2, 4, 6, . . . .
In method A, on the other hand, the equal-time

limit of the current commutator does not exist
(even with N seven integer) unless N is chosen
sufficiently small (N& 2) so that the integral in
method B is convergent in the usual sense. For
such a small pf the results of the two calculations
agree with each other. Method 8 may be regarded
as the one providing us with a smooth extrapola-
tion of the common result to the other values of &.

In the above analysis it is crucial that we have
required the existence of the equal-time limit.
Obviously the GIS term is not the only quantity in
which this requirement is essential. Among other
examples, let us consider the simplest: The -can-
onical equal-time commutator of the interacting
field. It is this commutator that enables us to
express the wave-function renormalization con-
stant in terms of the spectral function of the in-
termediate state which the field creates. The
original derivation by Lehmann" corresponds to
method B, though without any explicit use of the
regularization procedure. One may ask oneself
the following question: If one argues against (at
least the naive use of) method B in the GIS term,
why does one refrain from doing the same in the
canonical equal-time commutator of the fields

In this paper we re-examine this important and
familiar commutator with the same level of rigor
as in the GIS term. In the light of the method of
continuous dimensions, we study the simpl. ified
example of a real scalar field which creates a
fermion-antifermion pair. The conclusion turns
out to be essentially the same; in short, method
B is justified.

According to Wilson"s-argument on short-dis-
tance behaviors, " the equal-time limits of the
commutators of the fields (or their products) do
not exist in general. They are usually infested
with the behavior -lnt. There are, however, some
exceptions, notably the equal-time commutator of
the conserved currents (apart from the GIS term
in the conventional calculations). Our result in
this paper adds another example of the well-defined
equal-time commutators in the regularized cal-
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culation.
In Sec. II the necessary formulas are given. %e

consider the lowest-order contribution to the com-
mutator of the scalar field in continuous dimen-
sions. Section IG contains the calculation in
method B. Method A is then developed in Sec. 97.
The ambiguities in the equal-time limit are dis-
cussed in detail. It is shown that the equal-time
limit exists only if +&4, and that the result then
agrees with that of the simpler method 9. Section
V is devoted to eoncl. uding remarks, including a
brief summary of the calculation in the dual string
model.

s integration is carried out. Different results
follow in general from these two procedures even
in the regularized calculation.

III. METHOD 8: ts~o BEFORE THE s INTEGRATION

Z '-1= p s ds. (3.1)

In what follows we choose M =0 without loss of
generality in the lowest-order calculation. Sub-
stituting from (2.4) we have

We use the relation (2.3) inside the s integration
in (2.7). We then obtain

f~'(x) =(0)[y(x), y(0)](O), (2.1)

H. PREI.IMINARIES

The vacuum expectation value of the commuta-
tor of the (renormalized) real scalar field is de-
fined by

Z '-1=C s ' '(s-4m')" ' 'ds
4trP

=C(4m')" 'B(2 —v, v+ —,')

=-2'(2v) 'g'(v--2')m" 'I'(2- v). (3.2)

which allows the spectral representation"
The calculation is well defined for any v e 2, 3, 4, .. . .
For pf=4 we have

6(x) =
J ti(s)b, (x;s)ds,

where s(x; s) is normalized as

(2.2) 1
Z '-1=-, lim

8m'I 22-V ' (3.3)

(2.3)h. (x, s) i, , = -5(x) .
I
I

It was shown that relation (2.3) remains true in
continuous dimensions"; the right-hand side is
the spatial 5 function in n =N- 1 dimensions. '4'

Consider that p(x) couples to the spinor field
with the Yukawa coupling constant g. In + dimen-
sions the spectral function is calculated to the
lowest order,

It is pointed out that this agrees exactly with the
usual calculation of Z in the Feynman-Dyson
method.

IV. METHOD A: t~o AFTER THE s INTEGRATION

e use the representation"' "
g(X; S) =-2-I)&a-II &(f)g( X2)( X2)1/2-Is/ SII/ /

P(s) = 5(s —M') +p(s),

p(s) =CH( -sm4)(2s M)2's '-/ ( 2s4m )" 2'/', We calculate

( sl/2 ( x2) 1/2) (4.1)

C —g222-2)1 ~1/2-II/Is(v 1)

which tends to g'/87(' as &- 4.
From (2.1)

(2.5)

(2.4)

where v =pf/2, M and m being the masses of the
scalar field and the spinor field, respectively.
The constant t" is given by

s (s) Jp(s)s(s's)=4'
= -C s(2s) -'~(f) e(-x')(-x')"' ""

/ 2-2(s —4m2) II 1 Z (s 2 (-x2) 2)d s,
4eP

(4.2)

&'( ) I =. =-'&o I( ( ) 4(0)ll0) =.=-Z '~( ), (2 S)
for any & =x'. The s integration in (4.2) can be
performed analytically to give"

where Z is the wave-function renormalization
constant of th. scalar field. It is then expected
that

(4m')""/'2" 'I'(v+-')(-x')' " '

p(s)b, (x; s)ds =(1-Z ')5(x) .
Bt t=o

(2 7)

As mentioned in Sec. I, there are two ways to
compute the left-hand side. In method B (A) the
equal-time limit f-0 is taken before (after) the

s 1 I (43)
V — V2P 2) 2

xG",, j
-m'x'

where G'„ is Meijer's G function.
Expressing this function in terms of the hyper-

geometric series" we put (4.2) into the form
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7Y(x) =-2 ' "(v —,')mV—' "g'e(t)&(-x')

x 4, -x' ",E, —,'-v; —v4-Nm' m" '(-x')' ",S',[--.'; u -&, S -u; m'HjI.

,(4.4)

The hypergeometric series, E, is expanded into a power series, "
a(a+ 1) ~ ~ ~ (a+n —1) z"

, b(b+1) ~ ~ ~ (b+n- 1)c(c+1)~ ~ ~ (c+n —1) n! (4.5)

The series will be finite unless some of the coefficients are infinite for certain values of v. A close in-
spection of (4.4) shows that b, '(x) is finite for i-x'ie0 unless v =2, 3, 4, . . . . This situation may be com-
pared with the well-known result that any Feynman integral is finite unless v is a certain integer. This
finiteness of 6 (x), however, no longer holds true in general in the limit f-0.

To see this we substitute (4.5) into (4.4) and further use the expansion"

(-+);= 2~„g — B(-,'n+ k, u + I)
1

a=a %~

x (p')"5(x) i$ l" +'~+"

=-,'(u„B(-,'s, n+1)5(x) iti"""+~ ~ ~

Z(x) =-2 ' "(v ——,')m' "g'

N} ifi-r( +-,')z('- )

+—m I(2-v) 5(x)+ ~ ~ ~ ~

8. „4
3' (4. 10)

[a,{ }=2'ktn{n+2) ~ ~ ~ {s+2k-2)], (4.6)

where ~„=2m" '/1 (s/2) is the area of the unit

sphere in n =N - 1 dimensions. In (4.6) we have
interpreted 8(-x')(-x')" as a hyperfunction or a
distribution (-x'),".2O It turns out that it is suf-
ficient to keep only the first term, E, = 1 in the ex-
pansion (4.5); all the other terms result in higher
powers in if i. The result is

&'(~) =-2 ' "(v ——,')m' "g'

I(v —2)
( )iI'(v + —,') r(T —v)

8 ~-4+ —m" 'I'(2 —v)t 5(x) +. ~ ~ . (4.7)3%

t8 pt
B-&

+ + (4.8)

which yields

(4.9)

In this way we arrive at

The ignored terms are of order f' or higher as
N- 4, multiplied by derivatives of 5(x).

We are now going todfferentiate (4.7) with re-
spect to t. In the first term in the square brackets
of (4.7) we interpret e(t) itis as hyperfunction t, 8

—(-t),s, and use the formula"

Now we discuss the limit I;-O. The second
term in the square brackets in (4.10) allows a
smooth limit t-0; it is in fact a constant. We
confirm that this term is exactly the same as
(3.3) obtained in method B. In the first term in
the square brackets of (4.10}, on the other hand,
it l' " is ambiguous for N=4.

One may go to the limit t- 0 keeping N held
fixed off the value 4. We find

if N&4,
lim if i4 N—

if N&4.
(4.11)

0

The equal-time limit of Z(x) exists only if one
goes to the limit by keeping N& 4. The result
then agrees with that of method B. It is noticed
that N& 4 is the condition which renders the inte-
gral in (3.1) convergent in the usual sense.

It is accidental, in a sense, that this critical
value of N agrees with the physical dimensionality.
One may imagine that our space-time is six-di-
mensional, for example. In this case, according
to (4.10), the equal-time limit does not exist for
N which is close to the "physical value" 6; one
has to go down to the lower value of N (& 4) and
obtains the result of method 8 followed by the
analytic continuation in N.

Our procedure is parallel to the usual calcula-
tion of the Feynman integrals in continuous di-
mensions based on the analytic continuation; in
quantum electrodynamics, for example, the non-
gauge term in the photon self-energy part is cal-



EQUAL- TIME COMMUTATORS IN CONTINUOUS DIMENSIONS

culatef first for N& 2, followed by the extrapola-
tion, of the vanishing result to larger values of N.

We have so far considered the limiting

lim 1im .V4t 0

One may also try another -limiting procedure

lim lim .
t~0 1~4

(4.12)

(4.13)

Qn. going to the limit & —4 with t kept finite, we
have

and hence

= 1 + (2 —v)inP + O(v —2), (4.14)

1 (v —2) ~t~' "= -y —inP+O(v-2). (4.15)
p 2

In the same way we obtain

I'(2 —v)m" ' = — —y —lnm' + O(v - 2) .
p 2

(4.16)

which implies that the equal-time limit does not
exist, from whichever direction one goes to the
limit N- 4. This is in accordance with the well-
known result (Ref. 14) that the limit does not exist
in the unregularized calculation with the fixed di-
mensionality N =4.

It may be useful, however, to notice that by
replacing i with A ', (4.17) reproduces exactly
the usual expression of Z calculated in the Feyn-
man-Dyson method with the cutoff A. This exem-
plifies how the result of the cutoff method which
differs from the dimensional method in principle
is obtained by choosing a special limiting pro-
cedure.

V. CONCLUDING REMARKS

From the study of our simplified example, we
may infer this general conclusion: In method A
the equal-time limit of the canonical commutator
does not exist in general. The limit exists, as
required almost imperatively in the standard
field theory, only if & is chosen sufficiently small
so that the naive power counting indicates a con-
vergence in the usual sense. This result then
agrees with that of method 8, which is by itself
a well-defined method to give an equal-time limit;
the wave-function renormalization constant cal-

Substituting (4.15) and (4. 16) into (4.10) we find
that the pole terms (v —2) ' cancel each other.
We must go to the next approximation in v —2.
We finally obtain

0 2

IimZ(x) =—
2 (2y+~8+inm'i )5(x)+O(i), (4.17)

culated in terms of the spectral function agrees
also with that obtained in the Feynman-Dyson
method in N dimensions.

This conclusion is essentially the same as what

has been learned in the analysis of the GIS term.
We reiterate here the most important points in

discussing the GIS term.
In the naive application of method A the GIS

termappearstoblowupfor N-4 like lim, Jt~' "."
On this basis it has been often argued that the GIS
term is divergent. The result ~t~' ", however,
simply shows that the equal-time limit does not
exist in this method. If the GIS term is defined

by the equal-time commutator, one must have the
calculation according to which the equal-time limit
does exist. In our method A this is achieved by
first going to the region N& 2 and continuing ana-
lytically back to the point N = 4. The procedure
results in the vanishing GIS term in accordance

- with method B.
One may have a suspicion that any quantity could

turn out to be trivially zero in this type of calcula-
tion. That this is not true has been demonstrated

by the example of the canonical equal-time com-
mutator of the field.

One can also define the GIS term in the different
ways. Both the point-separation technique and the
Bjorken-Johnson-Low (BJL) limit yield infinity,
as long as pf is fixed to 4. In the method of con-
tinuous dimensions it is likely that the result is
rather close to that of method A; the point-
separation technique will give lims, ~6p ", while

the BJL limit has been shown to give lim~ E" '.'
The calculations are made to be well defined if
N& 2, resulting again in the vanishing-GLS term. "

Our conclusion of the vanishing GIS term does
not contradict the statement that the integrand
approaches a constant as s- ~; in other words,
the e+e cross section behaves as I/s in the high-

energy limit. The negative contr ibution is present
only at s =~, the mathematical infinity. For this
reason the vanishing GIB term has no immediate
physical consequences.

The same type of calculation, on the other hand,
does have a physical relevance in the dual string
model. The Virasoro algebra is known to have the
anomaly. By viewing the string theory as the field
theory in the internal two-dimensional space-time
(mapped from the world sheet), it was shown that
the above anomaly is the vacuum expectation value
of the equal-time commutator af the internal ener-
gy-momentum tensor. " The evaluation in the fixed
dimensionality N=2 of this internal space-time
results in the usual anomaly. If, however, N is
considered to be continuous, the anomaly dis-
appears exactly in the same context as in the GIS
term "



The proof of the Lorentz invariance of the string
theory is more involved. In the usual formulation
in the lightlike gauge'4 the Lorentz invariance
follows as a result of a cancellation among the
terms each of which has the same structure as
the Virasoro algebra anomaly. The cancellation
occurs only for D =26 (or 10), the critical dimen-
sionality of the real space-time. Qur detailed

analysis' shows that the relevant terms vanish
separately for general N. The conclusion of D =26
is hence no longer valid. " The analysis in the
present paper will be helpful in recognizing an in-
triguing link between the problem in the string
theory and the fundamental structure in the rela-
tivistic quantum field theory.
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