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The Ising and O{n), 2 (n (4, models in two dimensions are studied using a quantum-mechanical
Hamiltonian formalism in which a "time" axis is continuous and a spatial axis is discrete, Strong-coupling
series for the theory's mass gaps and P (Callan-Symanzik) functions are computed and are used to search for
phase transitions. The critical point and critical index v of the Ising model are found exactly. The critical
point of the O(2} model is found (g~ = 1.08), and the series suggest that the theory's correlation length
possesses an essential singularity with the behavior predicted by Kosterlitz. The critical points of the O(3)
and O(4) models are predicted to be at zero coupling, i.e., no evidence for a phase transition at nonzero g is
found for the non-Abelian models. Interpolating forms (two-point Pade approximants) for these theories' P
(Callan-Symanzik) functions are computed for all g. The transition regions between weak and strong
coupling are seen to be quite narrow.

I. INTRODUCTION

There is renewed interest among field theorists
and statistical mechanicians to understand the
phase diagrams of two-dimensional spin systems.
It is the purpose of this paper to present some re-
sults for these models, which we have obtained
using methods originally devised for calculating
the mass spectra of non-Abelian gauge theories in
3+1 dimensions. Before delving into the particu-
lars of our analyses, we will brieQy review the
theoretical issues of interest.

Consider the O(2), O(3), and O(4) Heisenberg
models in two dimensions. These systems have
been studied using high-temperature expansions,
perturbation theory (low-temperature expansions),
real- space renormalization-group methods, etc.
The high-temperature expansions2 have not yielded
much insight or reliable results. They suggest
that each model undergoes a phase transition at a
finite temperature. Such a phase transition would
have to be quite delicate since rigorous theorems
prove that it could not be accompanied by the ap-
pearance of a spontaneous magnetization. ' It is
commonly believed that a transition does occur for
the O(2), planar Heisenberg, model in light of the
fundamental work done by Kosterlitz and Thouless4
These authors argued for a simple physical pic-
ture of the phases of the model. Roughly speaking,
there is a low-temperature phase where spin
waves are the only relevant excitations in the sys-
tem. They are responsible for the vanishing of the

system's magnetization and lead to a power-be-
haved spin-spin correlation function [i.e.,
(s(Q) ~ s(r)) -

~
r

~

~ where p is a temperature-depen-
dent exponent]. There is a phase transition at a
sufficiently high temperature 7, above which new
excitations, vortices, occur with finite probabil-
ity. They completely disorder the system produc-
ing a spin-spin correlation function which falls off
exponentially with the distance between the spina.
Kosterlitz' has derived renormalization-group
equations for the model which describe the detailed
behavior of its critical region. (Some of his re-
sults will be cited and used for comparison later
in this article. )

The theoretical analyses of the O(n) models for
n ~ 3 are less complete. Polyakov' made the cru-
cia& observation that these models are "asymptoti-
cally free", i.e., the temperature 7=0 is an in-
frared-unstable fixed point. This perturbative re-
sult has suggested to many authors that these theo-
ries possess only one phase and that a correlation
length, which depends nonanalytically on T, is gen-
erated dynamically so that the spin-spin correla-
tion function falls exponentially for all T. A real-
space renormalization group due to Migdal' does,
in fact, lead to these results. His method a)so re-
produces the low-temperature perturbation-theory
analysis done by Polyakov and others to good ac-
curacy. Further. evidence for the correctness of
the idea that the O(3) and O(4) models have only a
high-temperature phase comes from the solution
for the S matrices of these models. It has been
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found that the assumption of a dynamically gener-
ated mass leads to a consistent S matrix for n ~ 3.
Although the multispin correlation functions have
not been obtained explicitly, these S-matrix re-
sults indicate that the correlation functions fall off
exponentially in the distance between any two spins.

The O(n) spin systems are particularly interest-
ing because they are thought to have many proper-
ties in common, with lattice gauge theories in four
dimensions. 6 The likely result that all the O(n}
models for z ~ 3 possess only a high-temperature
phase is thought to map into the property that non-
Abelian gauge theories confine quarks and are
asymptotically free. The Migdal recursion rela-
tion lends credence to this possibility because it
gives the same renormalization group for an SU(n)
&&SU(n) spin system in two dimensions as an SU(n)
lattice gauge theory in four dimensions. " The
O(3) spin system has another special property
first emphasized by Polyakov. " This model con-
tains instantons —finite-action, topologically stable
spin configurations —which tend to disorder the
system but are probably not sufficient to generate
exponentially damped correlation functions. All
non-Abelian gauge theories in four dimensions
contain instantons which enhance the quark-quark
potential but do,.not lead to confinement. Since the
Heisenberg spin systems are probably soluble, "
there even exists the hope that non-Abelian gauge
theories in four dimensions are soluble.

Theoretical physics is far from establishing this
dream. In this paper we will investigate with very
limited tools just a few questions which are impor-
tant hurdles in this program. We shall search for
phase transitions in the Hamiltonian lattice version
(discrete space, continuous time) of these spin
systems by developing strong-coupling expansions
for each theory's mass gap. We shall find strong
evidence for a phase transition in the O(2) model
and will estimate, the critical coupling using sev-
eral methods of analysis including the ratio test
and Pade approximants. Our series expansion
also suggest that the mass gap has an essential
singularity in the critical region in agreement with
Kosterlitz's renormalization group. ' We find
strong evidence for the absence of a phase transi-
tion in the O(3) and O(4) models. This result is in
agreement with contemporary prejudice and in ap-
parent disagreement with standard strong-coupling
expansions based on the isotropic spin models and

the partition function. We believe that the Hamil-
tonian strong-coupling expansion is a better guide
to the phases of these models than the tranditional
expansion method because it begins with one space-
time axis continuous. This feature makes it par-,
ticularly sensitive to second- (or higher-) order
phase transitions which are signaled by the appear-

ance of long-range correlations. The expansion
coefficients. of the non-Abelian models are distinct-
ly different from those of the Abelian model. In
fact, we shall extrapolate our non-Abelian model
results to weak coupling and find excellent numeri-
cal matches with standard perturbation theory. As
a warm-up we also carry out such calculations for
the Ising model in a transverse field. In this case
the strong-coupling expansion truncates and the
critical coupling constant is determined exactLy.

One purpose of this article is to sharpen our
techniques and test them before pursuing other
more challenging exercises in lattice gauge theor ies
in more spatial dimensions.

In the later sections of this article the models
and our calculations are presented in detail. Some
discussion and related questions appear in a clos-
ing section.

II. QUANTUM LATTICE HAMILTONIAN FORMALISM
FOR TWO-DIMENSIONAL SPIN SYSTEMS

(2.1)P=-E. n m ~ n m+p,
lg, g

where. the set (g) consists of the two independent
unit lattice vectors and K = J/&T. The spin vec-
tors n(m) can be parametrized as

n(m) =(cosg(m), sing(m)) (2.2)

and the spin configurations can be visualized as an
array of planar unit vectors. It is frequently more
convenient to write Eq. (2.1) in the form

B=-2K n m —n m+g
my/

(2.3)

where an irrelevant constant term has been drop-
ped. In this form it is clear that the classical con-
tinuum limit (let the lattice spacing a go to zero)
of the Hamiltonian is

(2.4}&=&& d x V'inx .V n x
i=1,2

The relativistic field theory corresponding to
Eq. (2.4) is obtained by making a Wick rotation.
Then x, -it, x, -x which replaces the Euclidean
metric by the Minkowski metric, and replaces the
statistical-mechanics Hamiltonian H by the action
S,

A. O(2) quantum IIamiltonian

Consider the planar Heisenberg or O(2) model as
an example. The standard statistical-mechanics
formulation of the model places two-component
unit vectors n or a two-dimensional square array
of lattice sites m. Nearest-neighbor spins are
coupled through their inner product so the Hamil-
tonian is
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H --iS,
where

(2.5) It is therefore slightly more convenient to replace
n(m) by the phase variables exp[+i8(m)],

S= dtdx(» 8('n)
2g P

y(m) = e"6' '= n, (m) + in, (m)

and write Eq. (2.12) as

(2.14)

(2.6)

Using the parametrization for the spin variable
given in Eq. (2.2),

[8'- (s„n)'], 0 & 8 & 2v
2g

(2.7)

which is a convenient form for the passage to the
quantum-mechanical Hamiltonian. The variable
conjugate to g is

(2.8)

so the Hamiitonian density is

and we have replaced K by I/g to conform with
standard notation. ' The Lagrangian density of the
model is that of the 0(2) o model,

H= p z'(m) ——
[Q (m)(, (wc+1)+H.c.(I .

2g ~ 2

(2.15)

The value -of writing 0 in this form, as opposed to
Eq. (2.10}, is that each term has a magnitude which
is simple to estimate. Since j(m} is an angular
momentum which generates planar rotations, it
has a discrete spectrum which consists of the in-
tegers. And since the spins n(m) are unit vectors,
the second term in Eq. (2.15) is at most x per link.

There are many different ways to arrive at Eq.
(2.15) starting with Eq. (2.1), say. One might de-
fine the transfer matrix for the statistical-mechan-
ics formulation, take the continuum limit on the
"time" axis, and identify the generator of these
translations as the quantum-mechanical Hamilton-
ian Eq. (2.15). This approach is described in Refs.
13 and 14.

K = [8'+ (s„n)'] .
2g

(2.9)
B. Strongwoupling expansions for eigenvalues

Z(m) = —8(m) . (2.11)

The Hamiltonian can now be written in a particu-
larly convenient form,

P = ~ Q [Z'(m) —xn(m) ~ n(m+1)],
e

where

(2.12)

Finally, we need the commutation relations of
J(m) and n(m '). It follows from Eqs. (2.8) and
(2.11) that

[g(m) eiie(m~)] gekie(1n ) 5 (2.13)

Finally, consider the theory with a discrete
spatial axis but a continuous temporal. axis. It is
clear from Eq. (2.9) that the Hamiltonian for such
a physical system is

iI = Q 8(m)2 — 2- n(m) ~ n(m+ I)~ (2.10)

where the integer m labels the spatial lattice and g
is the lattice spacing. It is this form of the theory
which will be used below to generate strong-cou-
pling expansions. The first term in Eq. (2.10) can
be recognized as a, rotational energy term "-,'I, "

whe"re the moment of inertia per site" I=a/g.
Therefore, the spin angular momentum per site is

2Q
W= —II = W' —xV0 (2.16)

Our next task is.to form a perturbation series in
x(=2/g ).for the eigenvalues of the Hamiltonian
Eq. (2.15}. This is a "strong-coupling expansion"
(x-0 implies g-~) which is closely related to the
high-temperature expansion of the partition func-
tion of the tranditional statistical-mechanics form-
ulation of the model. " The relation between the
methods is nontrivial, however, since they employ
very different cutoff procedures —in one case space
and time are handled symmetrically and in the
other case the time continuum limit is taken at the
start, The contrast between the two methods is
clearest when the quantum Hamiltonian is obtained
from the statistical-mechanics Hami1tonian via the
transfer matrix. The practical differences be-
tween the methods will be clear to the experienced
statistical mechanician from the calculations which
will be discussed below. Of course, both methods
should describe the same physics, i.e., the criti-
cal phenomena of the two-dimensional spin sys-
tems should be independent of their detailed lattice
structure. However, as will be discussed further
below, given a. finite amount of work, the quantum-
mechanical Hamiltonian appears to be more ef-
ficient at uncovering the phases of each model.

To develop the strong-coupling expansion it is
convenient to define the dimensionless operator
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where

(2.17)

t m m+1 +H.c. (2.18)
(b)

The diagonalization of g, is trivial since it does
not couple different lattice sites. The operator
gP can, therefore, be treated as a perturbation on
an exactly soluble problem and all the mell-estab-
lished techniques of Hamiltonian perturbation the-
ory can be brought to bare on the problem.

%'e shall consider the ground state and first ex-
cited state of the model in detail. The ground
state of Wo, which we denote ~0&, is that for which

(2.19)

(c)

FIG. l. (a) Flipped spin on a single site, (b) the po-
tential V moves the flipped spin one lattice site, (c)
second-order corrections to the ground state.

for all m. The lowest-energy, translationally in-
variant state is the zero-momentum state of a spin
wave, W- gap=ex —~0 ~ (2.23)

(2.20)

(u = 1 —2
i
—+ O(x') .
I'x

1 (2.21)

The first nonvanishing contribution to the ground
state ~0 is the second-order term shown in Fig.
1(c). Since the go value of the intermediate state
is 2, we have

where M is the number of links in the spatial lat-
tice.

The effect of p' on the energies of the states ~0&

and
~

1& has been calculated to eighth order in x.
This was done by machine and considerable checks
were made on the calculation by hand. Vile shall
illustrate a few very simple calculations here.
First note that the effect of V is to raise the spin
at one site by a unit and lower it at a neighboring
site. So, if we represent a spin +1 (-1) at a site
by an upward (downward) pointing arrow, then the
state

~
1& can be represented as in Fig. 1(a). The

first-order term in the perturbation expansion of
the W eigenvalue of

~ 1&, y», is then represented
as in Fig. 1(b). So, to order x, &u„ the ~ eigen-
value of tl&, is

The expansion coefficients for these quantities are
recorded in Table I. To proceed to eight order the
computer first generated orthonormal spin eigen-
states order by order in & by iteration of the per-
turbation operator V, , between them. The initial-
state eigenvalues could then be computed by stand-
ard formulas. This method of computation is
equivalent to but somewhat more efficient than
evaluating the Raleigh-Schrodinger perturbation
series directly.

The physics in these series will be discussed be-
low after the other models of interest have been
introduced

C. Other spin systems

The formulation of the O(3) and O(4) Heisenberg
models can be done in precisely the same way as
for the O(2) model with the obvious generalizations
to account for the higher spin dimensionality. The
results are as follows:

l. O(3) model

The quantum- mechanical lattice Hamiltonian
reads

(2.22)

The factor M accounts for the fact that the vacuum
fluctuations can appear on any link and it insures
that the vacuum energy is proportional to the vol-
ume of space. The quantity of most interest to us
is the "mass gap, " the energy of the first excited
state relative to the vacuum,

(2.24)e = ~ [J' (m) —x n(m) n(m+ 1)],20

where x=2/g2 as usual, X is a three-component
angular momentum, and n(m) is a three-compon-
ent spin. The commutation relations of J and n
are the familiar ones of the rotation groups in
three dimensions. The most convenient spin vari-
ables are
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TABLE I. Strong-coupling series expansion coefficients for the Ising, O(2), O(3), and O(4) spin models. Expansions
are given for the ground-state energy per site, ~0/N; for the "mass gap" to the first excited state, (d&- ~0, and for the

P function, P(g)/g, defined in the text. The expansion parameter in all cases is x =2/g~.

Order
Ising model

~0/M co( —coo

O(2) model
cog —470 p(g)/g

0
0

-0.25
0

-0.015 625
0

-3.90625 x10 3

0
-1.525 88 x10

2
-2

0
0
0
0
0
0
0

0
0

-0.25
0
6.510417x10 '
0
1.220445 x10-3
0
1.813093 x10

1
-1

0.125
0.031 25
1.438 802 x10
6,002 063 x 10
2.26148 x10 4

6.95799 x10-'
-1.752 x 10"

1
-2

2.5
-3.0625

3.8026
-4.7018

5.7958
-7.1334

8.7760

Order

0
0

-0.083
0
5.78704 x10 4

0
2.764 367 x10 6

Q(3) model
CO(- Coo

2
-0.66

3.703 70 x10
4.320 9SSx 10
3.27422 x10 4

2.p14 046 x10-~
-1.688199x10 '

P(g) /g

1
-0.66

0.296 30
-0.122 84

5 1516 x10
-2 145 9 x1P

8.865 9 x 10

0
0

-0.041 6
0
9.817295x10 5

0
—9.541 727 x10

O(4) model
CO~ —Q)0

I

. 3
-0.5

0.015 625
1.139323 X 10
1.25219 x10 5

-1.082289x10 6

—7 567 09 x10

1
-0.33

7.638g x10 2

-1.5661 x 10
3.2042 xlP 3

-6.4704 x10-'
1.2846 x10-'

g„(m) = [+n, (m) —in, (m)], o, (m) =n, (rn)
I

(2.25)

(2J +1 '~2

«gllollJg) =«)1«l&pl&go)l
2

'
(2g~+1

were sufficient for our purposes.

(2.27)

appropriate to a basis in which 8'(m) and J,(m)
are simultaneously diagonalized at each site. The
hopping term in Eq. (2.24) then has the form

2. 0(4) model

The quantum-mechanical Hamiltonian has the
form

n(rn) ~ n(rn+ 1)= g (-1)'o,(m)g&(m), (2.26a)
j= %1,0

where

H = Q [J'(m) —~ n(m) ~ n(m+ 1)], (2.28)

4& 1/2

o,(m) = — Y;,.(g(m), y(m)) . (2.26b)

The strong-coupling expansions for the model have
the same structure as for the O(2) model but now
one must also compute group-theoretic weights
for the graphs. In addition, there are graphs in the
non-Abelian systems that have no Abelian counter-
part. An example that occurs in third order is.
shown in Fig. 2. The group-theoretic weights are
easily computed in terms of Clebsch-Gordan coef-
ficients or Racah coefficients. In our computer
calculations Eq. (2.26) and the reduced matrix ele-
ment" FIG. 2. Intrinsically non-Abelian graph.



3096 C. J. HAMER, JOHN 8. KOGUT, AND L. SUSSKIND 19

where x=2/g'. Now n has four components and Z

has six [The generators of O(4)]. There are two
convenient ways of dealing with these variables.
Since O(4) =SU(2) (3) SU(2), one can use Pauli ma-
trix technology. Alternatively, following the dis-
cussion of the O(3) model rather closely, one'can
use O(4) spherical harmonics. Following Bieden-
harn's notation, "one can diagonalize four com-
ponents of S at each site: P, Q, L, and M with

Q -=0 for the representations we are concerned
with. The spectrum of J' is P(P+2) with
P=0, 1,2, . . . . The spin variables can be written

1
o, „(m)= ~ [+n, (m)-in, (m)]

(2&2 l/2

1;, „(e,(m), e, (m), y(m)),
(2.29)

o, ,.( )=,(m)=), 4) 1;,..(e, ( ), e.-( ), y( )),

f2 2))a/a
o'0 0(m) =n4(m) =~ 4 &I

1'2 0 0(e, (m), e2(m), p(m)),

where the Y„, are the O(4) spherical harmonics.
Then,

2)+1

n(m) ~ n(m+ 1)= Q Q (-1)' ' g, ,(m) o, , (m+ 1)
l= 0,l f= ('2E+ )()

and the symmetry coefficients needed for the strong-coupling expansions are

(2.30)

pq, ~ z', pl222222
Pf

(POI iwlrr, Ie Ol. iW) =()„'+)')()"'+))[(2(+))(21.'+))1"((I, I ml'u I'm)'('
l L ~ ~0 0 0&

(2.31)

where the curly brackets are Racah (6-j) symbols. "
3. Ising model

spins are pointing up,

g, (m) =+1. (2.33)

Although this model does not address the theo-
retical issues of interest here, , it is soluble and

provides a good test for our methods. The quan-,
turg-mechanical Hamiltonian for the Ising model of
statistical- mechanics fame is

II= — 1- v, m —x cr~ m Qg pl+1

(2.32)

where the v,.(m) are the usual Pauli matrices. We
have arranged the Hamiltonian so that in the
strong-coupling limit (which corresponds to the
high-temperature limit of the Ising model), all

The perturbation expansions of the ground-state
W-energy per site (&oo/M) and the W-mass gap to
the first excited state (v, —vo) are listed in Table
I with the results for the other models. Note that
the W-mass gap seri'es tmncates after first order,
and we have precisely

cu, —+0 =2(1 —x) . (2.34)

This result agrees with the exact solution" of the
model. The mass gap vanishes linearly at x= &,

the critical point singled out by the self-duality
of the model. ~4 This model constitutes an example
of a theory whose mass gap depends on the expan-

r
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sion parameter in such a simple (polynomial)
form, that the strong-coupling expansion can (and
must) provide the exact answer.

for P are known in many cases. Given this inform-
ation and our strong-coupling expansions, a fairly
thorough search for phase transitions can be made.

III. RENORMALIZATION OF THE COUPLING, THE

P FUNCTION, AND PHASE DIAGRAMS

We wish to use our expansions discussed in the
previous section to search for possible phase
transitions in these models as g varies. This was
particularly trivial for the Ising model since the
equation for the mass gap was found exactly. The
gap vanished at x=1 indicating the presence of a
massless particle and long- range correlations. At
g = 1 the continuum limit of the model can be taken
and one retrieves the field theory of a free mass-
less fermion. "

For models more complicated than the Ising
model, one needs more sophisticated methods of
searching for phase transitions. It is often best
not to use the expansion for the mass gap directly
because that quantity carries dimensions (I/a) and

usually has a complicated dependence on the expan-
sion parameter. Instead one considers the P func-
tion,

(3 1)

The meaning of Eq. (3.1) is the following: Consid-
er the mass of the first excited state of any of the
spin systems of interest,

IV. SEARCH FOR PHASE TRANSITIONS

We will use several different methods of analyz-
ing the series of Table I in our quest for. zeros of
P. We begin by testing for' a power-law zero in the
YIlass gap,

r(x) —f (x,- x)', (4 1)
C

at the point x=x,. From Eq. (3.4) this would imply
a first-order zero for' p(g),

p(g) (x, —x).
X X, 2P&C

(4.2)

A. The ratio test

We briefly remind the reader of this method of
testing for the tendency of a series to develop a
singularity. If a function

f(x)= Qa„x"
n=o

has a power-law singularity at x=~„

(4.3)

f(x) ~ b(x-x, ) ', (4 4)
x~x

C

then the ratio of successive coefficents should obey
the law

(~ —~ ) =- E(x).
2Q 20

(3.2)

Since the, lattice and its spacing "a" simply provide
the scaffolding on which to define the theory, one
can imagine changing g. But we also wish each
formulation of the theory to generate the same
physics, i.e., in physical units (GeV, say) E
should be independent of g,

o o ooo

0.5—
0 ooo

0.5—

dE
cd

(3.3)

This renormalization condition implies that the
physics will be indpendent of p only if g depends on
g in a definite fashion, Substituting Eq. (3.2) into
Eq. (3.1) we find, in fact,

p(g) ~(x)
g F(x) —2''(x) ' )

04 0.2

i) Rg

I I I I

0.4 l/g 0.2
0 o ooo

0.5—
ii) Ex t ra pol ant

I I I I

0.4 . l/g 0.2
iii) Slope

p5

o 0
ii) Extrapolant

(

04 l/g 02
iii) Slope

I 0 I I

04
I /i 02

j

0.2
1

04

i) R~

I I I I

0'4
I /E 0.2

0 0

0.5—

+I.O—

-l 0

Since we have the strong-coupling expansion for
E(x), the expansion for p can be obtained in this
way. We note in addition that the vanishing of E
implies the vanishing of P, so a search for zeros
in the series for P is the same as the search for a
vanishing mass gap (continuous phase transition).
In addition, the weak-coupling (small g) expansions

(b)

FIG. 3. Besults of the ratio test applied to (a) the
inverse mass gap, [E(x)] '; and (b) the inverse P func-
tion, [P(g)/gJ ~, for the O(2) model. In each case, we
plot (i) R& vs 1/l; (ii) the first-order linear extrapolant
of Rq vs 1/l; and (iii) the slope of R& curve vs 1/l.
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0
ii) Extrapolant

I i I

0.4 0.2
I/E

iii) Slope 0 0

0 0
i) Rg

I i I

0.4 0 2
I/g

0.2—

0.2

I

0.4
I /i

I

0

iii) Slope

n c I

04
i/~

"0
ii) Extrapolant

7

0.2—

-0.5—

+ l.0—

cal index p.
The results are as follows:

~, =1.6+0.3. (4.6)

J. O(2) model

The ratios of [E(x)] ' show strong evidence of a
phase transition. The linear extrapolants converge
nicely, giving an estimate of the critical point,

0
0

I i I

0.4 0.2
I/f

(a)

0.4 0.2
l /J

(b)

The convergence of the slopes, however, is slow.
Our best guess for the critical index (assuming a
power-behaved gap) p is

FIG. 4. Same as Fig. 3, for the O(3) model. p =2.0+0.5 (4.7)

-1 PR, —= a, /a, , ~ x, 1+
l~~ E

(4.5)

O.l-
i)R 0.5—

0 l/1
0

ii) Extrapolant
I I

0.4
I/2
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I

0.2

0
I

0.2

0
0.4 0.2

l/1

O.l- ii) Extrapolant
I c I

0.4 0 0.2
l /4
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So, if R, is plotted against 1/1, both the critical
coupling ~, and the critical index p can be deter-
mined.

This test has been applied to the inverse mass
gap [E(x)] ', and the inverse P function, [P(g)/g] ',
for the O(2), O(3), and O(4) models. The results
are shown in Figs. 3, 4, and 5, respectively. In
these figures we have plotted in each case

(i) R, vs 1/f;
(ii) the first-order linear extrapolant, ER,

—(1- 1)R, , vs 1/1 which gives an estimate of the
intercept x, ',

(iii) the slope, (R, -R, ,)/[1/&-1/(f —1)], which

gives an estimate of x, '(p-1) and hence the criti-

from the values at higher E. This value for p
should not be taken very seriously since there is a
tendency for the values to rise with increasing E.

This suggests that the assumption of a power-be-
haved gap is not correct. Below we shaB investi-
gate other possible functional forms for E.

The ratios for [P(g)/g] ' also show strong evi-
dence for a phase transition, although the series
is not as quickly convergent as that for [F(x)] '.
We estimate

(4 3)

from this test. The plot of the slopes shows no

sign of convergence, "so a value for p', the order
of p's zero at x„cannot be determined.

2. O(3) model

Figure 4 is particularly interesting. The ratios
for [E(x)] ' show no evidence of a phase transition.
The linear extrapolants are positive, but are mov-
ing rapidly downwards with increasing E—they
show no sign of convergence to any positive value.
The slopes are consistently increasing with E, and
also show no sign of convergence.

The ratios for [P(g)/g] ' are again n)ore slowly
convergent. There is no evidence of a singularity
at any finite x, but it might be argued that the lin-
ear extrapolants (excepting the last two) are close
to zero, indicating the possibility of a singularity
at x -~. Of course, the P function is known to van-
ish there so this is a welcome result.

3. O(4) model0.5—

I

0.4
I

0.2
I

0.4 0.2

FIG. 5. Same as Fig. 3, for the O(4) model.

I.O—

This model behaves similarly to the O(3) model.
The linear extrapolants for [E(x)] ' actually drop
below zero, providing strong evidence against a
phase transition. Again the extrapolants of
[p(g)/g] ' are consistent with a singularity [a zero
of P(g)/g] at x~ (Fig. 5).
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TABLE II. The positions and residues (in brackets) of poles on the positive, real x axis in
Pads approximants for the O(2) model. The functions approximated are {a) the logarithmic
derivative of P(pg), the mass gap; and (b) the logarithmic derivative of P(g)/g, the P function.
The [4, 3] approximant in part (a) is not reliable since there is a spurious pole closer to the
origin. Also, the [3,4] approximant in part (a) exhibits another nearby pole [at 2.30 (-2.9)] so
its high residue is not significant.

N [N/N —1]
(a)

[N/N] (N/N + 11 N (N/N 1)-
{b)

[N/N]

1.52(1.88)
1.59(2.21)
1.52(2.9O)

1.41(1.49)
0 0 0

1.63(2 49)

1.33(1.33)
~ 4 0

1.34(1.24)
1.71(3.84)

0
1
2
3
4

1.72{1.28)
1.7O(1.22)

2.01(2.25)
1.52(0.67)

1.66(1.36)
1.85(1.72)
1.8O(1.59)

4, Ising model

Since the series truncate we obtain exact results
in this case. The ratios for [E(x)t ' are R, =1,
giving z, = 1 and p = 1 exactly.

We now turn to a second, standard method of ex-
tracting information from strong-coupling expan-
sions,

8. The Pade-approximant test

We begin by illustrating the method. Consider a
function with an algebraic zero at some point x„

g(x) ~ b(x, —x)~ . (4
X XQ

Then the function's logarithmic derivative has a
simple pole at that point,

d g'(x) ylng(x) =
( )

~
(

.
)
. (4.10)

C

By forming Pade approximants to the logarithmic
derivative, we may estimate both the position and

residue of any pole and read off the critical point
z, and the critical index y. We have applied this
test to the logarithmic derivatives of E(x) and

P(g)/g for the O(2), O(3), and O(4) models. The
results are listed in Tables II, III, and IV. They
are as follows.

l. 0(2) model

For the logarithmic derivative of F(x), there is
consistent evidence of a pole with

(4.11)

The convergence of the residues is slow, but we
estimate (with little confidence)

p =2.2 +0.5.

The analysis of P(g)/g also indicates a pole at
x, = 1.7+0.2 with a residue p'=1-.2+0.5. .

2. O(3) model

The analysis for F(x) indicates a pole at low or-
der which disappears when higher orders are in-
cluded. There is ng evidence for a phase transi-
tion.

The analysis for P(g)/g indicates the absence of
a pole at finite positive x. The odd couple of poles
can be regarded as accidental.

3. O(4) model

The situation is the same as for the O(3) model.

TABLE III. Same as Table II, for the O(3) model.

N [N/N- 1]
(a)

[N/N] [N/N+Nl [N/N —1]
(b)

[N/Nl [N/N+ 1]

9.51{10.4)
0 0 ~

6.15(2.81)
0 ~ 0

4.5(1.5)
0 0 ~

0
1

3 4 42(-0.49)

25.7(7.94)
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TABLE IV. Same as Table II, for the 0(4) model.

[N/'N —1] [N/N] [N/N+ 1] N [N//N —1] [N/N] [N/N+1]

0
1 19.6(6.66~

9.60(1.6O) 0
~ 0 0 1
~ ~ ~ 2

3 19.7(-16.8)
3.S7(-0.027)

4, Ising model

( ~ exp[b(x, —x) '~') .
C

It is interesting to see if our strong-coupling ex-
pansions favor Eq. (4.13) more strongly than an
algebraic singularity. A direct test is given by the
value of the P function criticaI index p'. Observe
that if the mass gap vanishes exponentially,

(4.13)

The logarithmic derivative of E(x) is exactly
(x- 1) ', Every Pade approximant beyond first
order gives the position and residue of the pole
exactly.

In summary, the results of the Pade approximant
test are in good overall agreement with those of
the ratio tests.

We conclude that the O(3) and O(4) models always
reside in the strong-coupling phase. However, we
have strong evidence of a transition in the O(2)
model occurring at g, =1.6+0.2.

Our results are marginally consistent with a
simple algebraic zero of the O(2) model's mass
gap at x„with a critical index p = 2.1 a 0.5. In con-
ventional statistical-mechanics terminology this
means that the correlation length $ should have an
algebraic singularity at the critical point with the
critical index v =2.1 +0.5. However, Kosterlitz'
has argued quite convincingly that g should have an
essential singularity,

our ratio test and Pade-approximant results can
be construed is evidence for an exponential singu-
larity. In the next section we shall argue that this
is probably the case and that Kosterlitz's result is
favored by our series results.

V. THE P FUNCTIONS FOR ALL COUPLINGS

1. Ising model

We include this result because it is exact and it
serves as a reference for interpreting our other
results. Since E=2(1 —x), we have from Eq. (3.4)

(5.1)

where x= 2/g'. Equation (5.1) is plotted in Fig. 6.
As written, Eq. (5.1) is meaningful above and at
the phase transition g, = 1.

2. O(2) model

The strong-coupling expansion of P(g)/g is re-
corded in Table I to eighth order in x=2/g'. We
wish to extrapolate this series into the intermedi-
ate coupling region (x-1-2) to search for the

Il

2—
exp[-b'(x, —x) 'j, (4.14)

then the P function should have a singular piece,

[P(g)/g] ' (4.15)
x x (xc

C

So, the relationship between p' and cr is simply p'
=1+a'. In summary, if there is a simple algebraic
singularity in the correlation length, then p'=1
exactly; but, if the form found by Kosterlitz is
correct than p'= 1.5. Unfortunately, our estimate
(i.e. , p'= l.2 +0.5) is sufficient to decide between
these two possibilities. /he slow convergence of

s I

0 I

FIG. 6. The P function for the Ising model.
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pret it as evidence for an essential singularity in
the mass gap and site that as the reason for the
slow convergence of the slopes observed in the ra-
tio tests presented in previous sections.

X 0(3)model

Again we wish to obtain a plot of P(g) for all g
from our strong-coupling series. From previous
sections me know that there is no tendency for P to
vanish at finite x. However, p should vanish at x
=~ (g=0). Then weak-coupling perturbation theory
is applicable and two-loop calculations give'

0 0.5 l.o
X

l.5 2.0 2 3
P(g)=(iv-2) g +(x-2) g, + ~ ~

2w 4g
(5.4)

FIG. 7. P (g)/g vs x= 2/g2 for the O(2) model.

phase transition me have found in previous sec-
tions. Since the coefficients in the series oscillate
in sign, it is sensible to do this extrapolation with
a Pade approximant. In particular, we form the
[4, 4] approximant

1 —0.1413x- 0.2589xm —0.1662x + 0.09704x
1 + 1.S587x+ 9584x~ +0.1664x3 —0.07654x~

(5 2)

for 0(&). We would like to use the weak- and
strong-coupling series to map out P(g) for all cou-
pling. ~' In particular, we mould like to see that
the tmo expansions match numerically in the inter-
mediate coupling region and that a reasonable and
smooth p(g) can be deduced.

First, let us give more precise evidence of the
fact that the strong-coupling series indicate a zero
at x=~ (g=0). Consider the O(3) series

p(g)/g=1 —-', x+2.963 x10 'x~

1.2284x10 'x +5.1516x10 'x4

2.1459 x10 'x +8.8659 x10 'x . (5.5)

We map the point x=~ to the unit disc by making a
Moebius transformation which leaves the origin

which is plotted in Fig. V. Note the appearance of
the phase transition at x, =1.V (g, =1.08). Since all
of our methods of searching for the phase transi-
tion in the O(2) model give this value for the tran-
sition point, me feel quite confident about it. In
addition, if less terms in the series for P(g} were
used and the [3, 3] Pade approximant were formed,
for example, essentially the same value for x,
mould have been found.

Nom me can address Kosterlitz's proposal that
the correlation length diverges with an essential
singularity at the critical point. Since the plot of
P/g vs x is definitely concave upward, our analysis
supports his result. In fact, if that curve is fit
with a single pomer for x=x„one finds that

{a}

(b)

—l.O

-0.5

—I.O

p(g)/g= o.232(x, —x)" (5.3)
—0.5

provides a good interpolation formula for x, —x
~O.V. Equation (5.3) is distinctly better than other
powers such as (x, —x)" or (x, —x)"' over that or
similar ranges of x. Of course, Eq. (5.3) has pre-
cisely the form suggested by Kosterlitz. s We feel
that this agreement is quite interesting. We inter-

0

FIG. 8. Batio tests for the logarithmic derivative of
P (g)/g as a function of z for (a) O(3) model and (b) O(4)
model.
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The point of making the Moebius transformation is
that we can search for the radius of convergence
of Eq. (5.7). In particular, we take the logarithmic
derivative of Eq. (5.7),

p(g)

o0 I

fixed,

gz= 1+x
In terms of z, the series becomes

P(g)/g= 1- —', z —3.7037 x10 'z'

(5.6'I

—1.9691x10 'z'- 9.4781x10 'z'

3.3916x10 'z'+3. 1455 xl0 ~ze. (5.7)

p(g)

FIG. 9. The solid line is the P function obtained from
the strong-coupling expansion using a [2, 3j PaN approx-
mant. The dashed curve is the weak-coupling curve for
the O{3) model.

3 1.1852z —1 .6278z —2.0346z

—2.4254z —2.8071z' (5.8)

and apply the ratio test. As shown in Fig. 8 we
have good evidence for a pole in the logarithmic
derivative at z, =1.03 +0.10. This point is consist-
ent with z =1 which corresponds to x=~. Although
this analysis is certainly crude, it is quite sugges-
tive.

Now we will use the strong-coupling expansion
and produce an interpolating formula for P(g)
which satisfies the following two boundary condi-
tions:

1. at large g, P(g) -g,
2. at small g, p(g) -g .

The first fact is, of course, implicit in the strong-
coupling analysis and canberead off Eq. (5.5), for
example. The second fact follows from convention-
al weak-coupling expansions and is made precise
in Eq. (5.4). To make the interpolation formula we
consider the strong-coupling series for [P(g)/g]'
and form its [2, 3] Pads approximant. This pro-
cedure satisfies the conditions 1 and 2 above and
the resulting, curve of P(g) vs g is shown in Fig. 9.
We have several observations about this curve:

1. The [2, 3] Pads approximant matches onto the
weak-coupling perturbative result in the intermedi-
ate coupling region g=1 quite accurately. This
constitutes good evidence that the system exists in
a single phase.

2. The numerical match between the weak-cou-
pling expansion and the [2, 3] Pads approximant is
good even near the origin.

3. The intermediate coupling region (where nei-
ther expansion method is particularly accurate)
appears to be quite narrow. The transition from
weak-coupling behavior to strong-coupling behav-
ior appears to occur at g =—,.

4. The wiggles in the interpolation formula near
the origin are probably not reliable since they vary
as different calculational procedures are used
(see Sec. VI).

0

FIG. 10. Same as Fig. 9, for the O{4) model.

4. O(4) model

This analysis follows the O(3) discussion quite
closely. In this case the series in the variable z
for the logarithmic derivative of p(g)/g is

——,
' —0.625z —0.88 263z —1.112z

—1.3173z —1.5014z

and the results of the ratio test are shown in Fig.
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8. The [2, 3] Pads interpolation curve for P(g) is
shown in Fig. 10 along with the weak-coupling ex-
pansion. Vfe note that the compatibility of the two
curves is better for O(4} than for O(3), and that the
transition between weak and strong coupling has
moved closer to the origin g=-,'.

I.O—

O(4) model

N-1
P(~) = a„~"+ O(z"),

ff=
(6.1a)

VI. TWO-POINT PADE APPROXIMANTS FOR THE P

FUNCTIONS OF THE O(3) AND O(4) MODELS

The interpolating forms presented in Figs. 9 and
10 do not use all the information known about these
theories's p functions in quantitative detail. In this
section we will present interpolating formulas
which lead to Eq. (5.4) for small g and reproduce
the strong-coupling expansions listed in Table I
for the non-Abelian models, A systematic method
exists for doing this. It is called the iV-point Pads
approximant and we will review it in a form suit-
able for our application. "

Suppose that we know N terms of an expansion of
the function I'. about the origin,

0.5 I.Q

FIG. 12. Same as Fig. 11 except for the O(4) model.

cients p, 'and q, are determined from the following
requirements:

(a) The series expansion of [P/Q] about the ori-
gin should agree with Eq. (6.1a) up to O(z"),

and M terms of the expansion of I' around infinity,

)"(el=a g („g "+D(z "i. (6.)b)

Then it is possible to form the [P/Q] Pade approx-
imant to F(z),

Po =ao

P1 =%&1+~1 y

pP = goop+ Q~gp 1 + ' + g~,

O&P+1+&1&P+ ' ' +~@+1~

(6.3a)

[P/q ] ( ) Po 01 PP.
1+/ g+ ' '+gQz

(6.2) 0=ON Q 1qQ+ ' '+ON

where P —@=I, and P+Q+I =N+M. The coeffi-

(6.3b)

for the case Ã& Q & P & M.
(b) The series expansion of [P/Q] about infinity

should agree with Eq. (6.1b) up to O(z~ "),
PP ~o~Q y

PP-1 ~O~Q 1 1~Q y

I

0(3) model

I.O—

0.5
I

I.Q

I

l.5
I

2.0

FIG. 11. Two-point Pade approximants for P (g)/g
of the O(3) model plotted as a function of g. The best
approximant is [g]. Also shown are the weak- and
strong-coupling expansions.

PP-8+1 ~O~Q-I+1+ + ~hl ~Q ~

Equations (6.3a) and (6.3b) comprise a total of N
+M=P+ @+1 linear equations which give unique
values to the Pade coefficients p, and q, Clearly
this construction is a natural generalization of the
usual Pade approximant. It is particularly suited
to the problem at hand since the analysis in the
previous sections of this article suggest that the
O(3) and O(4) models are single-phase systems.
Hence, a smooth interpolation between weak and
strong coupling should exist. The two-point Pads
approximant provides a mell-defined, systematic
method of doing this."

We have calculated the two-point Pade approxi-
mants for the P functions of the O(3) and O(4) mod-
els. The results are shown in Figs. 11 and 12.
The coefficients of the [7/8] Pade approximants
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TABLE V. - The coefficients of the f7/8l two-point Pade approximants as defined in Eq.
(6.2') for the function P(g)/g for the O(3) and O(4) models. The variable z in Eq. (6.2) is 1/g in
this application.

O(3) model

pt
O(4) model

0
1
2
3

5
6
7
8

1
0.020 249

-0.295 35
0.022 397
0.083 999

-0.020 634
4.804 3 x 10 5

5.321 2 x 10 3

1
0.020 249
1.038
0.049 397
0.282 79
0.021 229
0.1296

-5.019x 10 3

0.033433

1
0.064 665

-0.19101
0.015 944
0.052 396

-7.209 8 x 10 3

5.572 x 10
1.233 9x 10 3

1
0.064 665
0.475 65
0.059 053
0.063 937
0.012 4
0.022 63

-4.419 x10 4

3.3764x10 3

are collected in Table V.
Inspecting the figures, we learn the same semi-

quantitative facts that were pointed out in Sec. V.
For example, in the O(4) model P(g)/g grows from
0.17 at g=0.5 to 0.78 at g=1.5. So, the transition
from weak- to strong-coupling behavior has es-
sentially occurred over a regiori of width Kg= 1.
And, as in all of our analyses, there is no evidence
for a zero in P(g) at any value of g different from
zero.

VII. DISCUSSION AND CONCLUSIONS

Let us collect together our conclusions for the
various models.

l. O(2) model

We have strong evidence for a phase transition
at the coupling g, =1.7. We favor an exponential
singularity in the mass gap with a critical index in

agreement with the Kosterlitz renormalization
group. However, higher-order calculations are
necessary to establish this result with confidence.

2. O(3) model

We have strong evidence that this theory only
exists in the strong-coupling phase. A Pade ap-
proximant extrapolation of the P function from
strong coupling numerically matches with weak-
coupling perturbation theory in the intermediate
coupling region. The transition from weak- to
strong-coupling behavior appears to be quite ab-
rupt. This result agrees with Migdal recursioh
relation. ' " The transition region occurs near
g=g ~

3. O(4) model

The results are similar to the O(3) model. The
matching in the intermediate coupling region be-
tween the strong- and weak-coupling expansions is
somewhat better than for the O(3) model and the
crossover occurs nearer the origin (g=-,'). Al-
though the O(3) model has instantons while the O(4)
mode1 does not, we do not find any dramatic dif-
ferences between them. We had expected that the
instantons of the O(3) model would introduce addi-
tional disordering at small coupling and lead to a
narrower transition region than in the O(4) model.
Instead the transition region is narrower and
clearer for the O(4) model than the O(3) model.
Apparently the extra disorder in the additional
spin-wave modes of the O(4) model is numerically
more significant than the extra disorder in the in-
stantons of the O(3) model.

In summary, our series clearly distinguish the
Abelian from the non-Abelian models. Given a
finite amount of work, it is our opinion that Ham-
iltonian strong-coupling expansions are a more re-
liable way of searching for phase transitions than
the traditional high- temperature expansions. It
m@y be interesting and useful to apply the Hamil-
tonian methods to other models of interest to the
statistical mechanician.
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