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We examine both dynamical chiral symmetry breaking and explicit breaking due to current quark masses
in quantum chromodynamics (QCD). The renormalized current and constituent quark mass are defined. The
quark self-energy X(p) =- XD(p) + X~(p) has unique contributions from dynamical and explicit symmetry
breaking. We determine the asymptotic behavior of XD(p) and X&(p) as —p —+ fx}. Although the explicit
symmetry breaking dominates in the region controlled by perturbation theory, the dynamical term, which
receives contributions from instantons, dominates in the subasymptotic region. The dynamical term is often
ignored in the calculations. We also discuss the possibility of a phase transition in QCD for massive quark
systems. The structure of the chiral perturbation expansion for light quarks is found to have not only an
essential singularity in the gauge-field coupling constant for g

' & 0 but also a cut for g
' & 0 in amplitudes

for which the essential singularity is absent. We also calculate the second-order axial-vector renormalization
for a quark with the result g„= 1 —g '/6m'.

I. INTRODUCTION AND SYNOPSIS

We adopt quantum chromodynamics (QCD) with
%=3 colors and n flavors as our model of the
strong interactions. In the absence of explicit
symmetry breaking due to current quark mass
terms the chiral SU(n) XSU(n) symmetry of QCD
is assumed to be realized dynamically by a (n- I)-piet of Goldstone bosons. The purpose of
this article is to discuss both explicit and dynam-
ical chiral symmetry breaking in QCD.

The structure of the quark propagator in the
presence of both explicit and dynamical symmetry
breaking is analyzed. The renormalized quark
propagator is S (p,g, is. ,m), where' is the re-
normalized coupling at renormalization mass p.

and I is the renormklized current quark mass
representing explicit symmetry breaking. The
quark propagator is related to the renormalized
vertex for the scalar operator qq by

&S '(p, g, tt, m)
I'(p&p&g

& it &m} =-
m

Integrating this equation we have

(p&8 & is& m) SE (p&R & tt )&+mSD (p&R & tt ) &

s (l&,s, p, m) =—f I'V, &,s, &. , m' &&m' .
0

Here SD (p,g, tt), an integration constant, is the
contribution of dynamical symmetry breaking and
is independent of the current quark mass m.
SE (P&g& p&m) is the contribution of explicit sym-
metry breaking and vanishes if the current quark
mass m=0. Several recent treatments ' of the
quark mass, using the renormalization group,
ignore the dynamical quark mass term completely
and hence violate partial conservation of axial-

vector current (PCAC). The dynamical term can
have an important effect on hadron processes.

Extensive use will be made of steinberg's4 ver-
sion of the renormalization-group equations in
which masses are treated as coupling constants.
This renormalization prescription has the advan-
tage that the P function is independent of m/p, and

a, the gauge parameter. %e examine the asymp-
totic behavior of the quark propagator and consider
separately the explicit and dynamical terms. For
the explicit symmetry-breaking term we find for
the part of SE '(p} that anticommutes with ys, ZE(p),

gE(P) ~ mfln(-P /is )] '1
p2m ~ ~&Q

where c/is=12/(33-2n). This result follows un-
ambiguously from the use of the renormalization
group and the boundary condition on the scalar
vertex I'.

For the dynamically generated quark self-energy
ZD(P) the renormalization-group equations offer
no clue as to the asymptotic behavior because the
boundary condition on this amplitude is unknown.
There is no mass renormalization because there
is no mass. Instead ZD(P) must be obtained from
an integral equation. Using asymptotic freedom
for the appropriate kernel one finds that if ZD(P}
does not vanish identically it can have only two
kinds of asymptotic behavior corresponding to the
regular (Neumann series) and irregular solutions
for the bound-state Goldstone-boson wave func-
tion. Ne argue in favor of the regular solution
since it implies rapidly filling electromagnetic
form factors for the bound-state meson, while the
irregular solution yields nonfalling form factors
corresponding to elementary mesons. Further
for the irregular solution the Usual operator-
product expansion fails6 as does the Beg-Shei the-
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orem on the merger of Nambu-Goldstone and
%igner-Acyl chiral realizations on the light cone.
For the regular solution, then, one has

Although ZD(p} is small relative to Zs(P} in the
asymptotic region controlled by perturbation theo-
ry for moderate p =-p, Z~(p) becomes large
because of nonperturbative instanton interactions.
This large increase of the quark mass in the sub-
asymptotic region could be an important effect of
instantons on hadron dynamics.

As a byproduct of this discussion we have cal-
culated g&, the axial-vector renormalization con-
stant, for a quark to first order in perturbation
theory. The result is infrared finite and given by

g2
gg =1 —

~ C2(N), Cq(3) =$.
8m'

In the additive quark model gbg"""=egg b, where
g~""""——1.25 +0.02. With g2/8@2- $ the result
comes out right. While quantitative significance
cannot be attached to this result the coupling
comes out reassuringly small.

Vfe have also examined the question of a phase
transition in QCD as the renormalized current
quark mass m approaches a critical value m*.
For vanishing current quark mass m the meson
decay constant f(g, p, m) is nonvanishing f(g, y, 0)
0 signaling a Goldstone realization of the chiral
symmetry. For small m/u the meson decay con-
stant is known to increase like,f(g, p, m }=f(g, p, 0}
+E2(g)m In(p/m)+ with E2(g) &0 a numerical
constant. So for light quarks u, d, and 8 one can
do perturbation theory in m/p. However, for
heavy quarks like c,b, .. . , m/p, -O(1) and it is
not possible to study symmetry breaking in a per-
turbative way. Further there may exist a critical
value m =m* for which f(g, p, m*) =0 signaling a
'phase transition. At this transition there is no
chiral symmetry but for m & m* the bound states
may no longer be smoothly connected to the
Goldstone mode. For example, if m, &m* then
D' mesons are not "almost Goldstone bosons"
like the collective K' and m~ states but pre-
sumably atomic states. ' %e have been unable to
verify the existence of this transition in QCD but
have examined some constraints imposed on the
problem by the renormalization group.

In the SU(3) XSU(3) linear Z model in the tree
approximation' one cah show that this transition
does indeed take place when the symmetry is ex-
plicitly broken to SU(2) X SU(2). At the critical
value of the symmetry-breaking parameter f,/f„
=0, m, =m, =0, and m& ——m„, where mr( is
the kaon mass and m„ is the kappa mass. This

E,(g) -, m In(m/p )E,(g) + mE, (g) +

I (g, p, m)

=m[pH&(g) + m ln(m/p. )H2(g) + mH3(g) + .] .

Using the renormalization group one can show that
as g~0

E (g) f g- 4gb/c- /tbg

( ) f+2c /b

-2(c+2d &/b -1/bg
7

H2(g) =h2g

where f, and Ib, are numerical constants undeter-
mined by this analysis and c =1/2z, b =(11
——,'n)/8m', d =(19n/3 —51)/2(8w ) . We also show
that f/2/Ib& ——3/64m . While it iS well known that
the dynamical generation of mass requires an
essential singularity in the complex g plane like
e ' ", it is clear from this analysis that in some
symmetry-breaking amplitudes [like H2(g) and

E,(g)] the essential singularity is absent. How-

ever, there is a cut for g & 0. So perturbation the-
ory in g for symmetry-breaking amplitudes is not

possible.

II. DYNAMICAL SYMMETRY BREAKING IN @CD

A. Renorma1iiation prescription and Yard identity

Here we define our renormalization prescription
allowing for both explicit and dynamical y5 sym-
metry breaking. The SU(n)&&SU(n) symmetry of
QCD is presumed to be broken by a quark mass
term given by

~

~

&-0 0
moqiq

where the zero indicates an unrenormalized cutoff-
dependent quantity. In what follows we will drop
the flavor index i as the algebraic structure in
flavor can easily be recovered. In expression
(1) mb is the bare current quark mass. The re-
normalized current quark mass m is specified by

m =Z„'(A),(A) (2)

can also be understood in terms of the domain
structure of chiral symmetry breaking. " Since
in the real world m&'/m„-0. 2, we are far from
this phase transitions at least for light quarks.

Finally we have examined the structure of the
perturbation series in the light-quark mass. For
the meson decay constant f and ground-state pseu-
doscalar mass M, chiral perturbation theory im-
plies '

f(g, u, m)
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where g, I, and ~ are the renormalized constants
and JL( is the renormalization mass. %e normalize
r as in Weinberg's zero-mass renormalization
scheme. This requires first setting mo ——0 in (3)
so that the normalization

(4}~(p &P&g& 0&o & v ) lp' 2=p =2& p' »&--»2

defines the Z's to be functions of A/p, g, and n
but not m/p, . Similarly the quark wave-function
renormalization constant Z2 is defined by

Z2 S(p &g &
m

&
+

& V) SO(p& g 9 m 0 &
o 0 &

(P &
g"

&
m

&
o

& l& ) =/1 (P & g& m
&

&
& U )P

~(p g&& m » v) &

with the normalization A (- p. ,g, 0, &, p, ) = 1.
normalizing amplitudes at m, =0 we have adopted
the usual prescription that amplitudes that do not
vanish if m, =Q, g, =0 are normalized at p, by
their zeroth-order value. The normalization of
Z(P) we will discuss in the sequel.

This procedure defines the normalization con-
stants Z and Z2 and anomalous dimensions

8 lngy(
np,

18 lnZ2y.»'= 23 h

which are independent of m/». since we have used
zero-mass renormalizations. y (g} is gauge inde-
pendent and

y»&(g) =Cg +fg +

while

2 ~ 2 2 y

y~(g, o) =hg'+fg'+

A N-1 Q

16~2 KV 12~'

as A- ~. Here Z is the renormalization con-
stant for the q q vertex. To be precise let
I'(p'&p&go&mo&o. o&A) be the unrenormalized vertex
corresponding to the scalar vertex q~q . Here
go, mo, ~0 are the bare coupling, mass, and
gauge parameters. The renormalized vertex is
defined by

(P &P&g&m» V ) Z»&Z2 (P &p g&o m&o &0& )
0

and we normalize according to

I', (O',P,g, 0, n, p)1„2 y&, -,P „2=y, .
Finally the axial-vector-vector vertex corre-
sponding to qy,y,q gets renormalized according to

Z~ I
& (P &P&go&mo&c&0&A-) —I

& (P &P&g&m&o '& v) ~

(10)

If in the m =0 theory the y5 symmetry is dynamic-
ally broken then the %ard identity implies a Gold-
stone-. boson pole in 'r„at q =0. Taking this
possibility into account we write

'~, (p' P,g o & v)='I', (P',P,g o & u)

+ rG(p' P g 0 ~ v) (11}
q

where G, the residue at the pole, is the bound-
state wave function. In a theory such as QCD with
dynamical y5 breaking, C vanishes to every order
in perturbation theory; it is of O(e ' "). The
regular piece of the axial-vector vertex is norm-
alized as in perturbation theory

5~
&»(P &P&g& 0& + &v ) lp' =8=(&&-») =- » y»y5 '

%e now have all the ingredients to write down
the axial-vector Nard identity for the n —1 axial-
vector currents that are free of anomalies. The
U„(1) axial-vector current, has an anomaly and
requires special treatment. The unrenormalized
amplitudes satisfy

q "r'„(P',P) =2m, r,'(P', P)+ S, '(P'}y,

+yA '(P)

q=P P ~

Upon renormalization as specified above orie ob-
tains with g„=Z2/Z„

~"I.(P',P)=g. 'I.2mI', (P',P)+S '(P'b,

+yss '(p)]. (13)

The pseudoscalar (and scalar) vertex I'5(P', P) can
be shown to satisfy the renormalized integral
equation

r, = sr sz,

zation is the same as the scalar vertex so

I',(p', p, g, m, o. , & }=Z Z,i', (p', p, g„mo, uo A),0

In the Landau gauge n =0 and yz(g, 0) =O(g ).
Similarly we can define the pseudoscalar vertex

corresponding to q ysq . By an argument of Adler
and Bardeen' the pseudoscalar vertex renormali-

where K is the renormalized quark-quark two-
particle irreducible (2PI} scattering kernel, re-
normalized according to K = Z2 Ko.

For a finite cutoff A or in a dimensionally reg-
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ularized theory for n c4, Eq. (14) has an inhomo-
geneous term Z Z2y~. Order by order in pertur-
bation theory this term is divergent as A- and
cancels a divergence in the integral. However,
if we first sum the perturbation series using the
renormalization group then, in the Landau gauge,
letting A- , one finds Z Z2 ——0 and there results
the homogeneous Eqs. (14). The solution to the
homogeneous integral equation (14) is necessarily
nontrivial because of the boundary condition (9}
which requires I"5 =@5 at the normalization point.

The Goldstone alternative is evident from this
Ward identity. If mo(A) =-0 then the renormalized
current quark mass m =0 and we have a chiral
invariance. Then either (i) [S (P),y~], =0 and
there is no Goldstone pseudoscalar boson or (ii)
[S ~(p), y5], o0 indicating a dynamically generated
mass and the Ward identity (13) implies I'„(p',p)
-q„/q2 the Goldstone-boson pole term. In either
case in the symmetric theory renormalized am;
plitudes of QCD a,re parametrized by only two
numbers, g and p, (related by the renormalization
group). If m, (A) $0 then m a0 and QCD has its
chiral symmetry explicitly broken. The theory
is described in terms of the parameters g, p, ,
and m. If the symmetry in the m =0 theory was
realized by Goldstone bosons in the m 40 theory
the quark propagator now acquires an explicit as
well as a dynamically generated mass and the
Goldstone boson becomes massive.

There has been some confusion due to the fact
that mo(A} vanishes as A- ~. This does not im-
ply that there is a chiral symmetry for the asso-
ciated flavor. Only if the renormalized current
quark mass m =Z 'mo vanishes is there a chiral
symmetry. The symmetric theory with Goldstone
bosons has m=0"

The axial-vector renormalization constant g&
=Z2/Z„as defined by the above normalization
conditions, can be shown by an application of the
Ward identity (13}to satisfy g„=1 to every order
in perturbation theory. This is because t" and the
dynamically generated quark mass must vanish
to every order in perturbation theory. However,
if there is dynamical symmetry breaking we have

g 1+O( 2&-1/&z
)

and g„el. (If g„=1 then the symmetry is realized
in the Wigner-Acyl mode and there is no dynam-
ical breaking. ) This result one obtains by calcu-
lating to lowest order in g the ratio g„=Z2/Z„
using the fact that the dynamjcaliy generated quark
mass in the loop is O(p, e '/ }. This definition of
g& is dependent on the gauge parameter n so that
no physical significance can be attached to this
number.

If instead of normalizing the vertex function and

propagator at an unphysical point, we normalized
them on the constituent quark mass shell P' =P
=m„ then the cor responding renormalization
constants Z2' and Z„' have the property that g„
=Z2/Z„' is gauge independent. " This quantity can
then be interpreted as the axial-vector renormali-
zation constant for a quark. If one calculates this
g& to lowest order in g with m, 0, the result is
infrared and ultraviolet finite,

/f2 1 g2 g2
gA 1 8+' ' 1 2+''' ~

2N 8~ 6~

This calculation is given in Ref. 21, and as re-
marked in the introduction the correction has the
right sign to account for the nucleonic g„". It is a
special property of our definition of g„and the
normalization conditions that we obtain a nontrivial
result in perturbation theory.

B. Renornaiization-group equations

The renormalization-group equations for the
quark propagator (5) reads

where

P(g) = -'&z'+&g'+

5(u,g) &-~&Xv(a ~)

~v(g, ~) =f~'+ "
t =(11—an/3)/8~',

d =(-51 +19n/3)/3(8v )

f=-(13—3o —4 /3)/33~'.

For the scalar vertex one has

8 - 8
+P(g) , -3&~(S ~)—

Bp,

(16)

Evidently

a well-known relation'3 which is consistent with
differentiating (15) with respect to m and using
(16).

if we integrate (17}we obtain
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I = SI'SK (19)

with the nontrivial boundary conditions (4). This
requires

as, '

p2 =- tt, , m=0

S (P,g, m, a. , p. ) = Sa (P,g, m, n, p, )
-1

I

+Sg (Prgr&xu) r (18)
m

Sz (P,g, m, a, p. ) =- I'(P,P,g, m', n, p)dm'.
0

Here SD(P) the dynamical quark propagator is an
integration constant independent of m, the current
quark mass. Sa(P) is the contribution of explicit
symmetry breaking to the quark propagator which
vanishes if m =0. Since we have used zero-mass
renormalization SD '(p) is normalized as is S (p)
in Eq. (5). Sa '(p) is also normalized through its
representation in terms of I'. I" is specified as
the solution to the homogeneous integral equation

&(p,p) ~(g)[f)»(~-P'/p. )] '".
p2»» eo

(26)

Using (18) and (20) we have for the explicit sym-
metry-breaking contribution to Z(p)

Za(p) ~ mC(g)[b ln(v'-p&/p )] 'i'.
p2» oo

Next we examine the asymptotic behavior of
the quark propagator. We will choose the Landau
gauge e =0 as this simplifies the analysis. From
the renormalization-group equation (15) and the
boundary condition (5), A(- u, g, 0, n, p) =1, one
finds from the standard analysis

AB',g, m, D, X) Clg)=xx ' dx),
p.(x, 0)

p'- -.- 0 p(x)
(25)

since we are in the Landau gauge, where y~(x, 0)/
P(x) -O(x) as x-o.

From the renormalization-group equation for
the scalar vertex (16) and the normalization condi-
tion (4), we find

With

Sa '(P)=A (P', m)P-Z (P', m),

S, '(P) =A, (p')P'- Z, (P'), (20)

Notice that this vanishes if nz =0 as it must.
/

C. Dynamical mass generation

the representation (18) provides an unambiguous
separation of the quark mass into a current (Za)
and constituent (Z) part

Z(p) = Z.(p)+ Z.(p) . (21)

Recent articles, '3 beginning with a paper of
Georgi and Politzer, ' have examined the behavior
of the quark mass as function of p, . The normali-
zation these authors use is, with m 40,

S (p) I~2 „2=p'-m (22)

M'A'(M') = Z'(M') (23)

if it exists. It is easy to show that the solution to
(23) is necessarily a renormalization-group in-
variant, that is, it satisfies

a a a
+P(g)—-y (g)m — M =0.

a~ ag am
(24)

Consequently, [S i(P), y5], =0 if m =0 and from the
Ward identity (13) there are no Goldstone bosons
violating PCAC. The point is that the normaliza-
tion condition (22) precludes the presence of a
dynamically generated term in S i(p). This omis-
sion can have serious consequences for the phe-
nomenological analysis of hadron processes since
the dynamical term dominates for moderate mo-
m enta.

The constituent quark mass can be defined as
the position of the pole in the quark propagator.
This would be the solution M to the equation

Next we turn to the dynamically generated mass
term ZD(p) which is independent of the current
quark mass m. We can set m =0 in discussing
this amplitude. The renormalization-group equa-
tion

8 a
x +A)—-mr )x', 0))r. ))')=0

Bp, ag

is' satisfied if

ZD(p) =&-O'H(g(t u))

&exp — ' dx

where g(t, p ) is given by
. gN0g) dt = ln(v'-P~/p. ) =

p(x) '

—P(g) 8
g(t, g)=0.a a—

(28)

(29)

The arbitrary function H(g) is completely un-
specified. The point is that for Z~(p) there is no
boundary condition for the simple reason that
there is no mass to be renormalized. In the ab-
sence of a boundary condition the renormalization-

- group equation cannot specify the asymptotic be-
havior of Z~(p).

Instead we must turn to the integral equation
satisfied by ZD(P). This is obtained as follows.
The bound-state amplitude G(p +q,p) for the
ground-state Goldstone boson is given by
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(30)

The question of whether dynamical symmetry
breaking can occur at all is tantamount to con-
structing a nontrivial solution to (32). This ques-
tion we do not address here.

The 2PI kernel of the integral e(luation (31) can
be written as

K(P, k, q) =Kv(P, k, q) +K„v(P,k, q), (33)

where K~(p, k, q) corresponds to the usual pertur-
bative skeleton expansion and K„p(P, k, q) incor-
porates nonperturbative effects. The latter are
known to exist coming from the flower graph of
the instanton interaction shown in Fig. 2. The
instanton interactions are presumably the dom-
inant part of the kernel for nonasymptotic momen-
ta -P -p, . It has been suggested by Caldi 6 and
Callen, Dashen, and Gross that these instanton
interactions render the y, -invariant vacuum un-
stable. This implies a nontiivial. Zz&(p) and hence
the Goldstone realization. In certain approxima-
tions to these instanton interactions one can show
that the integral equations have a solution for
Z~(P) providing the number of flavors is not too
large. i'" The typical behavior of Z~(p) in p'
coming from instanton interactions in the kernel
is that it is asymptotically negligible, but rises
rapidly for -P -p, .

For large momenta we can ignore the nonper-
turbative contribution to the kernel, and the per-
turbative term is dominant. This feature of
asymptotic freedom, emphasized by Lane, al-
lows us to determine the large-momentum be-
havior of the complete kernel exactly and conse-
quently the exact large-momentum behavior of

G(P +q,P) satisfies the Bethe-Salpeter equation
shown in Fig. 1 or

G(k+q, k)= Jd'kq (k+q)G(k+q, k)S (k)qq(q, k, q).
(31)

From the Ward identity (13), G(P, P) -y5Z~(p) and
there results the nonlinear integral equation for
ZD

ykSq(k)=fd k'S (k)y, Sq(k)S (k)S(q;k, q). (Sk)

The terms regular and irregular refer to the be-
havior of the Bethe-Salpeter amplitude G(P +q,P),
related to Zn(P) by the Ward identity, near the
origin. Both of these solutions are consistent with
the renormalization-group equation. Without
examining the nonasymptotic regime of the inte-
gral equation, a formidable task, we cannot de-
termine which of the two solutions, if either, is
correct. So unlike the explicit term Zs(p), the
asymptotic behavior of the dynamically generated
term is not uniquely determined.

To attempt to determine the asymptotic behavior
of the dynamically generated mass, use has been
made of the operator-product expansion (OPE).
This argument was first proposed by Lane and
subsequently by Politzer. '8 If one examines the
short-distance behavior of q(x)q(y) using the OPE,
one concludes that the regular solution is the cor-
rect behavior. This procedure for determining
the asymptotic behavior of a solution of the Bethe-
Salpeter equation, however, begs the question
since the OPE is itself proven by assuming the
regular solution to the Bethe-Salpeter equation.
This logical lacuna in the OPE argument was
pointed out by Langacker. '~ The only way that I

Kp + KNp

(o)

(b)

NP

ZD(P), providing Z~(P) does not vanish identically.
We will not repeat this analysis here. It turns out
that there are two solutions which are specified
by their asymptotic behavior,

ZI)'(p) ~ y, [ln(v'-P'/p, )] '~' (irregular),
P2 ~ ~ qqo

(34)

(c)

FIG. l. Bethe-Salpeter equation for the bound-state
amplitude G.

FIG. 2. (a) Decomposition of the 2PI kernel into a
perturbative and nonperturbative part. (b) Skeleton ex-
pansion of perturbative kernel. (c) Flower graph con-
tribution due to' instanton interactions. There are n-2
petals on the flower.
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know that one can settle this question on the basis
of theory alone is to know more about the sub-
asymptotic kernel —a difficult task.

However, we can argue in favor of the regular
solution gnd the usual OPE on experimental
grounds. The regular solution corresponds to a
typical bound-state behavior, while the irregular
solution corresponds to an elementary pointlike
ground-state pseudoscalar meson. Applequist
and Poggio5 have examined the pion electromag-
netic form factor E,(q ) as q~-- ~ in the asymp-
totically free ($3}8theory in the triangle-graph
approximations shown in Fig. 3. For the regular
solution E,(q ) -O(1/q ), while for the irregular
solution E,(q ) -O(1) up to logarithms as q --~.
Simple power counting in the vector-gluon theory
with the regular solution implies E,(q ) -O(1/q }
as q'-- , the experimentally observed behavior.
For the irregular solution E,(q ) -O(1). We
would conclude that the usual bound-state physics
of experimentally falling form factors, trans-
verse-momentum distributions, etc. could not be
maintained with the irregular behavior of the,
wave function. So we conclude that experiment
favors the regular solution.

Beg and Shei' have shown that the Nambu-Gold-
stone and Wigner-Weyl realizations of chiral
symmetry merge at short distances. This attrac-
tive result is predicated upon the usual OPE and
would fail if we have the irregular solution.

Langacker' has argued in favor of the irregular
sOlution. He, however, assumed that Z(p) was
normalized according to Z(P2=-p ) =m, where
m is the current quark mass. Then the renormal-
ization group unambiguously implies Z(P)
-m[ln(v'-P2/p)] '~', and we must have the irregu-
lar solution. However, we have seen there is no
such boundary condition for a dynamically gener-
ated mass —the boundary condition applies only
to the explicit mass term. Consequently, there is
no reason to have the irregular solution. Experi-
ment favors the regular solution for the dynamical
term.

We conclude that as P --~

(36)

The full mass term Z(P) =ZD(P) + Zz(P) is shown
in Fig. 4 with the large enhancement of Z~(p} at
moderate momenta coming from instantons as es-
timated by Callen, Dashen, and Gross.

III. EXPLICIT SYMMETRY BREAKING IN QCD

A. Bound-state wave function and the decay constant

We have argued that if the symmetry is dynam-
ically broken in the m =0 theory, the Goldstone-
boson bound-state wave function is the regular
solution. If this is so then in the explicitly broken
theory with m 40 the solution to the Bethe-Salpeter
equation will continue to have regular behavior
asymptotically. This follows because the effect of
explicit symmetry breaking is to alter the quark
propagator according to 8 '(p)- S ~(p) -m up to
logarithms. Such mass insertions in the Bethe-
Salpeter equation do not alter the leading asymp-
totic behavior of the kernel and hence the asymp-
totic behavior of the solution. This regularity of
the bound-state wave function in the presence of
explicit symmetry breaking has implications for
the meson decay constant which we now examine.

If I v(k)) is the Goldstone-boson state, then the
decay constant is defined by

(37)

vghere M is the bound-state mass. The exact in-
tegral representations for f given by Jackiw and
Johnson is shown in Fig. 5. Here f=g„ f and
I'„(P +q, P) and the bound-state wave function

G(P +q, p) appearing in Fig. 5 are defined by

Z(p)
lO —

X (

I

IO

I

20

g p2/~

FIG. 3. Pion form factor in. the triangle-graph ap-
proximation.

FIG. 4. Contribution of dynamical and explicit sym-
metry breaking to quark self-energy. Dynamical sym-
metry-breaking contribution taken from Ref. 8.
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(q' -M')'I', (p +q, p) ~,q„G(p+ q,p),
q N (38)

'f'. (p+q, p) =, "M G(p+q, p)+'&".(p+q, p).

In an approximation to the exact representation
for f in which only the dominant high-momentum
terms are kept, ~ one obtains

2iN d kZ(k)y, G(k, k)
(27/)' [k' —Z'(k)]' (39)

If we have no explicit breaking the Vizard identity
implies G(k, k}=-g& '2y, Zn(k), and then

-4zN d kZ~ (k)
g„(27/)' [k' —Z'(k)]'

N "dk
)2 k2

Za'(-k') '0 . (40)

However, since the bound-state wave function still
has regular behavior G(k, k) -O(1/k ) the integral
(39) for f continues to converge safely. We
would conclude that nonasymptotic terms control
the actual value of f'.

B. Perturbation theory for light quarks

For light quarks u, d, and s the explicit current
quark mass m is presumably small relative to
p,

- j. GeV. This suggests that one can do chiral
perturbation theory in m/p, for these flavor-
breaking amplitudes. Chiral perturbation theory
in m/y. has known nonanalytic behavior. Using
the pseudoscalar meson mass M and the decay
constant f as examples, one finds for the chiral
perturbation expansion

g p.vf
"2

The integral is convergent since Z~(-k )-0(1/k )
up to logarithms. The necessary condition ' to be
in the Nambu-Goldstone phase f &0 is satisfied
by (40). Of course nonasymptotic contributions
which were dropped in writing (39) could be impor-
tant, especially instanton interactions.

If we include explicit symmetry breaking then
the asymptotic behavior of Z(k) =Zn(k} + Z»(k) is
dominated by the explicit term

(41)

B B B

i —+ P(g) —-y.(g)m M' =0.
Bp Bg By+

Substituting (42) into (43} and e4luating terms of
the same order in m/p, one obtains

B
1+P(g)

&
E~(g) =o,

B1-y.(g) + P(g) H~—(g) =0,
Bg

B
y(g) -+ P(g)

&
E2(g) =o,

(44)

B
2y (-g)+P(g) 3

H2(g)=0.

These e4luations imply E&(g)E2(g)/H&(g} and

E& (g)H2(g)/H& (g) are constants independent of g.
Solving (44) we obtain the singular parts of these
functions as g- 0,

E ( ) f g-44/be-&/bg

E2(g) =kg "",
- 2( c+24 ) -4 / bc

gg 8 y

H, (g) =h2g "/",
(45)

where f, and h; are integration constants and 5, c,
and d are given by E4ls. (7) and (15). These e4lua-
tions exhibit the known essential singularity for
g ~ 0 associated with dynamical symmetry break-
ing. In addition we learn that some explicit sym-
metry-breaking amplitudes which vanish as m -0
have no essential singularity, but a cut in the com-
plex g plane for g ~ 0. Even for such amplitudes
the radius of convergence of perturbation theory
ing is zero.

The numerical constants f; and h, cannot be de-
termined by the homogeneous renormalization-
group equations. However, if we consider two
flavors corresponding to the m and K channels then
we can use the chiral limit theorem

f(g, p. , m)

= I/E, (g) +E,(g)m in(4//m) +E,(g)m +

M (g, u, ,m}
'2 (42)

=m[uH&(g) +H, (g)m 1n(iL/m)+Kb(g) + ] .
Next we use the fact that f(g, p, , m) and M(g, p, ,m)
are renormalization-group invariants so they
satisfy

B B
v ~- +P(g}~ -y (g)m~ f=o,

FIG. 5. Exact integral representation for the meson
decay constant. The slash denotes differentiation with
respect to momentum and then setting the momentum
to nero.

f /f» =1+ z z ln'(M /p, ) ~

3(M»' -M,')

Using the expansions (42} one finds

(46)
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M '-M'E
f /f 1 + E P &(g) 2(g) h (~2/ 2) (47)

f( f2/hg ——- 3/t&4&( (43)

C. Phase transition for heavy quarks

1. In QCD

and comparing one has for the constants in (45)
the relation

G(g'{ t, g &)

P(g, e) exp=( dx/5(x)},

where G(g) is an arbitrary function satisfying

GV'(-" g))=so
and g (f,g) is implicitly given by

g'{ t, g&

d f1+~.( )]/u(~).

(51)

(52)

(53)

For heavy quarks like c, t, b presumably m/)&
-O(1), and chiral perturbation theory is not appli-
cable. For these quarks an interesting possibility
of a phase transition exists. Let f(g, )&, rn} be the
decay constant, which is the order parameter,
for a heavy meson and consider m to be variable.
Since f(g, )/, 0) exists and is nonvanishing, we have
a Goldstone realization. As m increases so does
f(g, (). , )))) as indicated by chiral perturbation theo-
ry. But for very large m, f(g, )j, , m) could de-
crease and eventually vanish, f(g, p, , m*)=0 as
shown in Fig. 6. This does not entail parity
doubling of hadron states because the y5 symmetry
is explicitly broken by the large current quark
mass m*. If m, &m*, then the heavy pseudoscalars
like the a~P may not be smoothly interpolated as
"almost Goldstone bosons" like the m'P, E'P.
Presumably an atomic model rather than a collec-
tive model is appropriate for the description of
states with quarks with m & m ~.

The renormalization group places some (but not
much) constraint on the problem of a heavy-quark-
mass phase transition. We write

It follows that

()(d'(t, g&)
= exp dx /P(x)

f(pep, )0) (:(r( „,&) t=m{ml p )

(54)

Suppose we know the function G(g) and that as
m increases that we find a value t* = ln(m*/)()
such that G(g (t*,g))=0. Then the integral in
(54}behaves like -1/G' and f(g, )(,m*) =Q. This
is the condition for the phase transition.

We can analyze other quantities such as a hadron
mass M. Then the same above analysis implies

( ll(d'(t, g&)'I! '™-=exp Jl dx/5(x}}, (55)M, p, , Q ~(g'{"~, g))

where H(g) is another arbitrary function. We as-
sume that if the phase transition does occur at m
=m* that H(g'(t*, g))40, otherwise (55) requires
the hadron mass to vanish there —a disaster for
the physical spectrum. Of course without knowl-
edge of the functions G(g), y(g), and P(g) we can
only speculate on the existence of the phase transi-
tion.

f(g, &(,I)=)&.F(g, t), f = In()))/p },
where F(g, —~) exists and is given by

(49)
2. In linear o model

gp

P(d, — }=exp( dx/5(x)). (50)

f(g,p, m)

0

FIG. 6. Possib1e behaevior of the decay constant indi-
cating a phase transition.

Heregp is a number and we presumegp andg are
in the domain of attraction of the origin. F(g, —~)
is just the general solution to the renormalization-
group equation (43) when m =0. For m e0 we can
substitute (49) into the Eq. (43) which has the gen-
eral solution

It is interesting to look at the linear SU(3) XSU(3)
o model in the tree approximation in which the
symmetry is realized by an octet of Goldstone
bonbons. 3 Of course this theory has nothing to do
with QCD, but it has the advantage that we can
control the phase-transition problem completely.
We will explicitly break the SU(3) XSU(3) invari-
ance of the Hamiltonian to SU(2) XSU(2) by adding
the linear term e&('(x), where &((x) is the 0' field
(transforming like ss in the quark model), and e

is the explicit symmetry-breaking parameter.
For small q the kaon gets a mass mr -O(e) and

f,/fr= 1+O(q}, while the triplet of pions remains
massless because of the remaining chiral SU(2)
XSU(2) invariance. As one increases e there is a
critical value e =. c* at which point m& =m„,
f,/fr=0, m, =m, =0 where m„ is the &(-meson
mass and a is the 0' meson. What has happened
is that at the critical value the chiral SU(2) XSU(2)
is being realized by the Wigner-Acyl realization
and the spectrum is parity doubled. For ~ &a*
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this realization is presumably maintained.
Although the above remarks are verified in the

SU(3) X SU(3) o model, in the tree approximation
the possibility of the phase transition is indepen-
dent of the tree approximation. To see this we
consider the domain structure of the model as
considered by Mathur and Okubo. This 'is shown
in Fig. V. As one increases the e parameter from
0 to c* one can move from the Goldstone realiza-
tion of SU(2) xSU(2) to the Wigner-Weyl realization
as shown in Fig. V.

The domains are consequences of unsubtracted
spectral representations and spectral positivity
for the correlation function for the explicit sym-
metry-breaking operators. For scalar fields of
dimension 1 this assumption is @ll right, but in
QCD the relevant operator is qq with dimension 3
in perturbation theory. 3o subtractions are re-
quired, and the naive argument on the basis of
symmetry-breaking domains given for the 0 model
does not apply to QCD without modification.

D. Light quark mass ratios

The quark mass ratios of different flavored
quarks R,&

——m, /m& are a renormalization-group
invariant so that [p(a/3&)+ p(g)a/ag]R, &

—0. This
is true in steinberg s renormalization prescrip-
tion in which one renormalizes at zero current
quark mass, even for heavy quarks. Instead one
can renormalize at finite current quark mass.
This has the advantage, from a phenomenological
standpoint, of explicitly decoupling the heavy
quarks. However, the anomalous dimensions
are now dependent on the current quark mass and
the gauge parameter a: P(g, m/p. ), y „(g,u, m/p).
The lowest-order calculations of these anomalous
dimensions and their gauge dependence have been
done by Nachtmann and Wetzel. 3 In this finite-
mass renormalization scheme the usual approxi-
mations will yield gauge-dependent results for
physical amplitudes. No physical significance can
be attached to a gauge-dependent quantity. Of
course, if one did not approximate in the usual
way of retaining just the lowest-order terms in

- the anomalous dimension etc. , the gauge depen-
dence must disappear. But going beyond the stan-
dard approximations to obtain gauge-invariant
results seems a formidable undertaking. For this
reason zero-mass renormalization may be pre-
ferred even for heavy quarks. Then the standard

su(s)
Vacuum Invariance

SU(2) x SU(2)
Vacuum Invaria

-I

Ai

e

OJ

c
O

K
Q

CU ~
O
E

M ~

C:
O
h

O0
C
C0
f
O

~ E
R ~

FIG. 7. Domain structure of chiral symmetry break-
ing taken from Ref. 11. The axis 5 labels the vacuum
symmetry, while a labels the Hamiltonian symmetry.
At the pointA thp vacuum symmetry is SU(3) and the
Hamiltonian symmetry SU(3) & SU(3). As one breaks the
SU(3) ~ SU(3) Hamiltonian symmetry to SU(2) && SU(2),
one moves along the line AB. At B the vacuum becomes
SU(2) &&SU(2) invariant, and the states are parity doub-
lets.
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approximations give gauge-invariant results for
physical amplitudes.

Finally we remark that in QCD the ratios of the
light quarks have been calculated24'25 with the re-
sult

m„/m~ =0.38 + 0.13,

m, /m, =0.045 + 0.011.

The principal input into this calculation is the as-
sumption that the usual photonic contribution to
electromagnetic mass shifts is correctly estimated
by the low-lying states and that chiral perturbation
theory in SU(3) XSU(3) is all right.
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