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Time-reversal invariance is considered for the Yang-Mills external-source problem. Constraints on the
electric field and sources of invariant static solutions are found to result in simplified field equations
resembling gauge models with smaller groups. A class of non-Coulomb solutions of the SU(2) equations is

obtained numerically for a line charge source.

I. INTRODUCTION

The purpose of this paper is to examine the sim-
plification of the static Yang-Mills equations with
external charged sources which result from re-

quiring the solutions to be time-reversal invariant.

For the analogous problem in the Maxwell theory
T invariance is essentially automatic, since no
currents are present. This property does not ex-
tend in general to nonlinear gauge theories in
which the fields themselves can carry current.

In an Abelian model such as scalar electrodynam-
ics with external charges, where the current is
gauge invariant and has the normal time-reversal
behavior, it must still vanish for an invariant
solution. However, in the Yang-Mills theory the
nonlinear terms of the field tensor require a mod-
ification of the usual time-reversal transforma-
tion in order for it to be a. symmetry of the equa-
tions of motion. A consequence is that the invar-
iance condition for a static solution places con-
straints on the electric field and sources, while
nonvanishing field currents are not excluded.

Given this situation one does not know whether
all static solutions of interest are T invariant
and imposing such a requirement is therefore an
ansatz. The motivation for considering it arises
of course from the intractability of the full set of
Yang-Mills equations. With an appropriate choice
of gauge the number of nonvanishing field com-
ponents is substantially reduced and the resulting
system resembles a gauge model for a lower-
dimensional group, with the components of the
scalar potential looking like scalar fields.

The SU(2) T-invariant equations have been
solved numerically for the somewhat unphysical
case of an infinite-line charge. This example was
chosen for computability in that for a class of
solutions invariant under translation along the
source line the problem becomes one-dimensional.
The results illustrate for a weakly singular source
the color screening and energy lowering discussed
by Mandula®! and others.2™ Critical charge thresh-
olds appear to be absent. In addition it was found
that a completely sourceless solution represent-
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ing an infinite-length flux tube is not present in
the model.

The T-invariant equations for the SU(2) group
are obtained in Sec. II. Their application to the
line-charge problem is discussed in Sec. III. Sec-
tion IV considers the extension of the ansatz to
SU(3).

II. STATIC SU(2) SYSTEM

The equations for the classical SU(2) Yang-Mills
field interacting with an external current j¥(x)
areS.S

8, (x) = g€, Ay, WF 2 (x) =g 4(x) , (1)
Fir(x) =0"A%x) — 0"AL(0) — g€, AL (X)A%UX) . (2)

The local gauge transformations will be written in
the form’

Taj;‘f(x) =R(x)Lj4(x)R(x)™, (3a)
T AY(x)=R(x)T A“(x)R(x)* +ig*[6“R(x) R ()™,
(3b)

where the matrices (T,),,=—%€,,. are generators
of the adjoint representation, to which R(x) belongs

In the following j*(x) represents an external
charge distribution, spatially fixed in the chosen
reference frame:

Ja () =05 py(x) . )

The charges are still free to rotate internally ac-
cording to the equation of motion®

80 pa(x) =8 €abcAg(x) pc(x) 2 (5)

which follows from (1). The magnitude p,(x)p,(x)
is a constant of the motion.

The system defined by (1) and (4) has various
symmetries, characterized by transformations
which take any solution into another one with the
same positions and magnitudes for the source
charges. A solution can be defined as invariant
under such a transformation if it changes at most
by a gauge transformation, i.e., there is no phys-
ical change. At least for the usual symmetries
this is a gauge-invariant definition.
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Consider, for example, static or time-transla-
tion invariant solutions. With the translation de-
fined by

ALK, )~ A¥R, ) =ALR, L +€), (6a)
P&, 1)~ p (X, t) =p,(X, ¢ +€), (6b)

then A", p. will differ from A*, p, at most by a
gauge transformation:

T, AYX,t+€)=R(x,e)T ALK, )R(x,€)™
+ig™ [0“R(x,€)R(x,)*,  (Ta)
T 0 (X, t +€) =R(x, €)T 0, (X, )R(x, €)™ . (o)

As would be expected, these conditions imply the
existence of another, not unique transformation
which removes the ¢ dependence from the fields
and sources. For infinitesimal €, R(x,¢)

~1-4¢T ,W,(x) and to first order in € (7a) reduces
to

gaoA:(x)zauWa(x)_geach:(x)Wb(x)' (8)
Defining S(X, ¢) as the solution of
8,S(%, 1) =iS(X, )W, (&, )T, ,

SE,0)=1, ®

and applying the corresponding gauge transforma-
tion A¥(x) ~A*(x) it is readily verified using (8)
that 824%(x)=0. Similarly p, is ¢ independent.
The remaining gauge freedom, consistent with
keeping the fields time independent, can be used
to satisfy any of a class of gauge conditions.

A similar procedure will be followed to deduce
the consequences of assuming T invariance. The
invariance requirement is formulated in a gauge-
invariant way. A gauge transformation is then
applied to make the symmetry manifest in the
form of the fields. This is rather like making a
partial choice of gauge, except that it is not ap-
plicable to arbitrary fields. It offers some flex-
ibility over the alternative of working within a
fixed gauge from the outset. )

Owing to the nonlinear terms in the field tensor
(2), the analog of the usual Abelian time-reversal
transformation

A?z(}f, t) *Ag'(ia t) ='A2(§’ - t) ’ (103—)
ANR,t) ~AVE, 1) =—AK(&, 1) (10b)

is not a symmetry of the equations of motion. The
extra sign change required for the nonlinear terms
to transform as the gradients can be accomplished
with a transformation of the form

AR, t) = AY(X,t) =M, AR, ~t) , (11a)
AR, 1) =AYR, D) ==M, ALR,~1), (11b)
pa(i, ?) —'P,;(i’ t) =Mabpb(§; ), (11c)

where M, is a constant matrix. Assuming it to
be orthogonal for the sake of a canonical trans-
formation one has

€apc(Myg AJ)(M 4 A7) = (Det MM (€, ., ALAY)

(12)
so that Det(M)=-1 is needed. Equations (1) and
(4) are then invariant under (11). The various
possible M’s are related by global rotation factors
and are presumably equally valid. It is convenient
to choose M, =~ ,, in which case Eq. (11c)
presents an interesting analogy with the time-re-
versal transformation for mechanical spin.

A static solution will be invariant under (11) if
there is a gauge transformation R(x) such that

AY(R)=-A3X) =R, (DAX) , (13a)
T, AR =T,ANR)

=RETANDRED +ig [0'RE)RED™,

(13b)

Pa(E) == py(X) =R 1y, () - (13c)

In writing (13a) and (13c) the relation RT R™
=T,R,has been used. With sources present,
AY(X) will be nonvanishing almost everywhere so
that (13a) implies that R(X) is a local rotation
through 7. Let S(X) be a rotation which takes the
local rotation axis of R into a fixed direction e

S@RES @ =R,(M, (14)

where Re(n) is a constant rotation through 7 about

e,. Gauge transforming by S(X) and combining with
(13) gives for the new fields
-A°(%) =R, (1), A%X), (15a)
Ai®) =R,(1), A&, (15b)
_ﬁa(i) =Re(‘”)abﬁb(i) ’ (150)

which imply that A} is collinear with e, fori=1,
2, 3 while A%, p, are orthogonal to it. If the axis
is chosen along the 3-direction one has the re-
strictions

- Af=Af=0, i=1,2, 3

Ag=p,=0. e)

For A o the effect of time reversal has been re-
duced to a global rotation as in (15), not to the
identity. There may be some question whether
the different global orientations of a classical sys-
tem should be regarded as physically indistin-
guishable. If they are not then it would be more
correct to say that (15) represents a minimal

. change rather than an invariance and there would

be no strictly T-invariant static solutions with
sources.
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Using (16) and the notation A%=¢,, A2=d,,
Al=(R)! the static versions of (1) and (5) reduce to

-2, +g(V* R)p,+ 26 (K- V)9, +g2R%¢, =gp, ,

(17a)
-V, -g(V: R)p, - 2R V)¢, +g°R%¢, =gp, ,
(1)
Vx (VxB)=gTp=g($, Vb, - $,90,)
+5%(¢,2+ 0,94, (17c)
¢, ®)p, &) - ¢,X)p, &) =0, (17d)

where J is the field current. Except for the sign
of the last term in (17c) these equations are form-
ally identical to massless scalar electrodynamics
with A =0, a scalar field ¢, +i¢,, and a scalar
source p, +ip,. The gauge freedom consistent
with (16) is the Abelian subgroup of rotations
around the 3 axis, which preserve B and J,, and
their products with R, (7), R,(w).

Examples of T-invariant solutions with smooth,
localized source distributions are provided by the
work of Sikivie and Weiss,® whose magnetic-dipole
ansatz gives equations which are essentially a
special case of (17). An example of a singular
source will be discussed in the following section.

III. LINE-CHARGE SOCLUTIONS
The line charge is taken along the z axis,
Pa) = p£,(2)5(0)/p, a=1,2 (18)

where 2mpug is the charge magnitude per unit
length and £,(z) is a unit vector specifying the
local orientation.

In addition to T invariance several further sym-
metry assumptions were made. For rotational
invariance the field components ¢,, 4,, A, A,
are independent of angle coordinate. Plane re-
flections preserving the z axis are symmetries
and for invariant solutions there are two minimal
possibilities, depending on whether or not the in-
duced gauge transformation contains a factor such
as R,(m). If it does, the fields can be made to sat-
isfy A,=A_=¢,=p,=0; if not, then A,=0 can be
assumed. Models of the former type have been
considered elsewhere.®® In this calculation A,=0
and the magnetic field will be circumferential
around the source axis.

The remaining local gauge freedom can be used
to satisfy A,=0, A,(p=0)=0. This choice is
convenient for solutions invariant under transla- .
tions along the source, which is the final ansatz.
The resulting form for the fields is

9.&)=R(p)£, (), A,=A,(p),

£,(2) = (-sinkz, cosKz), 19)

where K =0 and all other solutions satisfying the
symmetry assumptions are related to (19) by
global rotations. The source and scalar potential
have a corkscrew configuration, and it is evident
that a z translation produces just a rotation around
the internal 3 axis.

With the definition S =K +gA, the field equations
reduce to

_;%.p3—5+SZR=g}L5(P)/P, (20a)
%2’% pgﬁp+g2R2s=o. (20b)

For K=0 one solution is the Coulomb potential

=-uglnup, S=0. For K #0 there exist solu-
tions in which the magnetic field cylindrically con-
fines the electric field, the factor of S? in (20a)
acting like a nonconstant mass term. At small p
the behavior is

R=~puglnpp+r+0(p’lnpp), p=~0, (21a)
S=K+0(p*1n? up), p—=0, (21b)

while R tends rapidly to zero for large p and S be-
comes logarithmic:

R=0, p—=e, (22a)
S=clnup+d, p—~w. (22b)

The consistency of (22) with (20) can be seen by
applying the Wentzel-Kramers-Brillouin (WKB)
approximation.

The boundary problem is to find # in (21a) such
that (22a) is satisfied, and it appears that this is
possible for any u, g, K. However, there is ac-
tually only a one-parameter family of distinct
solutions, from which the others can be obtained
by scaling. With the definitions

a=gexp(r/pg), x=ugp/a,

= ~ 23
S=aS/pg, R=aR/u, (23)
the field equations become
1 d _dR gz
— S — — - 5
ol +S2R =agd(x)/x , (24a)
14d é D2G —
xdxxdx+RS—0, (24b)
with the boundary conditions
R=-aglnx +0(x*Inx), x~0, (25a)
S=aK/pg+0(x*1n*x), x—~0, (25b)
R=0, x—o. (25¢)

The rescaled system involves only the two param-
eters S, =aK/ ug and G =ag, with 5, given by some
function f(G). Once f is known the value of a cor-

responding to given u, g, K is obtained by solving
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aK

—=f(q, 26

e flag) , (26)
and the fields are given by

R(p) =L R (ugo/a),
(27)

S(p) = %gsc(ugp/a) )
R, S, being the solutions of (24) for G =ag.

Figure 1 shows the function f, which apparently
tends to a nonzero limit at G =0, indicating that
there is no critical value of pg below which (26)
cannot be satisfied. The absence of a critical
charge would perhaps be expected for the weaker
line singularity compared to the point-charge
case.! The structure in f is associated with a dis-.
crete set of solutions for which S tends to a con-
stant for large p. The first few such solutions
occur at

G,=3.01, 5.40, 7.75, 10.09, ... . (28)

Figures 2 and 3 show the fields R, S for =1 and
2 with u=g=1. For given u and g, K= ug*(G)/G
and the sources unwind as G increases. Over its
known range f(G) grows less than linearly, sug-
gesting that G =~ = is a Coulomb limit.

In all of these solutions the field current flows
only in the z direction, with a density of gR?S.
Using (20b) the total current is

I= f pdpgR*S =~c/g, (29)
0
which gives an asymptotic magnetic field B,=-g™

dS/dp=1I/p. I=0 for the discrete set (28).
The energy of the system per unit length is given

|
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G

FIG. 1. The function f (G) giving the values of S, de-
termined by the boundary condition R(«)=0, for G be-
tween 0 and 10. At the indicated points S(x) tends to a
constant as x — .

| | L I
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FIG. 2. The line~charge fields R(p) for 1 =g=1 and
G=3.01, the smallest value of G for which S(p) tends to
a constant at infinity.

by
E=3 [pdp(®{B}+EE{+B )

2
=% [ pdplg™@S/apP + (@R/dp) + RS)].
€
(30)
The integral diverges in general at both limits so

that cutoffs have been inserted. The “energy” of
the Coulomb solutions is then

E,=3(gm)’In(l/€p) +3(gp)flnry . (31)

For the magnetic solutions it is useful to integrate

by parts in (30) and use the boundary conditions to

obtain

I
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FIG. 3. The line-charge fields R(p), S(p) for u=g=1
and G=5.40, the second value of G for which S(p) tends
to a constant at infinity.
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E=3(gufIn(l/ep) +3 f wpdp(RS)z

1 c? '
+§gur+2—gglnuh. (32)

The last term is the divergent part of the magnetic
field energy. Over the range of G examined the
coefficient of the In is smaller than for the infra-
red term in (31) (for the same u, g) so that if
such comparisons have any meaning in this con-
text one could say that the energy is lower than
that of the Coulomb solutions. For the discrete
set (28), however, ¢ =0 and the electric field is
cylindrically confined with only a finite increase
in magnetic field energy per unit length. The
finite contribution in (32) was evaluated and found
to increase monotonically with » for n up to 4, the
limit of the calculation.

Owing to the unlocalized nature of this system,
the total charge (per unit length) is gauge depen-
dent. In the present gauge it is proportional to
£,(z) and nonvanishing because of thé presence of
a z-dependent z component of the electric field.
Total charge is zero in, for example, the gauge
¢, =0.

A search was made for a sourceless solution of
(20) having R finite at p=0. If it existed it could
correspond to a flux tube connecting infinitely
separated charges. Unfortunately, expansions
similar (21) show that such an R must be an in-
creasing function for small p and the SR term in
(20a) forces it to continue growing. Confinement
of the electric field as in the line-charge solutions
is therefore not possible. '

IV. STATIC SU(3) SYSTEM

For SU(3) the time-reversal transformation is
again of the form (11). The covariance condition

(12) becomes
SascMpaMes==M g f o455 (33)

where f,,. are the structure constants. The general
form of M has not been determined, but M, =-5_,
is a solution as before (M, =5, is not) and will
be adopted in the following.

It is convenient to use the 3 X 3 matrix repre-
sentation of the potentials A*=A¥) /2. The in-
variance requirement is then the existence of

U(x) belonging to SU(3) such that
-A°=UA°U™, (34a)
A= UAU +ig (o' U)U™ . (34b)

(34a) and (34b) are form invariant under ¢-indepen-
dent gauge transformations V(X), with U going into
VUV™. Hence U can be assumed diagonal:

Uyp=0,d4; !ual=1, uuU, =1 . (35)

Substitution into (34) then results in the constraints

UMFAL==AGss (362)
uau;‘A;fA};B, (36b)
du,=0. (36c)

Equations (36a) and (36b) imply that A% =0 and
that at least one off-diagonal element of A® van-
ishes. With a global rotation, if necessary, A,
=0 can be assumed. Then from (36b) A!,=A% =0.
The surviving components are A}—AJ, Ai- A,
and Af.

The field equations are similar to a static SU(2)
xU(1) model with a charged doublet (A]—iA2,
AJ-iA9), atriplet (4}, A}, A}), and the Abelian
field A
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