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A treatment of the gauge zero modes about an instanton in a singular gauge places them on the same
footing as all other zero modes and simplifies the calculation of the collective-coordinate part of the instanton
determinant. This determinant is calculated first for the gauge group SU(3) and then for general SU(N).
The answers differ from previously published results: For SU(3), the reason for this difference is trivial [the
inclusion of certain factors of 1/1/2 whose absence from ’t Hooft’s original SU(2) calculation was recently
discovered] but the effects on quantum-chromodynamic calculations may be important; for large N, the
reasons’ are more involved, but the usual conclusion that instantons are absent in the planar limit is

unaffected.

I. INTRODUCTION

A necessary ingredient in the computation of all
instanton effects in a gauge theory is the value of
the quadratic functional integral about the in-
stanton. This calculation was first performed by
’t Hooft! for an SU(2) gauge group.

One of the more subtle aspécts of ’t Hooft’s
work was his treatment of the gauge zero modes
which are due to the arbitrary orientation of the
instanton within the gauge group. Because of the
complicated space-time dependence of the gauge
modes, it was necessary to place the system in a
box and to resort to an unconventional form of the
Faddeev-Popov ansatz in order to compute the
contribution of these modes. Here, I show that
the calculation may be greatly simplified by work-
ing with the instanton field in a singular gauge,
rather than the regular gauge of Ref. 1. Ina
singular gauge, the infinitesimal gauge transfor-
mations which generate the zero modes approach
constants at large distance (essentially because of
the rapid falloff of the gauge potential) and may be
easily identified with changes in the potential under
variations in the collective coordinates which de-
scribe the gauge orientation of the instanton. I
show in Sec. II that this allows one to treat the
gauge modes on exactly the same footing as the
other zero modes (translations, dilatations). For
definiteness, I work first in the context of SU(3)
and compute the one-loop functional integral about
a single SU(3) instanton.

In Sec. III, I write down the answer for a general
SU(N) theory, which requires only minor generali-
zations from the SU(3) computation. For reasons
I explain, my results differ from the recently
published work of Bashilov and Pokrovsky.?2 How-
ever, the prediction of vanishing instanton effects
in the large-N limit** (the planar theory) is un-
affected.

Because I take into account the recently dis-
covered® numerical error in the original SU(2)
calculation, my result for SU(3) differs by a pre-
dictable numerical factor from the previously
published answer.® In Sec. IV, I make some com-
ments about the effects of this new number on some
recent instanton calculations”® in quantum chro-
modynamics (QCD). I argue that while it is still
possible to find significant instanton effects, to do
so one is forced to go to larger values of the
coupling constant, where other nonperturbative
effects may be more important.

II. GAUGE ZERO MODES; SU(3)

We wish to calculate W, the one-loop vacuum-
vacuum amplitude about a single instanton divided,
for normalization, by the same amplitude about
the ordinary vacuum. If the potential is expanded
about the classical value,

A, =ASl+ Al (1)
then the quadratic action about an instanton is
S=Scl+%Aq"MAAq“+¢*Mgh¢+"', 2)

where S°'=872/g2, and ¢ is the ghost field. De-
noting the collective coordinates of the instanton
by v;, W is given by

W“’=f IiI dy J(NQ()e®r?/ % (3a)

det™/2M ,(y) detM ,,(y)

)= (et 720 , det M ;) 4e1_q °

(3D)

where J(y) is the collective-coordinate Jacobian,'
and where the determinants in (3b) are, of course,
taken over nonzero modes only. .

The focus here will be on the evaluation of the
collective-coordinate Jacobian, in particular the
contribution to it from the gauge zero modes.
However, before evaluating J(y) in the case of in-
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terest, it is useful to review the usual method®
for replacing zero modes with collective coordi-
nates in a nongauge theory. For simplicity, we
consider a scalar quantum field B which has a
classical value B=B(y), depending on a single
collective coordinate y. Let M(y) be the operator
that appears in the expansion of the action to quad-
ratic order about B°!:

- Rel qu

B=B%+B%", (4)

S=S°14+§ BMMBW+ e,
M has a complete set of orthogonal eigenfunc-
tions x; with eigenvalues ¢; and norms Vu;:

uiE<X,-|xi>. (5)
There is, of course, a zero mode

9B°l |

Xo= 5> €=0. X (6)
If we expand B as

BU= 206X, (1)

1 B
then the measure for functional integration is
\1/2
(@B)=(aBw)=]] (’—2‘—7;) at,. (8)
i

That this is the correct measure can be seen by
performing the integration over all the nonzero
modes. The Gaussian integrations give

1/2
[@es= [ (‘ZTT) dtoes" det/ M+ oo e,

(9)

where ¢** represents higher loops and the effects
of other classical sectors. The fact that we get
precisely det™/2M without some infinite multipli-
cative factor indicates that we have chosen the
correct normalization.??

We may now insert a factor of unity which will
require the quantum field to be orthogonal to the
zero mode:

L= fays(B-BIxM+ee,  (10)

where ¢*° represents terms of higher order in the
quantum field. Inserting this factor into (9) and
performing the £, integration results in

1/2 '
f (dB)e™s =fdy(”2‘—37) S det /2 g eee

(11)

The case of the gauge theory is slightly more
subtle. The difference lies in the requirement of
fixing a gauge (taken here to be the usual back-

ground gauge with respect to the classical field).
The derivative of the classical field with respect
to a collective coordinate will not, in general, be
in the background gauge. The ith zero mode is
thus given by*
9Ac! ;
zp(ut)z __8% +DTA") ,

D= 0,y— g[S, 40]=0,
where D$! is the gauge-covariant derivative at the
classical field and A is the gauge transformation
necessary to put the ith mode into the background
gauge. Working in parallel with Egs. (4) through
(11), it is then easy to see that J(y), as defined in
(3a), is given by

(12)

J() =<H 7—%—11—) (detV)(dety)/? (13)

where the matrices V and U are defined by

BA°L, .
V”=< 37, '¢(J)>’

_ (14)
U, = G0,
Now, if
(7 1
A9, ’<O<;—3-) (15)

at large distances 7, then a simple integration
by parts gives V=U and the familiar result

J(V)=(H 721=7T> (detU) /2, (16)

Thus, provided that we can express each zero
mode as the derivative of the classical field with
respect to a collective coordinate plus an addi-
tional gauge transformation [i.e., in the form of
(12)] and provided that the gauge transformation
A vanishes sufficiently, rapidly at large dis-
tances [i.e., (14) is obeyed], the calculation of the
collective-coordinate Jacobian is straightfor-
ward. With the instanton in the regular gauge,
only the translation and dilatation zero modes
obey these conditions; however, in the singular
gauge, the gauge modes are also well behaved

(as we will see presently), and all modes may be
treated on the same footing.

We now specialize the calculation to an SU(3)
gauge theory. The general SU(N) case is only
slightly more complicated and is presented in
Sec. III. An SU(3) instanton can be obtained simply
by embedding the SU(2) instanton into the “upper-
left-hand corner” of the fundamental representa-
tion of SU(3).!? Thus the singular gauge instanton
has the form ’



c
A 1(x)—:g_ x2(x%+p%) 27
where A, (a=1,2,3) are the first three Gell-Mann
matrices and the symbols 7,,, are defined in Ref.
1. Under the action of this SU(2) subgroup, the
generators of SU(3) form one triplet (A, X,, A,),
two doublets (made from A, A, g, A;), and one
singlet (A;). Using this fact, it is easy to write
down the twelve background gauge zero modes.
First, there are the eight isospin-1 modes,
which are just the ones given in Ref. 1, after

conversion to the singular gauge of the instanton'3:

9AY (x —2)

zp‘[,”(x) —-—“———-— + DA (%)), (18a)
Y(x) = aA;(x) (18b)
(p(a)(x) DCl[g _;V%:_p_] (180)

where ¥ (v=1,...,4) are the translation modes,

) is the dilatation mode, and '@ (¢=1,2,3) are
the gauge modes generated by X;, A,, A;. In addi-
tion, there are four modes which are members of
isospin doublets and which can be obtained from
the isospin-3 spinor modes of Ref. 1, since vec-
tors and right-handed spinors obey the same
equation. They are pure gauge modes, generated
by A, (¢=4,5,6,7):

@)_ ne >‘ xz 1/2
el (7)) ue
There are no normalizable isospin-0 zero modes
(xg does not generate a gauge mode since it com-
mutes with the field of the instanton).

P and ¥ are already in the form of (12), with
A% vanishing rapidly at infinity. To put the gauge
modes zpff’ in this form; we must simply make
more explicit the collective coordinates to which
they correspond. The orientation of an instanton
in SU(3) is described by a group element G:

A%l[Gl=6G"A%G. (20)
If we represent an infinitesimal change in G by

G+6G=(I-idt'r\)G, i=1,...,8 (21)
then seven gauge zero modes are given by

x?[G]= 24216]

Btk == G_I[A k]G ’ (22)

where k=1,...,7. These modes are not in the
background gauge. However, from (18c) and (19),
we easily find the necessary gauge transforma-
tion'® for G=1,*

A

ZI)(k) u +D A(k) (23)

ﬁguuxv z‘_q_ (17)
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where
1 -n2
2 (F5s), k=123
A®= (24)
1 x2 1/2
E[(m) -1], k=4,5,6,7.

Now all the modes are in the form of (12), with
A% vanishing sufficiently rapidly at infinity so that
(15) is obeyed. [This would not have been possible
in the regular gauge since in that gauge the gauge
transformations appearing in (18¢) and (19) do not
approach constants at infinity.] We can thus apply
(16) to compute J(¥). The modes are orthogonal
and their normalization is easily calculated to be

2\/_
12l =75 19211 = ll ¥l = H el = Bir,
(25)
This implies
214
J(y)= T . (26)

To complete the calculation of W% [Eq. (3)], it
is necessary to compute Q(y), which is the con-
tribution of the nonzero modes. ’t Hooft’s calcu-
lation,' which has been verified by others,'® gives
the nonzero-mode determinants with Pauli-Villars
regularization for arbitrary spin and isospin. Here
we have vector (gauge) fields and scalar (ghost)
fields each forming one isotriplet, two isodoublets,
and one isoscalar. In addition, we must recall that
the regulator fields contribute one factor of u,, the
regulator mass, for each zero mode of the true
fields. The results of Ref. 1 then immediately
imply

Q(Y) = 1o expl-1In(uyp) - a(1) = 2a(3)], (27)

where the coefficients a(t) give the contribution
of each isospin ¢ and are tabulated in Ref. 1 [a(0)
=0]. .

We may now insert (26) and (27) into (3). Sinte
the integrand in (3) is independent of the gauge
orientation of the instanton, the integration over
those collective coordinates may be performed.
From (21), one learns that integration over all
eight parameters ¢! would simply give the volume
of SU(3), calculated with the right-invariant Haar
measure. However, only the seven ¢* of (22) are
collective coordinates; integration over them
gives the volume of SU(3)/U(1), where the U(1) is
generated by 2. SU(3)/U(1) is the set of equiva-
lence classes on SU(3) given by

G'~G if G'=e®MG., (28)

[In other words, two elements of SU(3) are counted
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as equivalent if they produce the same instanton
orientation.] The volume of SU(3)/U(1) is calcu-
lated in the Appendix to be 7¢/2. Combining this
information with (13), (26), and (27) gives the re-
sult

d*zdp o-812/ %0

,  (29)
e gt

where z is the space-time location of the instan-
ton, and
8r° _8r?
g%p) g°*
is just the usual renormalization-group result for
g(p). The second equality in (30) is simply a defi-
nition of the scale u (the quantity that can be de-
termined by electroproduction scaling violations).

WO = 918,10, (1)-20:(1/2)

- 11In(pp,) = -In(pu) (30)

IILI. SU(N)

The generalization from SU(3) to SU(N) is fairly
straightforward. The only subtlety involves the in-
tegration over the collective coordinates which
describe the gauge orientation of the instanton—
this integration is performed in the Appendix.

If we embed the instanton in the standard way
into the SU(2) in the “upper-left hand corner” of
the fundamental representation of SU(N), the
generators of SU(N) form one triplet (the analog
of A}, Xy, ;) and 2(N — 2) doublets (the-analogs of
N4 - - - 5 A;) under the action of this SU(2).12 All
other generators are singlets. This implies that,
in addition to the eight zero modes of the form
(18), there will be 4(N - 2) zero modes of the
form (19). Following the steps that led to (26),
we now have

4 (2pV7 WV
a0= 5 (L) (31)
Similarly, following the steps leading to (27) gives
Q(¥)= ko™ exp[-5 N1In(uep) — a(1) - 2(N - 2)a(3)].
(32)

Equations (31) and (32) may then be inserted in

(3a). The integral over the group orientation is
defined in the Appendix as V(Cy) and is given by
(A14). The result is

4 expl-a(1) -2V - 2)a(3)]

(1) _
W=z W-DIW-=-2)!

4 2\2 N ‘
x [LER(EL) etreto, (33)

where, according to the renormalization group,

872 87?2 11N
—7—= = —5 = —— In(u,p) . 34
gz(P) g2 3 ( op) . ( )

Equation (33) differs by a factor of 1/V2N from
previously published results,? for reasons ex-
plained in the Appendix. However, the large-N
limit is controlled by the factorial and power be-
havior of (33), and the conclusion that instantons
are unimportant in the planar limit*»* (N -, Ng?2
fixed) is unchanged.

IV. COMMENTS ON QCD INSTANTON CALCULATIONS

We may rewrite our answer for SU(3), Eq. (29),
in terms of the mean density of instanton of scale
size p in the dilute-gas approximation:

dp _2 4P 6 o
psD(p)_b SR (35)

5=0.0015,

where x=872/g2, x(p)=872/g2%(p). The number b
in (35) differs by a factor of & from the pre-
viously published® 0.1, which has been used in
most QCD instanton calculations to date. The
reason for this discrepancy is easily found: In
calculating this number, we have taken cognizance
of the recently discovered® error in ’t Hooft’s
original calculation and have therefore been care-
ful to normalize the functional measure correctly.
[See Eq. (8) and the remarks following it.] Com-
pared to the original incorrect normalization, this
introduces a factor of 1/¥2 for each zero mode.
The fact that the previous result must be corrected
by a factor of & isbynowknown to most specialists
in this field'®; however, a few comments are in
order on the required modifications of some recent
calculations”™® of physical instanton effects.
Examining (35) we see that a change in b can

be absorbed into an additive constant in x(p);
from (30) this just implies a change in the scale
up. In fact, to absorb a factor of 64, we must
change x(p) by In64 ~4, which means changing up
by a factor of ~1.5. Of course, if we assume,
in the usual way,® that the factor of x¢ in (35) is
converted simply to [x(p)]® by the effect of higher
loops, then the above argument is not strictly
correct. Still, phenomena that occur for x(p) con-
siderably larger than 4 (for example, the inter-
esting effects in Ref. 9 occur in the range 14<x
<20) are expected to take roughly the same form
as before, but occur at somewhat larger values of
the coupling constant [smaller x(p)] and corre-
spondingly larger values of up. We must keep in
mind, though, that while pure dilute-gas instanton
effects may be relatively unaffected, the larger
coupling constants involved can bring other, non-
perturbative effects into play, thus blurring some
previous conclusions.

To be more specific, let us first consider the
effects of instantons on the short-distance hadron
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currents that control e’e” annihilation.”®*” In
Ref. 7, the instanton correction to the photon self-
energy Il(g?) for ¢° large and Euclidean is found to
depend on all instanton sizes up to a maximum,
cutoff scale. Thus we must ask whether we should
change the cutoff with 5. In the past, the cutoff
could be taken, without significant difference, to
be either the scale, p,, at which the dilute-gas
approximation breaks down [i.e., when the inte-
grated instanton density is 1—which is given by
x(pp) =14 for b=0.1] or the scale, p,, at which
other nonperturbative effects become important
[instantons are believed to ionize® into mesons at
x(p,) =~ 17]. The meron calculation is purely a
comparison of action and entropy and is not de-
pendent on b (Ref. 18); however, pp changes
drastically with . [In fact, a trival calculation
gives x(pp)=0 for b=0.0015—though of course
one is hardly justified in using the renormaliza-
tion group down to such values of x(p).] Now one
could take the point of view that the instanton
dilute-gas approximation, while not quantitatively
accurate below the point where merons appear,
still gives a reasonably good qualitative picture of
the effects of the whole nonperturbative sector.
With this viewpoint, one may extend the cutoff to
lower x, limited only by the validity of the re-
normalization-group calculation (as explained
above, lack of diluteness is not a problem). In
this way, one would find instanton effects of
roughly the same numerical magnitude (within

a factor of 2 or so) as those found by Andrei and
Gross. On the other hand, with the point of view
that instanton calculations cannot be trusted when
instantons ionize into merons, we must divide by
64 the numbers R, and R, which compare instanton
effects to perturbation theory—thereby making in-
stanton effects much less important at the quoted
values of q/u. This difference can be made up by
going to lower ¢/u (larger coupling); however,
one would again have to go beyond the point where
merons appear for instanton corrections to be
comparable to the perturbative ones.

In Ref. 8, Baulieu et al. argue that the contri-
bution of instantons to the e*e total cross section
may be found by taking the imaginary part of the
naive continuation of Il(g?) to timelike ¢2. Their
result depends only on instantons of scalesp~1/g,
so there is no freedom to adjust this answer by
changing a cutoff——numerical results must be
divided by 64. Of course, in both Refs. 7 and 8,
predictions for definite values of ¢ (in GeV) depend
on the identification of p (in GeV), which is taken
either from experiment (Ref. 8, p~300-700 MeV)
or from theory [Ret. 7, w~% (hadron mass)—from
the scale of meron ionization®]. To the extent that
these numbers are uncertain, numerical predic-

tions can change. (In Ref. 8, such high powers of
momentum enter that our factor of 64 is lost in un-
certainties in u.)

We now turn to the recent work of Callan et al.’
on the role of instantons in quark confinement
and the formation of a hadron bag. These authors
find that instantons act as permanent color mag-
netic dipoles which lead to a transition, at a criti-
cal value of an external color field, between a di-
lute phase with low paramagnetic permeability (the
inside of the bag) and a dense phase of vacuum
fluctuations with very high permeability (the out-
side of the bag). This phase transition is sig-
nalled by an instability in the phase diagram of
color electric displacement D vs color electric
field E—namely, a “nose” on the curve, where
39D/9E changes sign. In their calculations, with
b=0.1, the “nose” occurs at a scale where x(p)
~19. As explained at the beginning of this sec-
tion, the effect of changing b should be to keep the
form of this result essentially unchanged (i.e., to
preserve the basic shape of the D vs E curve) but
to displace the curve to somewhat larger scales
and smaller values of x(p). This is precisely
what happens: When I repeat!® their calculation
using »=0.0015, I still find a “nose” in D vs E,
but now at x(p) ~11. The instanton gas is still
dilute at this scale; furthermore, the coupling
constant is still reasonably small so that ordinary
perturbative corrections are not expected to be
large. However, x(p)=11 is considerably below
the point where instantons ionize into merons
[recall that this occurs at x(p) = 17, independent
of b]. Thus the meaning we assign to this calcula-
tion will again depend on our philosophy of the non-
perturbative sector. If instantons are believed to
be representative of the whole sector, then we
have a good qualitative understanding of an in-
stability which leads to confinement. On the other
hand, if we insist that we must at present stop
calculating when instantons ionize, then our ability
to see ends before things begin to look interesting.
It is certainly true that no calculation has yet been
done that indicates how a meron gas acts under an
external color field. Thus, finding confinement
in this picture is a tricky business. It is impor-
tant to keep in mind, however, that another result
of Ref. 9—that instanton corrections in the pres-
ence of large color fields inside hadrons are con-
trolled and calculable—is unaffected.
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APPENDIX

Here we calculate the integral over the collective
coordinates which describe the orientation of an
instanton in the group SU(N). This is just the
volume of the coset space Cy, defined by

Cy =SUWN)/Ty , (A1)

where Ty is the stability group of the instanton
[the subgroup of SU(N) which leaves the instanton
invariant],

As a preliminary, we compute the volume of
SU(3). The calculation is simplified enormously®
by considering the action of the fundamental repre-
sentation on the vector :

0

1

There is an SU(2) subgroup, generated by A, Ay, A,
which leaves » invariant; the rest of the group
just takes v into an arbitrary complex 3-vector

of length 1. Thus the set of equivalence classes

of SU(3) under the above-mentioned SU(2) is in
one-to-one correspondence with the points on the
five-dimensional sphere S;. However, the volume
element of SU(3)/SU(2) is niot numerically equal

to the volume element on S;; to get the relation
between the two we consider how group elements
near the identity act on v. Writing I+ 6G =1 — ixdt?,
we have

~ D

—idtt—dt®— %3 ar®

6G(v) = | —idt® - at" - %3 ar|. (A2)
2ids®
‘/_3— J

On the other hand, if we describe a point in S, as
a complex 3-vector and denote the locally flat
coordinates in the neighborhood of v by x1,...,x°%,
then the infinitesimal change in » under displace-
ment by these coordinates is given by

dxt+idx?
Sv=\ dx3+idx* }. (A3)
5

idx
Comparing (A2) and (A3) allows us to relate
dxt,...,dx®% to dt%,...,dt. We have, for the
volume elements,

.
ABAPareardr = —g dxdx?dx’dxdx®. (A4)

Thus, the volume of SU(3) is given by*!

V(SU(3))= f ndt‘=g- V(S)V(SU(2)). (A5)

Using V(S;) =73, V(SU(2))=V(S,)=272, we have
V(sU(3))=V37r®. (A6)

We can now compute V(C,), the volume of C,, This
is just the volume of SU(3) divided by the volume
of T;, where T, is the U(1) generated by A, If we
write the elements of this U(1) as e*”s then 6 has
the range 0<6<27V3. We thus have

_v(su) _ =t
V(C,) = Ty - T A
The calculation for general N follows the same
lines. In parallel with (A2)-(A5), SU(N)/SU(N - 1)

can be related to S, _,, giving®

1/2
V(SUN) = (TNII—IS) V(S, ) VSUN - 1)).
(A8)
Using
27

V(Syy-1)= woD (A9)
we have

V(SU(N))= VN N (ki-_z:-’-'l—;-!. (A10)

The identification of T, is slightly subtle. If we
place the instanton in the upper-left-hand corner
of the fundamental representation, then the gener-
ators of Ty are those which commute with that
SU(2), namely the generators of the SU(N - 2) in
the lower right and the generator

r—l -

-2/(N-2)

A=(1_V~]'VE>”2 -2/(N-2) | (a11)

.

L -2/(N-2)J

which commutes with SU(2) and SU(N ~ 2). We may
therefore parametrize Ty by writing ke Ty, as

h=e®g, (A12)

where g SU(N - 2). The range of § is 0<§6
<27[N/(N - 2)}/2, (Note that for N> 5, this is
less than the range of 6 necessary for e®* to re-
peat; i.e., Ty is not the same as SU(N = 2) x U(1).
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This is because 6, — 6,=27[N/(N-2)]*/2? implies
e®1* and e?2* differ by an element of SU(N — 2)—
specifically, an element in the center of SU(N - 2).)
We thus have

v(TM:u(-{%)m V(SUWN - 2)), (A13)

and®

V(SUWN)) _ g2¥-2

V(CN)= V(TN) - (N—l)'(N—-2)! ’

(A14)

This differs from previously published results.?:3
Aside from trivial differences in the normaliza-
tion of the generators, my disagreement with
these authors is based on their identification of
Ty as SU(N - 2) (Ref. 3) or U(N - 2) (Ref. 2).
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