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Multivortex solutions of the Ginzburg-Landau equations (or, equivalently, of the Abelian Higgs model) are
considered for a special choice of parameters. It is shown that for every n there is a 2n-parameter family of
n-vortex solutions. It is conjectured that the parameters are just those needed to specify the positions of the
vortices and that the vortices behave very much like noninteracting particles.

I. INTRODUCTION

The existence of vortex solutions to the Ginz-
burg-Landau equations of superconductivity has
been known for some time.! These solutions are
also of relevance in elementary-particle physics,
where they occur as classical solutions to the
Abelian Higgs model, which is mathematically
similar to the Ginzburg-Landau theory.? Although
they arise in three-dimensional theories, the
vortices are invariant under translations along a
fixed axis, and thus may be viewed as finite-
energy solutions to a theory in two space dimen-
sions. Associated with them is a topological in-
variant—the quantized conserved magnetic flux,

Although the equations depend on three param-
eters, two may be eliminated by an appropriate
rescaling of the fields and lengths, leaving only
one, A, which is of physical significance. De-
pending on whether A is less or greater than one,
the superconductor will be of type I or type II.
The case A =1 is of particular interest, as it is
known to have a number of rather special proper-
ties. Bogomol’nyi® has shown that for this case
a lower bound on the energy of an n-vortex con-
figuration can be obtained. Since the vortex num-
ber is a topological invariant, any configuration
which achieves this bound will be a minimum of the
energy, and thus a solution of the Ginzburg-
Landau equations. Furthermore, to find fields
which achieve this bound one need solve only a set
of first-order differential equations, rather than
the second-order Ginzburg-Landau equations.
Finally, Jacobs and Rebbi* have recently done a
detailed numerical study of the interaction energy
between a pair of vortices for various values of
A. For A =1 they find that, to a very high accura-
cy, the enérgy is independent of the vortex sep-
aration.

In this paper we study the theory with A =1.

We show that for every integer » there is a 2n-
parameter family of n-vortex solutions satisfying
Bogomol’nyi’s bound. Furthermore, every solu-
tion satisfying this bound must belong to such a
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family. We conjecture that these parameters may
be chosen to be the 2n coordinates needed to
specify the positions of the vortices. As we do
not find explicit expressions for the solutions, we
must use indirect means to study their properties.
Assuming the existence of an arbitrary solution
of minimal energy, we consider the problem of
finding small fluctuations which leave the energy
unchanged. We derive a special case of the
‘Atiyah-Singer index theorem® and use it to show
that there are precisely 2n independent solutions
to this problem. Combining this fact with the
previously established existence of solutions for
n vortices superimposed at the same point® yields
our results,

The remainder of this paper is organized as
follows. In Sec. II we review some properties of
the theory, including Bogomol’nyi’s results. In
Sec. III we derive a form of the index theorem as
well as a related vanishing theorem, and apply
these to the problem of small fluctuations. In
Sec. IV we consider the case of » vortices at the
origin, and show directly that the small-fluctua-
tion problem has exactly 2z solutions; this serves
as a check for the more formal calculations of
Sec. III. We conclude in Sec. V with some re-
marks.

II. SOME PROPERTIES OF THE THEQRY

The potential energy in the two-dimensional
Abelian Higgs model (or, equivalently, the free
energy per unit length in the Ginzburg-Landau
theory) is

E=f dz&[é](éj —ie/‘lj)q‘ﬂz +%ij ij

+h(|¢[2 -v2)?]. (2.1)
Here &3 is a compylex scalar field and
Fip=8,A,-3,4, (2.2)

is the field strength. Rescaling fields and lengths
according to
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¢=0v9,
A =vA,, (2.3)
3‘1 = (l/ev)xj ’

leads to
E=v2fdzx[gl(a,—z'A,)¢|2+:§-F,,,F,,,

+sM(ol? - 1], (2.4)
where
A=8h/e2. i (2.5)

For the remainder of the paper we shall set
A=1,

If the energy is to be finite, then as 7 approaches
infinity, |¢| must tend to 1 and (8, —iA,)¢ must
vanish, Thus, asymptotically

o= e‘X( ) ,

A;=9;x.

(2.6)

Since ¢ must be single-valued and continuous,
X must satisfy

x(6+2m) =x(6) +2m 2.7

for some integer n. Continuous variations of the
fields, subject only to the constraint of finite
energy, cannot change n; it is therefore a topo-
logical invariant. From Egs. (2.6) and (2.7) it
follows that

i
n——ﬂf;dlmp
1 U
_Zﬂidll A

1
2'2_7rfd2xF12’ (2.8)

where the line integrals are to be taken around a
contour at » ==, Because of the continuity of ¢,
the contour may be deformed into a sum of con-
tours enclosing the zeros of ¢. If there are 7,
points where ¢ vanishes like [(x£iy) — (¥, £8y,)],
then n=n, —n.. We shall say that there are n,
vortices and . antivortices.

For the case A =1 a lower bound on the energy is
obtained® by using an integration by parts to re-
write Eq. (2.4) as

B=v? [ @x{H(0,0,+4,6,)% (3,0, ~4,0)F

+ %[(az(m +A,0,)% (8,0, =A4,0,)F
+ %[Flzi é(ﬁb;z +¢,7 = 1)]2}

,U2
& —Z-fdszlz, (2.9)

where ¢, and ¢, are the real and imaginary parts
of the scalar field ¢. The first integral is posi-
tive-semidefinite while the second is simply a
multiple of the vortex number »n. Taking the upper
or lower sign according to whether % is positive
or negative yields

E=|n|(m?) (2.10)
with equality if

0=(8,0, +A,0,)F (8,0, - A,9,),

0= (2,0, +4,0,)% (0,0, ~A,9,), (2.11)

0=F,+ %(‘sz*'q’zz‘ 1).

III. AN INDEX THEOREM

Let us assume that we are given an n-vortex
solution of Egs. (2.11) (for the sake of definiteness,
take n>0),” and count the modes of fluctuation
about this solution which leave the energy un-
changed.® Many of these are simply gauge trans-
formations and are of no interest; these can be
eliminated by imposing a gauge condition, e.g.,
the Coulomb gauge®

0=9,A, +3A,. (3.1)

Expanding Egs. (2.11) and (3.1) about the solution
and keeping terms linear in the fluctuation, we
obtain

0=921n, : (3.2)
where

n=(6¢,,0¢,, 64,, 64,)
and

(8,+4,) (=3,+4,)) ¢, ¢,

D= (0,-4)) (0, +4;) -0, ¢, . (3.3)
o ¢, =9, 9
0 0 9, 9

The index of the elliptic differential operator D is
defined by

9(D) =dim(kernel D) -dim(kernel D*), (3.4)

where
(-9, +4,) —-(8,+A4,) ¢, O
Dx = (@, +A;) (-9,+4,) ¢, 0 (3.5)
d’z —¢'1 32 '—31
¢, ¢ =9, =9,

is.the adjoint of . We will first obtain a formula
for 9(®) and then show that the kernel of D* van-
ishes, so that 9(®) is in fact the desired number
of modes.



3010 ERICK J. WEINBERG 19

We begin by noting that the kernels of D and D*
are identical to those of D*D and DD*, respec-
tively. Furthermore, if ¥ is an eigenfunction of
D*D with nonzero eigenvalue, then Dy is an eigen-
function of DD* with the same eigenvalue. As-
suming that the eigenfunctions form a complete
basis, it follows that'®

2 2
@ -1x(grp3re) - (mmvgr) 09
where M? is an arbitrary parameter. It will be
most convenient to evaluate this expression in
the limit M2~ o,
A short calculation shows that

D*D=A-L,,

(3.7)
DD*=A - L2 ,
where
A==I(82+3,7) (3.8)

and L, and L, are first-order differential opera-
tors. We may write

Mz
Do M@ M)
+(A+ M2 UL (A +M2) g -1,
MZ _ (3.9)
Sov o 1AM

+(A+ M) L (A + M) 4 ]

If these expressions are substituted into Eq. (3.6),
all terms beyond those linear in the L; will vanish
in the limit M2~.'* The L; will thus only enter
through their traces, which satisfy

trL, —trL,=4(8,A, - 8,A,). (3.10)

Therefore,

4(D) = lim fdzx 4F, (x)M*(x|(A + M?)™2|x)
M2 o
— 13 2 =2
=lim | #x4F,() f @1y (@ +M2)2
(3.11)
We now consider the kernel of D*. Any solu-
tion of
0 =5D*zp
must also be a solution of

0=DD*p, (3.12)

where
¢ P, =8, 9,
p-| % =0 A % | (3.13)
0 0 ¢, ¢
0 0 =-¢, ¢,

Using the equations satisfied by the unperturbed
fields to reexpress 9;¢;, Eq. (3.12) becomes

0=[=(8,2+8,2)+ b,2 + $,2 s,

0=—(2,2+8,2),, |

0= (6,2 +9,2), +(b,8, — 9,0,y
— (bg2, + 010,00,

0= (0,2 + 0,20, — (9,9, +$,0, ),
+ (018, = 0,0,)0, .

Since there are no square-integrable solutions

to the first two of these equations, ¢; and ¢,

must vanish.'?” The last two equations then require
that ¥, and ¢, also vanish, and consequently so
must the kernel of D*,

Thus, about an arbitrary z-vortex solution of
Egs. (2.11) there are precisely 2z modes of
fluctuation (other than gauge transformations)
under whichi the energy is stationary.

(3.14)

IV. AN EXAMPLE

It is perhaps wise to check the formal methods
of Sec. III by an explicit example. This is easily
done by considering » vortices superimposed at
the origin.’® De Vega and Schaposnik® have shown
that in this case there is a solution of the form

o(r, 0)=e"%f(r),
n (4.1)
Aj(r, 0)=—€4, %, ‘ﬁ“("’) ’

where the real functions f(r) and a(r) satisfy

Y
O—'rdr -n(l-a)f,

2nda .,
0= -
with f(«)=a(~)=1 and f(0) =a(0) =0. At the origin
f vanishes like #".
We may write perturbations about these solu-
tions in the form

6¢(r, 6)=ne"f(r)n(r, 6),

(4.2)

0A,(r, 0) = % [-sin8b(r, 6) +cosbc(r, 6)], (4.3)

8A,(r, 6) = %[cos@ blr, 6) +sinb c(r, 6)].
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Requiring that % be real is sufficient to fix the
gauge. Substituting these expressions into Egs.
(2.11) and keeping terms linear in the fluctua-
tions leads, with the aid of Eq. (4.2), to

0:-___0, (4.4)

Substituting the first two of these into the third,
we obtain'?

10 [ o) 1 o
0-—;—(7’87)-72 AR (*.5)

If we now write

h(r, 0)= E [A$V (r) cosk 6 + B () sink 6], (4.6)
k=0
we obtain

1d (. d . 2
0=-~— (r;l-;h,g')) + (f2 + ;5) IS (4.7)

Solutions of this equation will behave like C,7™*
+C,7* at the origin and like C,e™" +C,e” as 7 -,
We must require that 6¢ be nonsingular; since
f(r) has an nth-order zero at the origin, %(r) may
be as singular as ", Thus for k <z we can always
obtain an acceptable solution to Eq. (4.7) by
choosing the proper behavior as - <. For 2>n
we must require that the solution be regular both
at the origin and as » - . However, by multiply-
ing Eq. (4.7) by 74{* and integrating we obtain

0=_£”drr[(%é2)2+(fz+-ﬁ;)(h,(,”)z]

(4)
— (1) TRy
rhy, 2

r=o

(4.8)

=0

If hﬁ‘) is nonsingular, the second term must
vanish; since the integral is positive-semidefinite,
k(" must vanish, (Note that this also excludes

the case £=0.) There are thus 2n acceptable so-
lutions, as predicted by the arguments of Sec. III.

V. CONCLUSIONS

We have seen that for the special value A =1,
static n-vortex solutions of the Ginzburg-Landau

" equations may be obtained by solving a set of

first-order equations. Solutions of these equations
will have energy equal to z» times that of a single
vortex. About any such solution there are 2n
physical modes of fluctuation under which the
energy is stationary; thus, rather than being
discrete, these solutions belong to 2n-parameter
families., It is tempting to conjecture that these
parameters are just those needed to specify the
positions of the n vortices; the results of Jacobs
and Rebbi lend support to this view. Since solu-
tions exist for n vortices superimposed at a
point, and should certainly be expected to exist
for » widely separated vortices, it is natural to
make the further conjecture that these parameters
may take on all real values. Stated somewhat
differently, the vortices appear to behave very
much like noninteracting point particles.

Many features of the A =1 Ginzburg-Landau
theory (e.g., the replacement of the second-order
field equations by a set of first-order equations)
are reminiscent of the problem of finding instan-
ton'® solutions to Yang-Mills theory in four-di-
mensional Euclidean space. In fact, the methods
of Sec. III are just those which have been used to
count parameters for multi-instanton solutions.
Explicit expressions for some multi-instanton
solutions have been obtained, and recently the
problem of finding all multi-instanton solutions
has been reduced to a purely algebraic one.!®
Whether the same methods can be fruitfully applied
to the Ginzburg-Landau theory remains an inter-
esting unanswered question.
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