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Using an iteration procedure we have found the six possible forms of classical solutions to coupled Yang-
Mills and isodoublet scalar fields which are needed to learn the high-order behavior of the perturbation series
of that field theory. For some of these solutions we have obtained solutions in closed form; for others we
numerically estimate their contribution to the asymptotic behavior of the perturbation-theory coefficients. It
turns out that in the limit of a pure Yang-Mills theory, the most important contribution comes from an
instanton —anti-instanton configuration and leads to the conclusion that the perturbation theory is not
definable by a Borel summation technique.

I. INTRODUCTION

Recently a simple method for large-order esti-
mates in quantum field theory (QFT) was sug-
gested. ' It is based on the calculat. ion of the Feyn-
man path integral for Green's functions in large
orders of perturbation theory by us ing the s teepes t-
descent method. At the first step of the calcu-
lation the classical solution of the field equations
must be found. At the next stage we should verify
that this solution satisfies the necessary con-
ditions to be a saddle point of the functional
integral and that it supplies the maximum pos-
sible value for the integrand. Finally the quan-
tum fluctuations near the saddle point should
be calculated. This gives the possibility for
finding an overall constant in the asymptotic for-
mulas. For renormalizable scalar theories such
a program was carried out. "' The Sobolev in-
equalities' were used in Ref. 4 to prove that
spherically symmetrical solutions of the classical
equations give the maximal possible value of the
integrand. For gauge theories the problem of
showing the satisfaction of the saddle-point con-
ditions looks more complicated. However, in
Ref. 5 a method was suggested that allowed this
for the case of scalar electrodynamics: namely,
to find the forms of the classical solutions and to
verify the necessary saddle-point; conditions for
them in a certain region of parameters. In this
paper we apply this method to the model of a Yang-
Mills field interacting with a scalar field. This
model is very close to the mell-known Weinberg-
Salam theory of t;he electromagnetic and weak
interactions. ' e show below that in this case
there are six forms of the solutions that can be
obtained by using an iteration procedure in the
parameter m/k where m and k are perturbative

orders in the Yang-Miiis coupling constant g'
and in the scalar self-coupling. In particular,
when m/0-~, the solution with the maximal
value of the integrand has the form of two in-
stantons. ' A short version of this work is pub-
lished. '

The method of Ref. 1 can be considered as a
certain quantitative formulation of Dyson's orig-
inal arguments' of the divergence of perturbation
series as a result of instability of the ground state
for a negative sign of the coupling constant. The
applicability of these arguments to the problem
of the anharmonic oscillator in quantum mech-
anics was verified in Ref. 10. Furthermore, it
was demonstrated that the asymptotics of coef-
ficients of the perturbative expansion was intima-
tely related to the discontinutiy of Green's func-
tions on the cut in the coupling-constant plane in
the vicinity of g =0. This discontinuity can be
calculated at small g (0 by using the semiclassical
approximation for the probability of penetration
through a potential barrier. " The saddle-point
method for this problem was carried out in
Refs. 11-16and was generalized to the case of
QFI' in Refs. 15 and 16. The Borel summability
of the perturbative expansion was discussed in
Hefs. 1, 17-19. Very interesting problems arise
in-spinor theories. '""

In the next section we formulate the model, the
large perturbative orders of which we are going
to study.

II. MODEL

The action for the SU(2) Yang-Mills theory with
a triplet of vector fields A interacting with a
doublet of charged scalar fields Q can be written
in Euclidean space in the form
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Hd x=
)

dx 4F „+ 9„-ig —~ A
variant charges

2

Here

is the intensity of the Yang-Mills field, and T'
are the Pauli matrices.

%e set the mass of the scalar field equal to
zero because we are interested only in the short-
distance behavior of Green's functions. The mo-
mentum p, of the normalization point for the in-

is taken to be larger than the normalized mass
of the scalar particle: p, »m.

Green's functions G(x, ~ ~ x„;y, ~ ~ y„;&) - ~ ~ z„)
in this theory can be calculated by using the per-
turbative expansion in the charges g and X:

Ay m

where G,„(x,- ~ z~) is given in the I.orentz gauge
by the Feynman path integral"

Ga (x '' x~dS ''X 'z ' 'z )=Z (fA;(x)d t((x))dP*"(x)5(B,A;)Det(8, V, (A))
Xs Vega S

N

x g A„(x;) g (t)„(J,.) p*„(g.)
~e

x exp -S(A, Q, g, X)— (f'xH'(A, Q, g, A.) (4)

Here II' is a counterterm corresponding to the
renormalizations of the scalar field mass, of the
wave function, and of the charges g and X. lt can
be calculated in low orders of perturbation theory.
The factor 5p is chosen in such a way that G« is
equal to the product of the free Green's functions.
The integration over g' and )(. in Eq. (4) is per-
formed along contours closed around zero. The
contribution of the disconnected diagrams to Eq.
(4) is not essential at large k and m (see Ref. 1).

According to the method of Ref. 1 we should
find the saddle point in the integral (4) for each
variable A, (t),g, X. This saddle point can be ob-
tained as a solution of the stationarity conditions
of the functional

P =8 + m Ing'+ 0 In &, 6(t) = 0 .
The variations of A and P give the usual clas-

sical equations. We should find their solution with
a finite action. This means that the soluti'ons must
be space-limited. Owing to translational and
dilatational invariance of the action (1), an ar-
bitrary solution can be expressed in terms of one
having its center at x =0 and its scale equal to
unity:

we can hope to conserve only invariance of the
solution under the 10-parameter subgroup of the
total 15-parameter symmetry group of the mass-
less a,ction (1). It is convenient to make the in-
variance obvious by passing to five-dimensional
coordinate space according to the equation"

x2

x'+1 '

2 4
d'Z5((Z ')'~* —() = dd, = d'x((

and to new fields A,- and F

A.„(x)=, '- A,.(Z),
xv

Here the five components of A,. satisfy the con-
straint"

1 - x-x, t
(6)

gp, X
V g V )

The solution (t)(x) or A„(x) is not invariant under
the shift and scale transformations. Therefore,

Using the previous formulas we can rewrite
the action (1) in a form manifestly invariant under
the 10-parameter group of rotations of the five-
dimens ional space:
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S=— dS5 g = dS5 12 LijAI, +g ~i~a&cAyAk+ i -j -k-i + i-k-j -i

where

L-) =Z-8) —Zy 8i,

is the infinitesimal anti-Hermitian generator of rotations in the plane (i,j).
Using the invariance of the functional (10) under gauge transformations, we can choose the following

Lorentz- type gauge condition".

[B,- —Z, (ZB)]A,. = 0.
Then the classical equations for the action (10) have the form

(12)

(-2 I.;q' 2+)A»+g e,», [ 4A-» B~A»0 —2(B»A J')A;] +g' (2AqAy —2A»AqAq)

+ 2gz,.[(1,.» y*)i 7' F —y*iv' L,.» y] + —'g A» I
y

I

' = 0,

( —,'I, ,, '+2+~I rI'+ ,*A, ') y ,'1-. ...(i2-'—)z,A. ;I+,' .Z,.A. , L,-o (i~') .I'=0, (is)

( 21.,~'+2+xI y'I'+ ,A —)I' + 'I. ,y(i7'—)z~-A) I'* —'z, A~X;—J(i&') I'"=o.

(14)

variation of the functional (5) with respect to
g' and X leads to the relations

These equations should be combined with con-
ditions (9) and (12):

z,.A,-=0, [B,.—z, (zB)]A,.=0.

coefficients of perturbation theory. '' Other so-
lutions with the same property can be obtained by
using the shift and scale transformations [see (6)].
We shall fix the position of the solution in the four-
dimensional. Euclidean space and its scale by
imposing on it the following constraint:

8S 8S
8 lng'' 8 ink ' (15) dS, g (A, 1')Z; = 0 . (18)

that fix the saddle-point value for g' and A. in Eq.
(4). In the next section we find the form of the
solutions of Eq. (1S) that satisfies the necessary
saddle-point conditions.

In the approximation A," =0 the solution (17)
satisf ies this cons traint.

Using (15) in region (16) we get the following
characteristic values for fields A; and Y:

To solve Eq. (1S) we need some Ansatz for the
form of their solution. For this purpose we use
the same procedure that was applied to scalar
electrodynamics in Ref. 5.

To begin with, let us consider the case

m«k. (i6)

'1 hen it is natural to expect that the saddle point
in Eq. (4) will be close to that of the purely seals. r
theory. In the scalar theory the solution fulfilling
the necessary saddle-point conditions is shown
to be a constant on the five-dimensional sphere. "
It can be obtained easily if we putA =0 in Eq.
(is):

1/2
Y(0) U U+U' (17)

where V is a constant spinor. The solution (17)
provides the maximum possible value for the
integrand in the path integral for the large-order

HI. THE FORM OF SOLUTIONS OF CLASSICAL EQUATIONS

(
& ~ 2 2 Lg2I yOI2) A(1) 0 (ao)

The term of the zeroth order in A vanishes due
to the relation L,.~

Y"'=O. A nontrivial solution
of Eq. (20) does. not exist for all values of g. In

the general case we have the solution

A„"'(n) = g q„,. ..., {z,. "z,. },
~1~ i2 ~n

where {Z,. ~ ~ ~ Z. }is the symmetric traceless
polynomial P"(Z ),

(21)

5. . {z. " z. }=0,
are some arbitrary coefficients.

'The eigenvalues g', „'& corresponding to functions
(21) are

(22)

Therefore we can omit in the first approximation
all nonquadratic terms for the field A in action
(10) when calculating the integral (4) in region
(16). It corresponds to the linearizatton of the
first equation of (13):
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(23)

The series (3) in the region m» 1 has a finite
radius of convergence ing' which is determined
by the minimal eigenvalue for g"' in Eq. (20).
This minimal value corresponds to n =0 in Eq.
(23), but the corresponding eigenfunction (21) does
not satisfy the subsidiary conditions (14). Hence
we must take the next value for g"' in Eq. (23)
that corresponds to the eigenfunction with n = 1
in Eq. (21):

the first harmonics due to our choice of g"' in
(24}. It means that Eq. (27) has a solution for
A~"' only if g satisfies the constraint

[rl', q'] = C, e„,q', (28)

(g&")' = 6~ C, .

Analogous reasoning in the third order in c
gives two more constraints:

(29)

where C, is an arbitrary constant.
In such a case we can find g"' to make the right-

hand side of Eq. (27) equal to zero:

(z) 2( )=-~ =C '

Tr(q'q') q'=C, rg,

(30)

(31)

Here we have separated a factor E in order to
normalize q in a suitable way [see (32) and (40)].
The matrices g, should be antisymmetric as is
seen from conditions (14):

(25)

Other constraints on g, are obtained below
from the condition that the iteration of Eq. (13)
in the small parameter & is possible. Vfe can
expand the coupling constant g and the fields
A, „,F in the series

where C, and C,.are arbitrary constants. It can
be verified that the fulfilling of the constraints
(25), (28}, (30), and (31) is sufficient for con-
ducting the above iteration procedure to an ar-
bitrary order in &. Below we shall find all so-
lutions of these constraints.

To begin with, let us consider the case when

C, c0 in Eq. (28). Then we can set C, equal to
unity thus eliminating the ambiguity in extracting
the factor e in Eq. (24):

(32)

X/2
V+~ y (2) (26)

(.&(- ~L y
—8)Aa —— ——qaf, Z~,

2

b c
Ikj Ij1)f' ~A' abc ' (27)

The left-hand side of Eq. (27) does not contain

g =+6Ã+((g ) + ~ ~ ~

and calculate the coefficients in the series from
relations (15). For example, we have the fol-
lowing equation in the second order in &:

So we must find three pure imaginary antisym-
metric matrices ig' that have the commutation
relations of the generators of the SU(2) group.
In a general case such matrices provide a rep-
resentation of the SU(2) algebra. in some subspace
of the five-dimensional coordinate space. Owing
to the constraint (30), this representation is
irreducible or it consists of irreducible repre-
sentations with the same weights. Vive have only
three possibilities for such matrices. Namely,
they can correspond to representations with
isospins T = 2, 1 and (—,

' x —,') and can be written in
the form (see Table I)

TABLE I. Variables for the various cases considered in the text,

1 /+0
In[C[ arg C

2 /=0
In)C arg C

2~abc~ 1 ~ 0

~ ikg

4 (~ 4Aa 6 4i 6ks. 64e6fg)

)a ~gg +)a ~5k
2 2

~a(~5k + ~f4)

I( ~4k

:1.097 —.150'

-1.436 125'

+ -1.633 113'

+ -1.083 180'

+ -1.371 180'

+ -1.289 180'

-1.040

-0.822

-3.045

67.3'

180'
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a i g~ d+6'd'( ace' liV aaP dd') 9

where the matrices y~, y,', y„' satisfy the conditions

(34)

(35)

P =P (36)

and can be written in the following particular form after an appropriate orthogonal transformation in the
five-dimensional space (see Table I):

p.

Z =Z ~ yN&=
V2

( 1
~z, , z) z

z,
(

z,
2

Z5 ab

i iy, 5,-„y„—5,-„.

The matrices rl', „ in Eq. (35) differ from the
't Hooft matrices only by a factor (see Table I)

0 1 0 O

0 0 0

2
0 0 0
0 0 +1 0„

01000
10O0O
00000
00000
00000

/
00 0 00-
00 0 00

(40)

0 0 1 0

0 00 -1

10O O

0 1 0 0

0 0

(38)

OO 0 1O
00-100
0 0 0 0 0

and l;, l', are some vectors in isotopic space.
If we substitute expression (40) in Eq. (31), we

get three possibilities (see Table I):

n'=
2

0 1 0 0
1 0 0 0

IV (l;)'=(I')'=I, P, l;=0
V I;=I,;, (I;)'=I
VI (I;)' = 1, /; = 0

(41)

(42)

(43)

Now we consider the other possibility C, =0
in Eq. (28). Then it can be shown that by an ap-
propriate orthogonal. l transformation

(39)

these three matrices can be transformed to the
form

g -l, g, +l2g„

The case (l;)'=1, /;=0 can be reduced to Eq. (43)
by an appropriate orthogonal transformation
(39). In Eqs. (41)—(43) we choose a certain nor-
malization of matrices q thus eliminating the
ambiguity in separating the factor c in Eq. (24).

Now we can pass on to finding the form of the
solution of Eq. (13). We remember that the it-
eration of Eq. (13) in terms of e does not meet
any difficulty provided the matrices p in Eq. (27)
satisfy the conditions (28), (31), and (33). The
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S„=Tr(Z ). (45}

Furthermore, independent invariants can be
obtained from the expansion of the characteristic
polynomial

P'(X) = Det(z —U)

= -X'+ X'Tr Z —X —,
' [Tr(Z') —(Tr Z)'j

+& (Trz)'- b (TrZ) Tr(Za)+ —,
' Tr(z').

(46)

Because of Eq. (36) we get

TrZ =0, Tr(z') =Z, Z, =1, (47)

and therefore in this case we have only one in-
dependent invariant,

solution is expressed as a series in Eq. It can
depend on the following invariants:

(rp ri'), ,z, z„(ri'rl'rib qb) „z,z„
(44}

and so on. The use of constraints (28), (30), and
(31) gives us the possibility to reduce the number
of independent invariants.

To begin with, let us consider case 1 (33). Then
an arbitrary invariant function can be expressed
in terms of the following invariant structures
[see (37)]:

s22

because the eigenvalues of Z due to Eq. (46)
satisfy the equation

—~ X+$=0. (52)

~d bc aa" ~abc a'a" abc ca" aa'c ba" 2

the number of independent structures can be re-
duced to three. Thus we can look for a solution
in the form

A;. =e„,[a,(s) Z y, +a,(s)Z'y,..+a,(s) Z' y, Z]„,
(55)

F = UY(s), UaU = 1,
where a,(s) and Y(s) are functions of 8 in (48).
The expression (55} can be written in terms of
matrices iii& if we use the relations [see (49)]

lib zb ~abc(z yi)cbs
i

A

a.b q', b zb 2~.„—(z-y, 6Z'y. ,—z).b,
(li'), b ilia Zb = -2e,b, (Z y i —30 Z' yi Z —18 Z' y), b .

(502)

Now we want to find the possible structures on
which the vector potential A;. can depend. Gen-
erally-these structures may be of the form

(Z"yi Z"),.&; b.( Z')„. , (5

with arbitrary n, m, k. But if: we take into account
relation (51) and the identity

8 = —,Tr(z)' = Det Z .
If we introduce the matrix

A

~.b =&ib &;"2 Zb Zi =2(2 SZ'}:—

(48)

(49)

Ansatz (55) does not contradict the system of
Eq. (13}. The equations for a,(s), F(s) can be
easily found if we express the action (10) in terms
of these functions. Using the formula

%e can express S in terms of matrices q&~ by using
the formula d'Z 5((z,a)'i' —1)5(DetZ —s) =42I6v'8 (ba —s'),

Tr(h') = 6(11 108S') . (50}
(56)

Z =-2Z+S.I (51)

Further, there is the following useful relation:
we get the following expression for the action (10)
in terms of the functions a,(s) and Y(s):

Z/3 W
S WS;f ds=(W( —'a", —, Wa', ', ,—;Wa", 2a'a, )+18a' Baa,',—;" Wa, '

-Z/34

where

+g [Sa' —SSWa,'+ —,
' Wa, '+ 2 Wa, '(Sa —a,)j

+g'[ faa+ —,', W'a, '+ 1, , W'a, '+—', Wa'a, '+ b Wa'a, (a —98a,) ——,
' W'a, 'a, (a —$a,)j

1

+ a W(F2}'+8Y'+2XF'+g'Y'(2 a' bc Wa, '++ib Wa, ')),

9'=1 —54s', a =c,+39e, ——a, . (58)

The differential equations for a, and Y are easily obtained from the condition of stationarity of the action
(57),

OS=0. (59)
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Let us consider now cases II, III, V, and VI [see (33)-(35) and (40)-(43)]. Here we can construct only
one independent invariant,

S=q]) q-- S) Z. (60)'

and only one possible structure for A,.(S). Therefore the solution of Eq. (13) can be found in the form

A;-=(I(~z~a(s)2 1'=UY'(s), U U=1.

The simplest way to obtain the equations for a(S) and Y(S) is to express (10) in terms of a(S) and Y(S),

2m" 1

dS S"&I~' (1 —S)" "2 '~ ' ([T(T + 3 —rl, ) + 1][2S'(1 —S)(a ')'+ 3sa'+ —,
' g' Sa' Y']

r(q, /2) I (5 —(I,/2)

(61)

+ T(T + I)(-gsa'+ -,' Tg'S'a') + 4S(1 -S)(Y')'+ -,' A. Y'),

(62)

and then to use the stationarity condition (58).
In Eq. (62), T is the total isospin of the representation realized by matrices q and r(, is the dimension

of the subspace in which it acts (see Table I).
At last we consider the case IV (41). In this case we can construct two independent invariants

S,= -(r(, ') (,. Z ( Z~, S,= (q, ') (,-Z ( Z, ,

and bvo possible structures for A&,

(63)

A' = l;(q, ),„Z„a,(s„S,) 1;(rl,), Z a,(S„S,),
Y=U1'(S„S,), U U=1. (64)

The solution in'the form (64) satisfies Eq. (13), and the differential equations for a, (S„S,)Y(S„S,) can be
obtained from the stationarity condition (59) if we express action (10) in terms of these functions:

a

S =8m' dS,
0

dS()1, IS(l —S)S(')+S(')+2()
+S,(1 —S,) S, ( ') +S,(

'
(

+2( )

Ba, Ba, Ba, Ba, BF BF &

Si BS2 BS1 BS2 BSz BS

+ -', (S,a, ' + S,a,') + -', g* S, S,a, ' a,' + Y' + -,' 2 S' a -', S' S*(S,a, ' + S,a,*)I .

(65)

We have found in this section all possible forms of solutions which satisfy constra, ints (14) and can be
obtained by iteration Eq. (13) in the parameter e -(m/k)'~' [see (24)]. In the next section we shall find
exact solutions for some cases and estimate the action for others.

IV. GREEN'S FUNCTIONS IN HIGH ORDERS OF PERTURBATION THEORY

We consider at first the cases II, III, V, and VI. The action (62) can be rewritten in the form

2(('('[T (T + 3 -n, ) + 1]S=,
( / ) (5

'
/ )

d)(sinhg)' 1 A'+2(n, — )2' AQ+' (n+, —'3)Q'
L

T(T+ 1)
+ T(T 3 ) 1( 2A'+sTA )

+l[&(S+2- )+()(S*S'+ax2')I, (66)
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if we introduce new variables $ and new functions
A, P by the following definition:

1 1a= A$),cosh'$ ' gS
(67)

1 T(x+3-n,)+1 '~'

Ref(2( )&0 ~
0

Im2(p
Ref(2( ) =0

&. (2( )0

In the case III (T = ~, n, = 4) we obtain the fol-
lowing Euler equations:

„Re~ (2~0)
I

~Re 2$0

(
d

2+4+ —,6 Q ~A+(-3A +2A') =0,

(
d2

—d(, +1+~x, A
d j

It can be easily verified that there is an exact
solution of this system of equations

4 sinh 2$,
cosh 2) 4-cosh2$,

Se '0
=+i

(cosh2$+cosh2$, )&~2 '

where the parameter $0 is related to X by the
formula

(68)

(69)

FIG. 1. The curve on which Imf t2( 0) =0 in Eq. (76).

(74)

8$8$Q=-g2 2, m=-X —.
eg2 ' aX' (75)

For our exact solution (69) we obtain by using
(73) the equation

2 t' eosh2$0 —sinh2$,

(76)

are given by the expression [see (4)]

G, - exp (-v'(k, m)),

where 1'(k, m) is the value of functional (5) 'at the
solutions of its stationarity equations (13) and

e'o = (12 X —I}'~4 (70)

The solution (69}can be obtained by using the
iteration procedure in the parameter s [see (17}
and (24)] (e -X —v').

In terms of four-dimensional variables and
fields this solution takes the form

p —1
(x'+ p')(1+ p'x') '

u 4(+ i)v 3

g [(x2 p')(1 p2x')]ii2

p = (12 y I) '~4

(71)

4g' „x„
+2 p„2

(72)

with two different scales &, = p and &2=.p '. The
action (66) can be calculated for the solution (69)

16v' 3 (s inh 4 to —4)o)

According to the method of Ref. 1 Green's func-
tions in large orders of the perturbation theory

e see from this equation that our exact solution
for the vector field is proportional to the product
of two instantons,

=A.
6 2 Re C

where for our case C (m/(k+m)) due to (5}and

(76) has the form [see (71)]

'(. )="~'4&("'i"')"""'
and t', should be determined from Eq. (76) as a
function of m/(k+m). We computed the modulus

and phases of C (m/(k+m)} for the two possible
branches 1 and 2 (see Table II). At m/k -~ the

(78)

It turns out that the solution of this equation $,
= $, [(k+m)/k] is complex for real values of
(k+m)/k. In Fig. 1 the curve in the complex plane

2)o is plotted on which Imf(2$, ) equals zero.
When (k+m)/k grows from unity to infinity the
solution of Eq. (V6) moves along this curve. There
are two different solutions of the equation. For
the first one, the point in the 2$, plane moves
from 2(0=0 at m=0 to 2g, = /2' at m=~. For the
second one the point moves from the point 2g,
=1.3+2.8i to 2), =~+in/2. Therefore for one
classical solution (69) we have two saddle points
in the integral (4).

'Taking into account the solutions with com-
plex-conjugate values for 2)o we can write Eq.
(V4) in the form



2982 L. N. LIPATOV, A. P. BUKHVOSTOV, AND E. I. MALKOV

Solution 1 Solution 2

TABLE II. Tabulated values for C(m/{0+m)) in Eq.
(77) for two different solutions of Eq. (75).

We can find the solution of Eq. (80) in a series in

[m/(k + m) ]
' '

y =+i — ——— + ~ ~ ~, 81
In/ Ci IniC[ arg C

0

0.1974
0.3289
0.4751
0.6315
0.8095
0.9150
1

1.099
1.962
1.863
1.7 14
1.511
1.227
0.037

-1.633
1.

180'
175.4'
169.7'
161.2'
149.5'
133.3
122.4'
113.0'

0
0.2685
0.6549
0.8339
0.9243
1

-1.436
-1.340
-0.973
—0.623
-0.356

0

276.3'
191.5'
82.2
37.5'
16.4'

0

which gives us the possibility of calculating
C(m/(k+m)) in Eq. (78) for small m/(k+m):

lnC =-lnSO y — --- ln
m k y+2

k+m ' k+m

m 5 m=im+ln3- ln6 ——
0+m 18 4+m

(79)

Using Eq. (76) we obtain the following equations
for the calculation of y and g:

BS
m =8+ (2+y)—

8$

16'' g y "(-1)"(k —1)
g' „., (@+2)(k+3) ' (80)

value of $, for the second branch tends to infinity.
From Eq. (69) we see that P vanishes in the same
limit and the relative scale of two instantons goes
to infinity. The scalar field becomes inessential
and we end up with the pure Yang-Mills theory.
In particular, the action in the limit is twice that
of a single instanton (72). An appropria, te solution
of such a form was used by Bogomolny and Fateev'
in their work on large-order estimates in the
pure Yang-Mills theory. Pote that the expression
(69) is not the only solution of Eq. (68). For suf-
ficiently large X there are other real solutions.
In the limit X»1 the vector potential for these
solutions almost coincides with the one for the
exact solution (69) and the scalar field tends to
zero, but instead of a plateau at ~$ ~

«$, as in

(69) the scalar field here has one or several
bumps of a finite size. The action on these so-
lutions at y-~ almost equals the one for solu-
tion (69) and is smaller on the values of the order
of 1/y. However, it can be verified numerically
that the region where other solutions of Eq. (68)
give the larger value for C (m/(k+m)} in Eq. (76)
is negligibly small [ ~m/(k+m) —1

~
«1].

We can exp'and the action (V3) near its value
for the pure scalar theory:

16m' ( 1)"

(82)

The appeara, nce of iv in Eq. (82) results in sign-
alternating coefficients G~ in (77) at sufficiently
small va.lues of m/k.

Now we pass to the discussion of the solutions
of the Euler-Lagrange equations for all other
cases [see (5V), (62), and (65)]. Using the above-
mentioned procedure of iteration in the small
parameter e -(y ——,'), we can find these solutions
and the action on these solutions [see (79)].
Furthermore, this parameter can be found from
the saddle point Eq. (75) as a series in [m/
(k+m)]'~' [see (81)], and we can obtain C(m/
(k+m)) in Eq. (7V) in terms of the series at small
m/(k ym) [see (82)]:

m teal
ln C; = ln3 — ln6

a ' + a ~ ~ (83)

where the values for B,. are given in Table I for
all six cases. We see from 'Table I that the maxi-
mum contribution to the large-order asymptotics
comes for small m/(k+m) from the classical so-
lution with T =2 in (55). For arbitrary values of
m/(kpm) we have estimated the actions (57),
(62), and (65) by using appropriate trial functions.
The simplest trial functions are the lowest spher-
ical harmonics [a, = const, I' = const, a, =a, = 0
for Eq. (52);a; = const, F = const for cases (61)
and (64)]. This estimate is in rather good agree-
ment with the value of the action in the case when
we have the exact formula (73). It turns out that
just as in Case III%e have in cases I, II, and IV
two solutions when we use Eq. (75) in order to
determine the saddle points for g' and A. . The
values of ln~C(m/(k pm))

~

for the first solution
can be calculated from Eq. (83) with high precision
in the whole region 0 (m/(k+m) (1. The values
of ln~C(m/(k+m)}

~

for the second solution in
cases I, II, and IV are significantly smaller than
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those in cases III. In Table I we give the results
of numerical estima. tes of C(m/(0+m)) for these
two solutions in the limit m/k-0. For the second
solution we obtain in this limit K=0 for all four
cases, and therefore there are four different
forms of solutions of the pure Yang-Mills equa-
tions. For the case II (T = I, q, = 8) [see (66)] that
solution can be found in an exact way:

2 &2sinh2$0
t h ~ (3)g/2 f, /

cosh2(+cosh2$, '

(84)

and the action for this solution isg~, m
16m' A, +m)

are tan(sinh $0) 'l

sinh g,

(85)

which agrees with the estimate obtained by using
the trial functions above.

Thus, we have found six different forms of so-
lutions of the classical equations for the SU(2)
Yang-Mills theory with a scalar field by using

our iteration procedure and have estimated the '

contribution of each of these solutions to the as-
ymptotic behavior of coefficients of the pertur-
bation series. More exact asymptotic formulas
for G~ can be obtained only if we calculate in
Eq. (4) the integral over small fluctuations near
these saddle points. It is a rather difficult prob-
lem because we have found only one exact solution.
In the case of the other five solutions we can ob-
tain only in the form of a series over the param-
eter (y ——,').

In Ref. 24 it was argued that in the Yang-Mills
theory for scattering amplitudes on the mass shell
there are factorial contributions from certain
Feynman diagrams resulting from renormalization
effects. It would be desirable to find the total
contribution of all such diagrams.
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