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A systematic study is made of the Glass equation for spin-3/2 particles with minimal electromagnetic
interaction. The study is motivated by the knowledge that this equation is just as satisfactory as the Rarita-
Schwinger equation in the absence of interactions and that a variety of problems crop up in the Rarita-
Schwinger theory when minimal electromagnetic interaction is introduced. The hope that the Glass equation
might fare better is belied, however, Not only does it suffer from the various ills (e.g., noncausal
propagation, modes of complex frequency) which beset the Rarita-Schwinger theory but it also exhibits
further troubles such as an increase in the number of "spin" degrees of freedom (something not encountered
earlier in any theory with s & 2}, nonlocality of anticommutators of field components, etc., depending on the
nature of the external field. Further, unhke in the symmetric tensor theory for spin 2, nonminimal
interactions do not help to remove the anomaly of the abnormal number of degrees of freedom resulting from
the minimal electromagnetic interaction, The bearing of the alebra of'the P matrices on the difBculties of the
interacting theories is briefly referred to.

I. INTRODUCTION

The various types of inconsistencies which-af-
flict theories of higher-spin particles (with s~ e)
have been the subject of extensive investigation in
recent years. At the quantized level, it wa, s shown
long ago by Johnson and Sudarshan' that in the
case of the spin-e particles [described by the fa-
miliar Rarita-Schwinger (RS) theory] minimal
coupling to ag external electromagnetic field makes
the sign of the anticommutators dependent on the
magnitude of the magnetic field, so that quantiza-
tion with a positive-definite metric is not always
possible. (The same difficulty has been shown to
arise also with other types of couplings of the RS
field. '} Even more disturbing was the demonstra-
tion by Velo and Zwanziger' that the classical 85
wave equation with electromagnetic coupling ex-
hibits noncausal modes of propagation. Shamaly
and Capri and others' have shown that the same
problem afflicts a wide variety of equations, with
various kinds of coupling to external fields, An-
other type of difficulty which has been discovered
at the c-number level is the appearance of complex
frequencies associated with "stationary" solutions
of the RS equation including interaction with a sta-
tic and homogeneous external magnetic field
(hmf) at large field strengths. This was first
demonstrated by Seetharaman, Prabhakaran, and
Mathews' by explicit solution of the RS equation
in the pr esence of an hmf. The same type of dif-
ficulty was shown to be present also in the case of
the wave equation for spin-2 particles described
by a symmetric second-rank tensor. '

While searching for higher-spin theories where-
in superluminal velocities of propagation do not ap-
pear, it was noted by Prabhakaran, Seetharaman,
and Mathews' that both the mixed spin-&-spin- —,

'
theory of Bhabha' and Gupta" and the theory of
risk and Tait" remain causal. in the presence of
minimal coupling to an external. electromagnetic
field as well as with trilinear coupling to a spinor
field and a scalar field." It was later shown by
Prabhakaran, Govindarajan, and Seetharaman"
that the Bhabha-Gupta (BG) equation retains its
causal character also in the simultaneous presence
of external electromagnetic and gravitational
fields. They pointed out that the satisfactory be-
havior of the BG equation in this respect is due
to the diagonalizability of the matrix Po which oc-
curs as the coefficient of v, (= ise —eA-, ) in the
equation of motion. These equations are free of
other troubles also: For example, the frequencies
associated with stationary modes remain real in
the presence of an arbitrary hmf, and the anticom-
mutators evaluated using the Schwinger procedure
are independent of the external field. ' This last
result has been shown, in a recent work by Cox,"
to be valid for any general equation with a diagon-
alizable P,. His proof employs the Yang-Feldman
procedure. While the theories with diagonalizable
P, are appealing on account of their freedom from
the various inconsistencies mentioned above, the
price paid for this advantage is the indefiniteness
of the total charge and the resultant problems
with quantization. "

It becomes of interest then to examine theories
with nondiagonalizable Pe other than the RS theory
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which has been seen to be wanting in several re-
spects. One promising candidate is Glass's equa-
tion. " The. expression for the total charge in
Glass's theory is positive definite, as in the
Barita-Schwinger case, though the algebra of the

P matrices is not the same in the two cases. [The
minimal equationfor p, is p, '(p, ' —1)= 0 in Glass's
theory" and P,'(P, ' —1)= 0 in the BS theory. ] Our
aim in this paper is to make a detailed study of
Glass's equation with minimal electromagnetic.
interaction. First, we solve the equation in the
presence of an hmf to see whether frequencies
associated with any of the modes become complex
(Sec. II). We find that this does in fact happen.
What is worse, the number of independent solu-
tions turns out to be more than what is required
for the correct description of a spin- —,

' particle.
This latter fact prompts us to make an investiga-
tion of the number of constraints derivable from
the equations of motion when the coupling to a gen-
eral electromagnetic field is present. This anal-
ysis is presented in Sec. III, where we show that
there is in fact a loss of constraints except when
the external. field happens to be purely electric.
This difference between the case when the exter-
nal field is purely electric (X= 0) and the case when
3C0 has interesting repercussions: When one
tries to quantize the field using Schwinger's action
principle formalism, one finds that for KWO the
anticommutators are mutually consistent and local
(though they become of indefinite sign for large K)
while if X= 0 some of the anticommutators become
nonlocal. The contribution of the secondary can-
straints when X= 0 to the generator in the Schwing-
er formalism is responsible for this phenomenon,
as wil. l be seen in Sec. IV where the quantization
problem is dealt with. In Sec. V we explore the
possibility that the introduction of nonminimal
interaction terms might help to remove the above
difficulties. With a general interaction linear in
the electromagnetic fieM components g"", we find
that there is no possibility of avoiding loss of con-
straints when a nonvanishing magnetic field is
present. The last section (Sec. VI) is devoted to a
brief discussion of the results against the back-
ground of earlier work and with special reference
to a recent work of Singh and Hagen. "

II. SOLUTION OF GLASS'S EQUATION WITH AN hmf

Glass's equation for spin-& particles employs a
20-component wave function g, which is equivalent
in its transformation properties to a vector-spinor
together with a Dirac spinor. The equation (with
minimal electromagnetic coupling), when written
in the standard form

(p v-m)y=0, (1)

involves matrices P, and P of dimension 20. These
matrices have been so chosen as to satisfy the
minimal equation P,'(P,' —1)= 0 violating the
Umezawa-Visconti condition. The explicit rep-
resentation used by Glass may be found in Bef. 18.
For our purposes it will be convenient to use a
different representation related to the specific
forms P'o' used by Glass by the transformation

p &p(Q)+-1

with

0 0 0

OA, O 0

0 0 1 0

0 0 0 g
where A i's a 6 x 6 matrix and 1 stands for the unit
matrix of dimension 4. The matrix 4 is composed
of 2 x 2 blocks which are multiples of the unit ma-
trix dimension 2. With this understanding, the
partitioned form of A. is

1 1 1
W3 v3

The explicit form of P, which we obtain from Eq.
(2) is

1 0 0 0

0 B 0 0

00-10

where the partitioning is of the same type as in
Eq. (3), and~

011
a= 001

000,
with each element standing for a 2 x 2 unit matrix.
Using this and the corresponding forms of the P„
we write down Glass's equation (1) as the set of
Eqs. (7) wherein the 20-component g is broken up
into two four-component parts, p, and X„and six



INCONSISTENCIES OF GLASS'S EQUATION FOR SPIN-8/2. . . 2949

two-component parts, y„y3y 'pQy XQy X3y

(vp —m) p, —3 Z vX, + u v (X3+ X,) = 0,
V2

WP(P3+ I@4) 78+3+ 30' 1J (X3 X3 2X4) 0 (Vb)

oscillator.
%e now define the four-component column states

I n, s,) which are simultaneous eigenstates of the
"number operator"

vpp4 -mcp3+ —„u vX, —3 0' w (X3+ 2X,) = 0,
V2

1 ~
m@4 - —u vX, + 3 & & (X3+ X3) = 0,

2

2~
~

1
(wp+ B3)XI —3 Z'7I' pI ——u'7f (+3+ +3) = 0

q

2
tBX3 — u"'7f p~ —3 0'7l(+3+ p4) = 0 q

7f pX3 + Iu X3 u v 'Ip] 3 0 1T ( 2'p3 + 'Ip4)

(Vc)

(Vd)

(Ve)

(V f)

and the third component of the spin operator Z

(lib)

Z, ln, s,)= 3 [(3' w s3)(3 s s3+ 1)J'~ '
In, s, x 1). (12)

NIn, s,&= n In, s,&, (ll.a)

Z3lu. ..&

3 ] ] 3where s, = —2, —2, -„2. The operators g,
= 3(Z, aiZ3) act as raising and lowering operators
for the quantum number s, in the well-known man-
ner,

]
vp(X3+ X3) + ~X4 3 0 v (2 p3+ p3 p4) (Vh)

Ws 0 Ws o

0 1
iV2

1 3 1 0

0 0

0 1

0

0 Ws

(6)

1 0

Here Z,. are the spin-& representation of angular
momentum matrices while the g, are the Pauli
matrices. The u, are rectangular matrices given
by

Let us also define two-component column states
In, +& which are simultaneous eigenstates of N and
0'3.'

win, +&= nln, ~&, (isa)

o'3 n~+ =+ n, + (lsb)

The effect of 0,= 3((z, +i0,) on these is given by

0, lu, +&=0 Iu, -&=0,

o', n, -= n+, e n+ = n& — ~

The rectangular matrices u,. and their adjoints u~

connect the states (11) and (13):

&/2 3 . i/2
n + = n, 2, I n —= -3- n, 2

-2iv 2
Q3=

3 0 1
i&2 y . —i%2I nq+ = — nq —2, I n~ —-=

vs
0 0

It is the set of Eqs. (V) which we now seek to solve,
taking the external fieM to be a constant homogen-
eous magnetic field.

To obtain the solution we use the general method
developed by one of us in Ref. 6, and applied later
to various relativistic wave equations of higher-
spin particles in an hmf. Choosing the direction
of the magnetic field K to be the z axis, we take
A3 AQ 0 and seek solutions having the time de-
pendence e '~' and belonging to the eigenvalue
p3 (-~ &p3(~) for v3 -=—i83. This means that ITp

and m, will be replaced by the numerical param-
eters -E and p, in the equations of motion. Furth-
er, we form the combinations of m] and m2, na, mely,

a=(2eSI'.) ' 'w. and ut=(2e36) '~3v

(v, = v, ~im3),

which are easily seen to obey the a)gebra of the
annihilation and creation operators of a harmonic

(u') In -')=(u ) In -'&=(u') In --')

=(u~) ln, —3)=0,
(15)

W2', , , iv 2
(u'), ln, --'&=

3 ln, +&, (ut), Iu, --'&= ~n, -&,

(u ) In, 3)= In, +&, (u~) ln, —3)= 3 )n, -&.

%~=fI Iu 3~&+f3lu —2 —3)

+Ex lu 3~ —3&+g3ln —1, 3), (16a)

(16b)

Here,

u4 = 3 ( uy + tu3) ~

In view of EIIs. (12), (14), and (15) as well as the
well-known effect of g and g~ on the eigenstates of
pf, one can easily conclude by inspection of Eqs.
("t) that their general solution must have the fol-
lowing form:
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&3=f~ln —» )+g. ln-1 +)
9'4=f5 in —2~ )+g5 in —1~+& ~

xx =f6 jn -3,- 2&+f7ln —1 -')

+g, in a&+g, ln —2, —g&,

(16c)

(16d)

(16e)

&i =fi l1 -'&+ g. l
o -'&,

g~l0 +& Ps= g I0 +) %4= g l0 +)
(1'7)

X =f7 I
o 2 &+« I

I l&

x =f.l'+& ~.=f. l»+&. x =f-I0+&.

X,=f, in-1, +&+g, in —2, -&,

X,=f, in —1,+&+g, in —2, -&,

X& =f~o in —I,+)+g~, in —2, -)
(n= 3, 4, 5, . . .) .

(16f)

(16g)

(16h)

The coefficients f„f„.. .,f» and g„g„.. .,gyo
here are parameters which are as yet undeter-
mined. For any n&3 those terms in Eqs. (16)
wherein the eigenvalue becomes negative [e.g. ,
the third term in the right-hand side of (16a)]
are to be dropped. For example, with g=1, Eqs.
(16) reduce to

Df= 0, (18)

where the matrix D is given by

Returning to the solution of Eqs. (7) we observe
now that the substitution of the forms (16a)-(16h)
in (Va)-(Vh) followed by the use of Eqs. (12), (14),
and (15) yields a set of linear equations for the f,
and g, when the coefficients of linearly independent
states on the left-hand side are equated to zero.
With p, = 0, the f, get completely decoupled from
the g, in the equations. The equations for the f,
are, in matrix form,

0 0 &Pn

vS

0 2pn-& Pn-2 0 &Pn-1 &Pgg 1

3 ~3 3

0 0 Pn-j.

3
Pn-i 2pn-j.

3 3

0 0 pn-z 2pn-j.
3 3

2pn-j.
3

0 0

Pn 2pn-j. &Pn-x &Pn-x

&Pn-x

3
~Pn-2 2pn-j. 2Pn-x

3 3

0- 0 . 0

Pn-2 &pn-2

vS
&pn-2

vS
&+1 0 0 0

0 0 2pn-x ptf-z pn-x

3 3 3

0 0 2ptf 1 2pn"1

3 3
pn-1

3

zp~ sp~-g

3
2pn I, 2p

3 3
1 0

and f=col(f~,f„.. .,f„). In (19),

p„=(2neX/m')'~' and e= (Elm) . (2o)

When there is no external fieM (K= 0), detD re-
duces to (c'-1)', and it follows that there are
four independent solutions for (18), corresponding
to the four roots of lD(e) i

=0. Four more solu-

tions emerge from the equations for the g's, so
that the total number of solutions does tally with
the expected number 2(2s+ 1) with s = ~.

But when a magnetic field is present, the situa-
tion turns out to be different: it is easy to verify
from (19) that for X40, detD is a cuNc in c' Con-.
sequently one gets six solutions from the f equa-
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tions (and six more from the g equations), so that
the number of independent solutions exceeds the
number of spin degrees of freedom of a spin-&
particle.

In addition to this anomaly, one encounters the
further problem that complex values of E arise
for some range of values of K (the range being
dependent on the particular state considered).
This fact can be seen readily by examining the
special solutions of the type (1'l). The equation
for a in this case separates into

nents for which we have equations of motion. The
secondary constraints which follow on eliminating
the time derivatives of these after differentiating
(7d) and (7f) are

(u f)(g w)p, —3e(o'K)y,
3

——;(P+2eo'K- -', m')q, ——,'(o'7)'p,

——u ~ SX, + 3(mo'm+2ieo $)X,+ r'ieo SX', =0,

q'e'+ (1 —2q') E' —2'q'e —1= 0 (21)
(22)

(where q'= 2eK/3m') and another equation differing
from the above by the replacement of z by -&. It
is a simple exercise to verify that (21) does have
complex solutions for 0& g ~ 1.

——u hy, —3ieo' Scp, + 3(mo' w —2ieo $)'y~
2

—3-(u'~)(& v)X, + —,'(o'v)'X,

III. DERIVATION OF THE CONSTRAINTS IN THE
PRESENCE OF MINIMAL COUPLING TO THE EXTERNAL

ELECTROMAGNETIC FIELD

We return now to the question of the number of
degrees of freedom. Since the basic Eqs. (1) are
first-order equations for the twenty independent
components of the wave function g, it would ap-
pear a priori that there are 20 initial data (the
initial values of g) to be specified. However, for
a particle with spin z= —„one has only 2(2s+ 1)= 8
independent degrees of freedom available, and
therefore 12 constraints are needed. These con-
straints should follow from the basic Eqs. (1), and
in fact they do as long as there are no external
fields. However, the results of the last section
indicate that the number of degrees of freedom is
more than the requisite when a magnetic field is
present (however weak it may be). This would im-
ply that there is a deficiency in the number of con-
straints. An examination of the constraints follow-
ing from Eq. (1) seems therefore to be called for,
and we proceed to do this now. "

Considering the set of Eqs. (7a)-(7h) we observe
the evident fact that not all of them are equations
of motion. In fact, (7d) and ('lf) are constraints,
since they do not involve the time derivatives of
any of the components of the wave function. Since
these constraints follow from the singular nature
of P„we shall call them "primary" constraints,
following Johnson and Sudarshan. ' The number of
such constraints is four, since each of (7d) and
(7f) involves a two-component entity.

To obtain the further constraints in the theory,
we have to differentiate the primary constraints
with respect to time, and see if the time deriva-
tives of the various components can be eliminated
using the equations of motion. We note that the
primary constraints involve only those compo-

(u'm)(u m) = —', m'+ -', eo'K,

(o'm)'= P —eo'K.
(24a)

(24b)

Each of the set of Eqs. (22) and (23) is a set of two
equations, so that we have obtained four secondary
constraints. For the correct description of a spin-
~ particle, we need four more constraints which
ought to be obtained from the secondary constraints
by time differentiation. . How'ever, this cannot be
done. The reason is simply that the two quantities

y, and X„ for which we have no equations of mo-
tion, appear in (22) and (23) and therefore m, y, and

m, x~ cannot be eliminated after time differentiation
of (22) and (23). It is intersting to note that the
terms w, p, and v,X~ contain the factor (o' K), so
the "loss" of constraints arises only in the pres-
ence of a magnetic geld. In the free field case,
or in the case when only an electric geld is pres
e~t, these drop out causing these equations to be-
come constraints. In such circumstances the total
number of constraints is just what is needed for
the theory to describe a spin- —,

' particle.

IV. QUANTIZATION USING THE ACTION PRINCIPLE

In the last section we showed explicitly that the
tertiary constraints are lost the moment an inter-
action with an external magnetic field is intro-
duced. This prompts one to ask: In what manner
will the loss of constraints be reflected in the na-
ture of anticommutators if one attempts to quan-
tize the theory? This question assumes enormous
significance in the context of a recent work of

+ ', (7'—+2eo'K--',m')X, + ~co'KX, =0. (23)

(Here g is the electric field. ) In arriving at these
forms we have made use of the relations"
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Singh and Hagen who claim that in the light-front
coordinate formalism, the HS equation with mini-
mal electromagnetic iriteraction exhibits a "loss
of constraints" and what is more, that with the
reduced number of constraints, the anticommu-
tators between the various fieM components (at
e(lual values of light-front coordinates) turn out
to be mutually inconsistent when the quantization
is performed using Schwinger's action principle
procedure. It becomes relevant therefore to quan-
tize Glass's theory also by the same procedure,
to see whether the loss of constraints {at fixed
time in the present case) leads to mutual inconsis-
tencies between equal-time anticommutators of
various field components.

%e shall show in this section that mutual incon-
sistencies of the type reported by Singh and Hagen"
do not arise in the case of Glass's equation even
in a situation (Keo) where there are fewer con-
straints than needed. On the contrary, one gets
the curious result that when a nonvanishing elec-
tric field alone is present (no magnetic field),
which is a situation wherein the number of con-
straints is just right, some of.the anticommutators
of the field components become nonlocal.

A. Quantization withXA 0

We recall that in Schwinger's action principle
method the generator t" of infinitesimal field
transformations is obtained from the time-deriva-
tive terms in the Lagrangian"

G=- d x((1)~qP,5(+ H.c.)
2

d'xs(x)
"3

2.
where g =—~~g'~'~, g'~' being the "Hermitianizing
matrix" in the representation used by Glass":

1 0 0

0 -I 0 . (26)

0 0

The partitioning here is same as in E(ls. (3) and
(4) which define o). On using the explicit forms of
P, and ir) in Sec. II, the generator G reduces to

G=- ) d'x[~'5~i+ XVX' -(~3+ ~35m42 g
1

—q,'5q. -(X,'+ X.')5X. —X,'5X.+ H c.].
(2V)

The commutation relations of the theory are to be

determined from

[n(x), G] =- 5n(x), (28)

Z, -=m5p, ——u~ m5X, + 3o'7((5X, + 5X,)=04

and

Z2 =yg5X2 ——u ''I75p) —3 0' w(5+g+ 5pg) = 0 ~

2
(3o)

The most convenient way of handling these con-
straints is by the technique of Lagrange multi-
pliers. " Thus for the choice Q(x) —= q, (x), one
writes (28) as

d'x'( [p,(x), &'(x') ] —5q, (x') 5(x —x')

x,(x, x'}z,- x,(x, x').z,j =O (31)

and considers all variations to be independent.
Here X,(x, x') and X,(x, x') are to be determined
such that (7d) and (7f) are satisfied. The result
of this calculation is that

x,(x, x') =0 (32)

X,(x, x') = — 5(x —x')u m'i—, &0 X'I

where w' is the operator i(&l&x'")+ eA„(x'), de
oned to act on all functions occurring to the left.
Then the equal-time anticommutation relations
are

(33)

() lx), (l(x'))= ~(*-*'))+4, ~ P -~;— )~'8,
(34)

4 ( ), x,'(x')]=4, ( ), x!( ')]

= (q,(x},pt{x')]--0, (35)

{x x'}u ~'
I
o m' (36)

ev2 i

~(*--*-)-'-"(' ). (3n
2 28

(y,(x), (((),'(x') )=—

(y,(x), X,'(x') )=—

Similarly, with the choices Q(x) = x,(x), Q(x)
= p,(x}, and Q(x}= y,(x), the anticommutation re-
lations may be found to be

b,(x), q,'(x')) = (X,(x), q,'(x')f

= Q,(x), x,(x')] = 0,

where Q(x) represents any one of the field opera-
tors y„y„p or X, X„X,. On account of ihe pri-
mary constraints (Vd) and (7f), the variabons
which appear in the generator are not independent,
but are subject to the conditions
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(X,(x), X,'(x')}=5(x -x') 1+ —uv', ~u~ v'
4e K' j

$X,(x), y,'(x')}= — 5(x —x')u 7r'
2 2e

(X,(x), X,'(x')}= 5(x —x') ~c v',1, o'X&

e 2 i

(p,(x), q,'(x')}=fy, (x), X,'(x')}=0,

ly, (x), X,"(x')}=— (x —x')
2 2e

(q,(x), q,'( ')}---5( — '),

(40)

(41)

(43)

(44)

B. Quantization in the presence of a pure electric field

We have stated in Sec. III that if the external
fieM is purely electric, the number of constraints
is the same as in the free case. This means that
in working out the anticommutators in this case,
the secondary constraints (which did not play any
role in the case of XIO) should also be taken into
account. This is because with setting of K= 0,
the variations 6p, and 5X4 which do not appear in

Q drop out from these constraint equations. The
additional constraints on the variations which re-
sult thus are

Z, =—— —u~' vZ' m5p, —( -'v' -m') 5',

(45) fgu g Qx~9

fq.(x), X'(x')}= ——5(x —x')
8 X (46) + -', (m&x v+ 2ieo' $)5X,+ ', iea-85X', = 0 (52)

ip, (x), X,'(x')}=(q,(x), X.'(x')}=o,

(p,(x), q,'(x')}=— 5(x -x')a'%' — iut m', (48) Z, -=— P 85y, —3ieo'85y,
2

(y,(x), p3t(x')} = -5(x —x'), (49) + 3(m(r v-2ieo ~ 8)5p, + —'v'5X,

4' (x), y'(x')}=
&

5(x -x') '
38 K j

(50)
+(-,'w'-m')5X, u'v—Z—v5X,

4c(x) Xs'(x')}=—5(x-x')&'v'I ~ ~
~

e (Z' i' (51)

It is readily verified that the above anticommuta-
tion relations form a mutually consistent set.
This is in contrast to what has been found by
Singh and Hagen in the case of RS theory, quan-
tized in light-front coordinates, which shares
with Glass's theory (with nonzero magnetic field)
the property of being deficient in the number of
constraints. In fact, it is in a situation with the
correct number of constraints, curiously enough,
that new troubles arise in Glass's theory. This
is the case for K= 0; we show in the next subsec-
tion that when 3C=0 but 8 0, the expressions for
the anticommutators become nonlocal. It may be
noted, incidentaily, that expressions (34) to (51)
for the anticommutators become singular in the
limit K 0. However, to get the correct anticom-
mutators when 3C= 0, one has to perform the quan-
tization afresh, taking into account the extra con-
straints (compared to X e0) which exist in this
case. This is done in the next subsection.

Incidentally, it may be observed, from Eq. (45)
for example, that the anticommutators suffer also
from the Johnson-Sudarshan problem of indefinite
sign.

The determination of anticommutators proceeds
along the same lines as before, except that one
has to take into account Eqs. (52) and (53) also
with the aid of two more Lagrange multipliers
X,(x, x') and A, (x, x'). One gets thus, for example,

(q, ( ), p,'( ')}=5( — ')- '
2

+ . X,(x, x')ut w'P P

1 .
+ ie&,(x,x')u' 8. (54)

X,(x, x') = 5(x -x')u v'
4 2em

~ ~ 9 1
x --o.8+,go'8&32em' (55)

The Lagrange multipliers X„X„~„X,appearing
in this and other anticommutators are to be deter-
mined, so that ihe anticommutators of the left-
hand side of the constraint Eqs. (Vd), (Vf), (22),
and (23)—taken with 3C =0—with all the y~ and

X,- vanish. This requirement leads to a set of
equations for the X's which can be solved:
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&,(x, x')=8 &,(x, x')I( @,
3g, t'go'8

Sem (56)

where

g=m'+ 3eo'8 x g'. (57)

It is clear that on account of the nature of the
operator in the large parentheses in (55), these
expressions are nonlocal.

(58) to be a pure magnetic field since only the
magnetic field enters into the terms in (22) and
(23) which are responsible for the loss of con-
straints. On taking the direction of the magnetic
field to be the z axis, S„„F""reduces to 2S»F"
= 2XS». Now it may be shown from the forms of
the P matrices that a general linear combination
of the tensors T"," leads to the following structure
for S".

V. NONMINIMAL INTERACTION
with

(0 W'$' (60)

Is it possible thai by introducing nonminimal
terms in the Lagrangian we can overcome the
deficiencies of the minimally coupled theory'?
This question arises naturally in view of the ex-
ample of the spin-2 theory, "wherein the con-
straints lost on introduction of minimal electro-
magnetic interaction mere restored by the addition
of the "Federbush term. " We therefore examine
now' the effect of adding a nonminimal term

7;""='(P"P'PP"-P"P'P, p"),
T'"= fP' PP"P ) (P" PP-"P')

7'"='P [P' P"]P'

7""=f[P" P P"P']-'[P" PP"P']
7'"=.[[P P'P"] [P P'P"]]
7'""=~[(p,p', P") (P P' P"]]
T""=[[P'P P"] (P P' P")]

[(P,P', P"), [P,P', P"]].

(59)

It mill suffice for our purpose to consider I"„„in

to the Lagrangian with minimal coupling. There
are ten second-rank independent antisymmetric
tensors Hermitian with respect to the metric q of
Eq. (26), which can be constructed from the P„
and S„„in (58). will be taken to be an arbitrary
linear combination of these tensors, mhich are
given by

7vv f [pv pv]

7.""=[P'P„[p",P']],
&s "=&fp'P„[P",. P "1]

Q1&3 v 2c.,u, &2o, ,u, V2c.,u,

-' 2Q4 N3 —3Q5o3 —3Q6o3 —3Q7o3«/ 9 + 't 1 1 1

-~~&3 u3 3 &sc's 3 &9&3 3 &6 &4

Q2+3 3Q10O3 3QSO3 3 Q5 O3«/2 + t 1 j.

The o, (i=1,2, 3, ..., 10) in (61) are'certain com-
plex linear combinations of the 10 arbitrary real
parameters which are the coefficients of the vari-
ous T",." in S"". The modified equations of motion
including the nonminimal interaction terms may
now be readily written down. Considering in par-
ticular Eq. (71) which provided two of the primary
constraints in the minimal case, we find that it is
modified to

1 v2eX „,mp« -—u '&}l,+ s 'om(X, y+,)+ n, u, p,2 m

eK eK ~ eX+; Q10o39 2+; Q3 o3%3+ 3 Q5 o3y4= 0.
l3Pl Sm om

(62)

Q10- o- (63)

Requiring that this be so, we obtain on differen-
tiation of (62) and use of the (modified} equations
of motion for p„p„x„ll«, and (y, + X,) the fol-
loming secondary constraint equation:

While it still does not involve any time derivatives,
it contains, unlike (7d), a term in the y, for
which no equation of motion exists at the primary
stage. Therefore the time differentiation of (62)
would lead to an equation of motion for y, instead
of yielding secondary constraints as before. There
would then be loss of constraints even at the sec-
ondary stage unless

8KI
yQ8+ Q8 + jO3t|tv 2+ 2 l Q2 Q2N3+3+ Q8 yQ8 Q5 /O3 Q8Q5 O3 J y2 KQ2N ~+3 Q2N3N ~+ Q50 r(r3

(64)
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Equations (24) have been used to arrive at this
form. The dots in (64) are to indicate that a num-
ber of terms which are directly irrelevant to the
present analysis have not been shown. [Equation
(64) is the counterpart of Eq. (22) of the minimally
coupled interacting case. ] We have to see now

whether, by a suitable choice of the parameters
o.„we can ensure that this equation —unlike Eq.
(22)—can be made to yield the denied tertiary con-
straints by operating on it with wp This operation
will result in a constraint equation only if (64) is
free of terms in y, and X (these being quantities
for which we have no equations of motion). The
condition for this to happen may readily be seen
to be

1+Beo, =0,
Im(4o, ,+ n, ) = 0,

(65a)

(65b)

Re(2(g, —n, ) = 0, (65c)
I

&2 Q 2+ n 8 n 8
—(Q 8~ Q 5 + Q 5 Q 8) = 0 . (65d)

Unfortunately, these equations cannot be simul-
taneously satisfied. To see this we separate the
~ into their real and imaginary parts and write

+2= P+ &C

af, = 2P -4iq,

0,,= -1+it,

(66a)

(66b)

(66c)

using Eqs. (65a)-(65c). On substituting these in

(65d) we obtain the relation

f 2+ 8qt+16(P'+ q2)+4P+ 1=0. (67)

Considered as a quadratic equation in t, this
equation has the discriminant D= -4(16p'+ 4p+ 1),
which is negative definite. Hence Eq. (6V) pos-
sesses no real solutions for t. But t, by definition
has to be real. Therefore the set of Eqs. (65)
admits no solutions, and consequently one cannot
obtain the tertiary constraints by the differentia-
tion of the secondary constraint equation (64).

We find thus thai it is impossible to avoid loss
of constraints through the introduction of any non-
minimal interaction terms linear in the E„„. The
behavior of Glass's theory for spin 2 is in this re-
spect worse than that of the spin-2 theory" v~

where the Federbush term linear in E„„was suf-
ficient to ensure preservation of the number of
constraints.

VI. RESULTS AND DISCUSSION

We now recapitulate the results obtained. The
solution of Glass's equation in interaction with an
hmf shows that there is an increase in the num-
ber of independent degrees of freedom for Glass's

particle when interaction with a magnetic field is
introduced. The expl. icit analysis of Sec. III con-
firms that there is a deficiency in the number of
constraints obtainable from the field equations,
when 3C0. In addition to this difficulty which had
so far not been encountered in theories for spin
s & 2, the appearance of complex energy modes in
an hmf which was already seen to be a problem
with the RS equation', persists in Glass's case
also. Further, as in the RS theory with minimal
electromagnetic coupling, the indefinite sign of
anticommutators of field components makes its
appearance in the Glass theory also when quan-
tization is carried out (with the reduced number
of constraints) using the Schwinger action principle
approach. But the nonlocality of the anticommu-
tators described in Sec. IV, seems to have no
parallel in any of the relativistic theories studied
so far.

It is pertinent here to remark on the recent work
of Singh and Hagen" in the context of the above
results. These authors find that for constant
light-front coordinate (unlike for constant time)
the RS equation has a deficiency of constraints
and also suffers from mutual contradictions of the
anticommutation rules among field components.
The question whether these two types of problems
are concomitants of each other is answered in
the negative by our study which, in the case of
Glass's equation, has revealed the anticommu-
tators to be mutually consistent even in a situation
(XAO) where there is a deficiency of constraints.
It appears therefore that the use of light-front co-
ordinates creates extra problems whose signifi-
cance it is diff icult to assess.

We have found in Sec. V that amelioration of the
constraint problem is not possible through the
introduction of any simple nonminimal. interaction.
The failure of this attempt in ibis case in contrast
to the case of spin-2 ean be understood in a
heuristic fashion as follows. In the spin-2 theory
of Ref. 26, the spin magnetic moment is 1 unit as
shown by Hagen and by Maihews, Seetharaman,
and Prabhakaran. ' This differs from the canonical
value of I/s (for a particle of spin s) conjectured
by Belinfante. ~ We have noted in earlier work
that the. "optimal coupling'" is not in general the
minimal but which leads to the canonical value
1/s for the spin magnetic moment. The Feder-
bush term, in fact, does just this (bringing the
magnetic moment to the value 2). In Glass's
theory for spin &, on the other hand, the minimal
coupl. ing is already optimal, in that the magnetic
moment, as seen from the equation for tbe leading

components of the wave function in the nonrela-
tivistic limit, has the conjectured value 3. One is
therefore not surprised if the introduction of non-
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minimal terms does not help to ease the problem
of an already optimal theory.

The dependence of the number of "spin" degrees
of freedom on the nature of the external field
(whether or not X= 0) seems to imply a breakdown
of Lorentz invariance, since one can go by a suit-
able Lorentz transformation from a frame in which
the external field is purely electric to one in which
there is a magnetic field, and hence fewer con-
straints than in the original frame of reference.
A similar observation has already been made in

respect of the symmetric tensor theory' for spin
2 with minimal electromagnetic coupling. "

The results of the present study bring out clearly
the fact that as the degree n of the minimal equa-
tion, P," '(P,' —1)= 0, for P, increases, the types
of inconsistencies arising on introducing interac-
tions increase in number and variety. The Rarita-
Schwinger equation which has P,'( P,

' —1)= 0 suffers
from noncausal propagation at the classical level.
Glass's equation, the P, of which obeys P,'(P,'-1)
=0, is plagued by the further trouble of loss of con-
straints, nonlocal anticommutators, etc. -

Recently it has been shown by Deser and
Zumino" that in a supergravity theory of coupled

massless fields of spin 2 and spin 2 the problem
of violation of causal. ity does not arise. As for
spin-& fields minimally interacting with the elec-
tromagnetic field, the only equations known to us
which are free of all troubles at the c-number
level are the BG equation' ' and the Fisk-Tait
equation"' which are characterized by diagonal-
izable P, and do not have an irreducible mass/spin
content. Quantization of such theories (which
necessarily. involve indefinite metric) has been
recently attempted" and needs to be pursued fur-
ther. On the other hand, the connection between
the algebraic properties of the P matrices in
unique-spin, unique-mass theories, and the vari-
ous types of inconsistencies which arise in the
presence of interactions in such theories need to
be studied systematically. A study of this ques-
tion has been undertaken, and we shall present
some of the results in a sequel to this paper.
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