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We study the unrenormalized perturbation expansion of the Euclidean, massive X:4:/4! field theory in
d & 1 space-time dimensions, with a volume cutoff, and with the free propagator regulated by an a-'

parameter cutoff in case d & 2. In the formal expansion of the Schwinger n-point function, S(x„.. .,x„)
p( k) S~(x& . . . x„), we show that 0 & S,(x„... ,x„) & A'(1!) 'll', , [i + (n -- 5)l4)'

X cSO(x„.. .,x„).The constant A diverges as the volume cutoff is removed, and, in d & 2 dimensions, as the
ultraviolet cutoff is removed. We also give finite bounds for no volume-cutoff, at the expense of lowering the
mass in the free field and multiplying by an extra factor l!. We give analogous bounds for the connected n-
point function in terms of the tree approximation. The method is combinatoric, once we establish x-space
bounds on two basic diagrams. These follow from some properties of Bessel potentials of a cutoffs, which we
beheve to be new.

I. DISCUSSION OF RESUL"rS

Lately, we have seen the development of elegant
techniques for studying the large-order behavior
of the perturbation expansion of various quantum
field theories. ' ' In essence, certain classical
methods of asymptotic estimation have been made
available in the path-space version of quantum
field theory. The natural question of whether some
of the classical techniques for summation of diver-
gent series may also be taken over remains under
intense investigation.

%e derive upper bounds on the n-point Schwinger
function in lth order for the massive, Euclidean
X: 4s: /4! field theory in d ~ 1 dimensions, with
volume and momentum eutoffs, by a direct, com-
binatoric method. The bounds have a structure
similar to that of the asymptotic behavior obtained
from saddle points, "but there are enough differ-
ences to prevent an exact comparison.

Our theory continues perhaps more directly on
the older line started by Hurst, who counted the
number of Feynman graphs for polynomial inter-
actions of bosons and fermions, by Riddell, ' who
counted Feynman graphs in QED (by a method
which works more generally), and by Caianiello, '
Buccafurri and Caianiello, ' and Yennie and Gart-
enhaus" (with all reviewed in Caianiello"), who
studied the radius of convergence of the perturba-
tion expansion for volume- and momentum-cutoff
interactions of bosons and fermions, at most linear
in the boson field, with and without a fermion mode
cutoff. These estimates' "did not remove the ef-
fects of disconnected vacuum bubbles, and treated
the x dependence'in the Minkowski-space n-point
function by taking the supremum; they took ad-
vantage of fermionic cancellations amorig graphs to
get a nonzero radius of convergence.

Subsequently, Glim'' proved bounds for Minkow-

ski-space regulated graphs for bosons, which
treat the external x dependence. in the I'-norm
sense. His bounds were important in the develop-
ment of the constructive field-theory program for
the: 4'. interaction in three space-time dimen-
sions. Hepp" gives a discussion of Glimm's
bounds and their proof.

The last result on the same line as ours, of
which we are aware, is a set of path-integral L ~

bounds on cutoff, polynomial interactions, both
Euclidean and Minkowski, due originally to Glimm
and Jaffe, ' "and with developments by a number
of people that can be traced from the discussion
of Theorems I.1V, I.22, and V.2 in Simon. " %e
adapt that result to our situation later in this sec-
tion in Remark vii. These bounds contain rather
detailed x-spaee information, in principle, but do
include the effects of vacuum bubbles. "

Our bounds take advantage of the noncancellation
of Euclidean Feynman graphs for scalar bosons
(because of their positivity), remove the effects of
vacuum bubbles (as do the saddle-point results),
treat connected graphs as well, and bound the ex-
ternal x-space behavior by that of the free field,
or by the connected tree approximation, in the
case of connected graphs.

To describe our results, let

&.(x) =(») ' (&'+ u') '

be the o.-regulated, free Euclidean propagator.
Let dp. (y) be the normalized, Gaussian path space
measure with zero mean [on paths y c:Res'(R'),
for example] whose two-point function is
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&,(x, —x,) = (E)(x,)y(x, )dp„(y) .

The n-point function of the cutoff theory is

S(x„..;,x„)= jj 'f X(x,) rp(x„)x-"du. ,

N-=e '~dp,

EE-=(4!) ':V'(y):g(y)dy,

0 ~g~L, '(R"}nL, "(R').

(1.2)

The function g in the interaction is the volume
cutoff, and the normal ordering is relative to the
free measure dp, .

The a-cutoff theory is similar in spirit to the
Gaussian propagator model discussed from the
saddle-point method by Bervillier, Drouffe, Zinn-
Justin, and Godreche. '

Our main result is the following:
Theo~em. Let

S(x„.. . , x„)= g( ~)'S,(x„.. . , x„)

&, =-(j!) ' !j'(ix(x-8/4]',
)= 1

where a and c are cutoff-independent constants,
defined in Lemma 8, close to unity for n large,
and where y(n), defined in Lemma 5, diverges
at n=0 for d» 2.

(b) Let E„=n/2 —2 be the order of the tree dia-
grams in the connected n-point function. Then

0 -S„,(x„.. . , x„)

T r ( T ) ( 1 'x'')n)))

A, a, r(n)'ll =-g II, ,

fE»=E„I(E+E„)! ' [i+E„+(n 5)/4]', -
s"-1

where a~ and c~ are cutoff-independent constants
close to two and unity, respectively, for n large,
defined in Lemma 10.

(c) Let p' & Eq'& 0. Let S, 2 be the Eth-order n-
point function in which the mass squared is re-

be the formal perturbation expansion of Eq. (1.2),
which includes volume and n cutoffs. For d=1,
put @=0. Let S and S~ be the corresponding con-
nected parts. Let l » 1.

(a) Then

0 S,(x„.. . , x„)-A B, cs(o~x, . .. , x„),
A =- ar(n)'ll gll, ,

placed by p,

S,(x„.. . , x„) A,B(c„so „2(x„... x x„) x

A, =-a„e 'y(n)llgll„,
cc I c&S(+l (x1) ' ' ' ) xj)) T e T lcT xx S( !(!2(xlx

Ar, =ar „q 'y(n}llgll„,

where a„, c„, and a~ „, c~ „are cutoff-indepen-
dent constants, defined in Lemma 13, which for n
large are near 1, 1, 2, and 1, respectively. Only
in d = 1 and 2 dimensions does y have a mass de-
pendence; in those cases it is evaluated at squared
mass p,

' —lq', as discussed in Sec. III3.
Remarks (i} A. lthough our model differs in some

respects from the scalar field models considered
up to now by saddle-point methods, "e.g. , the
presence and/or form of cutoffs and the normal
ordering of the interaction, the constant in the
bound in part (a) can be replaced by

E!a "I'" '"'c'[y(n)'ll gll, ]',

where a' is of order unity and c' is exponentially
decreasing in n, for l» 2. We omit the proof. The
cutoff-independent part of this constant has a
structure similar to that of the asymptotic behavior
at large l from saddle points, "with differences
in detail.

(ii) In all parts of the theorem, one may put
a=0 in S, and S, on the right-hand side, because
it is a fact, to be reviewed later, that & (x)
~ b,,(x). Of course, for d= 1 we already have
@=0. The volume cutoff in S, may also be re-
moved (there is none in S,).

(iii) For d&2, y(n) diverges at n =0 like n, (0),
a little worse for d= 2. The constants in the
bounds in parts (a)-(c) then diverge. This i.s un-
like the large order behavior from saddle points,
where the constant analogous to A is a cutoff-in-
dependent number. The fact that we have a diver-
gent ultraviolet dependence even for d =2, which

' ultimately requires no ultraviolet renormaliza-
tion, is a suggestion that our particular, free field
bounds cannot be extended to the renormalized, no-
cutoff perturbation expansion.

(iv) In parts (a) and (b), llgll„and hence A and

A~, diverge when the volume cutoff is removed,
g—= 1, certainly unlike the saddle points. In part
(c), we may put g=l=llgll„. The price is the
nonuniform l dependence in So ] 2, By choosing
lq' = qo fixed, we may translate this into a factor
(E/e, '}', coming from A, and Ar „which effec-
tively supplies an extra factor l I.

(v) These distortions in structure from the sad-
dle-point results are possibly related to the fact
that the x dependence in our bounds is carried by
the free field in S„or by the tree approximation.
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The x dependence in the saddle-point results is
carried by a summation over classical solutions
(at negative mass squared). It is already a bit of
a surprise in the totally cutoff theory that Feyn-
man graphs of all orders for the n-point function
would have the same exponential times power or-
der at large x as the free field. The exponential
part is not surprising, but one could have expected
powers of x to pile up with the order in A.. Indeed,
we expect that is exactly what happens when the
volume cutoff is removed; we can prove that by an
example in one dimension with n =0, where the
free two-point function is a simple exponential (we
omit the example). Such a pile up is compensated
by decreasing the exponential fall off, in part (c)
of the theorem, through a decrease in mass. Al-
though the same one-dimensional example shows
that a free field bound with the original mass is
generally impossible for no volume cutoff, the
argument we use to prove part (c) is a consider-
able overestimation; and it remains open whether
it could be improved enough to remove the extra
l t in the constant, with some g-dependent factor
uniform in /.

(vi) Part (a) of the theorem could be a natural
starting point for investigations of resummation
methods to recover the exact, totally cutoff
theory. We do not pursue that question; but let
us review a few conclusions about the cutoff theory
that ean be drawn from existing, Euclidean path-
space techniques. They are an elementary adapta-
tion of results of Glimm, Jaffe, and Spencer" in
two dimensions; and we omit the proofs. The com-
bination of volume and momentum cutoffs makes
the Euclidean path integral as well behaved as
usual. It can be shown that exp(-A U) belongs to
L* (dp ) for Re X'» 0; i.e. , it is uniformly bounded
for configurations y in the support of dp, . Thus,
the interacting measure N ' exp(-XU)dp, is ab-
solutely continuous relative to d p, . Furthermore,
the interacting measure is meromorphic in Rek
&0, with no poles on the positive real axis, when
integrated with functions that belong to L'(d!J, )
AI'( ~U ~dp, ). In particular, the smeared Sch-
winger functions, and perhaps even the unsmeared
ones, inherit the above analyticity. Finally, one
can also prove infinite differentiability of the
smeared Schwinger functions at ReA=O, as long
as the denominator 1V in (1.2) does not vanish (it
does not vanish at X= 0).

(vii) There is a Pock space estimate in Simon, "
theorem V.2, which is a precursor of the t t and
cutoff behavior in part (a) of our theorem, and
whose proof can easily be imitated to fit our par-
ticular choice of cutoffs. We state the following
without proof:

L~ bounds on cutoff inte'ractions. I et gc '(LR~).

In Sec. II, we discuss several estimates for
certain combinations of Bessel potentials of o.

cutoffs, leading to x-space bounds on two particu-
lar Feynman graphs which serve as our combina-
toric inputs. Among these, we feel that the proofs
of Lemmas 2 and 3, for d & 2, are rather efficient
and the results fairly sharp. Lemma 1, for d=2,
gets a seemingly less efficient proof in the Ap-
pendix, and yields an n =0 divergence which pos-
sibly couM be improved.

The combinatorics for our main theorem are
handled in Sec. III, by an inductive argument that
bounds 8, by S, , and S, , The ideas involved
here, the classification of interaction vertices
according to their modes of "dissolution" and the
counting of those modes, are key ideas in this pa-
per, and are quite simple to apply for: O':. They
ean certainly be applied to other polynomial in-
teractions; the input estimates in Sec. II certainly
extend to more complicated vertices; the main
complication would be in the classification and
counting problem, about which we are optimistic.

II. BASIC ESTIMATES

Everything in this section flows from particular
properties of certain Bessel potentials, which we
now develop.

A. Bessel potentials for n cutoffs

Following the terminology of Calderon, "but not
his normalizations, we define Bessel potentials
for the Fourier transform of an n cutoff by

Rez &0.
X g O( y2+p )~gy+ X (2.1)

Theorem V.2" is stated for g e L '(R'), 1 & q ~ 2,
with no ultraviolet cutoff. The values j. &q «2 can
also be covered here. Taking the pth power of this-
estimate and putting m =4 and p=l gives a bound
for integrals of the form (I!) 'fEU'dp, , where
I' c L"(d p, ), having the same no-cutoff divergence
(for d0 2) and I! structure as in part (a) of our
theorem. A volume divergence is to be expected
in the I ~ bounds, because disconnected, vacuum
bubbles are included. Aside from the removal of
such graphs in our Schwinger function bound, the
function being integrated is
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The Bessel potentials of the 6 function correspond
to the no-cutoff limit n =0. They are known to
belong to L'(R'), for any Res &0; indeed the no-
cutoff case may be written explicitly in terms of
Hankel functions, Eq. (2.4). Their exponential be-
havior at x=~ is reviewed in Eq. (2.5}, and they
have integrable singularities at the origin.

Our estimates with ao0 rely (in a somewhat
hidden fashion) on having the same large x be-
havior as the n =0 case. The role of the cutoff
seems to be to preserve this behavior and also to
regulate the singularity at x=0. In other words,
our discussion perhaps makes essential use of the

special feature of the n cutoff that it is analytic
in a region larger than ~1mk

~

~
&&&, to help it pre-

serve the large x behavior.
Much of the discussion centers on the cutoff

Euclidean propagator, for which we use the nota-
tion

~.(x) =~. ,(x),

but we do need information about B,for z = 4 and
6.

The following integral representation are con-
venient: for Rez &0,

fl, ,(x) = it' '(«) d "1'(e/2) ' e-&0 x /4 t+t)f d/2(f it-2~) "&.+ z/2df (2.2)

B„,(x) = &&.
" '"'(4v) '"1"(z/2) ' e-&x /4tt t 4tt+t)g d2/( f 1 )-t+d/2df (2.3)

& t-d&/22& t-d-d&/2 d-dZ'(g/2)-&
p g

x
(
p, x ("-'-""e-'""[1+0((itx (')]. (2.5)

B. Estimates for 8
One of our key estimates is an upper bound on

sup, & (x —y)& (y) proportional to b (x). After
a little calculation, one sees that

sup & (x-y)& (y)= sup &„(&&x)& [(1—X)x].
y EH p&x&l

(2.6)

This results from the fact that 6 (x —y)h (y) is
smooth, and zero at infinity in y, so its gradient
must vanish at the maximum.

The large-x behavior is an essential reason that
the above maximum is propor&tional to 4 (x), as
the proofs for d= 1 and 2 illustrate.

The two are related by a change of scale. They
result from the usual ~ function and Gaussian
tricks. There is a change of orders of integra-
tion involved, but it can be shown that (2.2), (2.3),
and (2.1) define the same function in L'(Rd) in the
sense of distributions, for Rez&0 and n ~ 0. For
n&0, a. ,~ S(R'}.

The o&=0 limit may be taken directly in (2.2),
and yields, with the help of a table of Laplace
transforms":

B, (x) =2' ' 'it' '(2)&) ' '1'(z/2) '

x (/ [& "&"If...„.((p [) (2.4}

The large-x behavior is thus (Peirce, 2O 783-85)

For d=1, no n cutoff is necessary, because for
d= 1~

g (x) (2it)-te-& ~xl

which is continuous at x=0. Thus,

sup &.(x - y)&.(y) = (2u) '&.(x),
3) CR

(2.V)

(2.8)

(b) sup & (x-y)&, (y) ~ &2'Cy '&„(0)'& (x) ~

3)CR

Proof. (a) The proof of the upper and lower
bounds of & (x) is given in the Appendix, where
the sizes of C, and C, are also estimated.

(b) The bound on the supremum follows by sub-
stituting part (a) into (2.6). The product of the
exponential factors is independent of A.; and the
product of power factors is maximum at the end-
points, A. =O and 1. U

from (2.6}. Note that the coefficient on the right-
hand side of (2.8) is &o(0); b, (0)b (x) is a lower
bound for the' supremum in (2.6), which is achieved
in this case.

For d=z = 2, we follow a method of proof that
could also be used for any d. Unfortunately, the
method does not give optimum n control for d &2;
and we do not know whether it is optimum for d = 2.

Lemma 1. Let d = 2, and n & 0. Then there exist
positive constants, independent of e and x, such
that when n is sufficiently small,

(a) 0&C,(1+ ~itx()-'"e-'""'- &.(x)

~«(0)(1+(u () "'e '"'
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The anomalous feature of the bound on the
supremum for d=2 is that t), (0) is squared. It is
true that n, (0) = -(4v) ' InI/, 2o( for small o. when
d = 2; but we do not know whether the square of the
logarithm is nonoptimal.

For d&2, we get fairly sharp n control, because
of the following:

I.emma Z. Let d&2, a&0. Then for any p&1,

(x/p) «p(d-2)/2' ( x)1/pC (p-1)/ p

—Itd 2(2-v) d/2(-d 2)-1(2I12o()1-d/2

Proof. Think of the representation (2.2) as an
integral of the exponential factor times a factor
unity, and apply the Holder inequality to obtain

(0 )1/p
(x) «d (42-)v-d/ 2 e p(Q x/4t-+t)t .d/2df-

+2o )

preceding the lemma. 0
The estimate in Lemma 3 is optimal in the sense

that for n small and d near 2 the upper bound is
near the lower bound 4 (0)b;„(x) for the supremum.
The actual supremum must be larger than this
lower bound, because when n &0 one can show that
the slope of the function of X on the left-hand side
is positive at X=O and negative at A. = l.

So far, all results. h@ve been for z = 2. We use
the following lemma in case z, = 2 and z, = 4, 6 to
remove the volume cutoff in our bound on the n-
point function by the free field n-point function, at
the expense of decreasing the mass in the free
field.

Lemma 4. Let B, ,(x) be B,(x) evaluated at
mass squared p, '-q'. Let n&0, 0&q'& p.', z, ~z„
with z, and z, real. Then

~ u-»/ e
t "/ dt

The result follows by choosing s =pt as a new
variable in the first integral, then lowering its
lower limit from s = p, zp to s = p. o. , then replacing
x by x/p on both sides of the inequality. CI

Note that C &4 (0), because the integral defin-
ing C, results from that defining b.,(0}by dropping
an exponential factor less than unity. Neverthe-
less, for d&2 C is the leading approximation to
4 (0) near n=0. Indeed it is straightforward to
compute that

B.„,(x) = [(..—.,)/2e']'" ""'B„„,(x)

x r(&, /2)1'(&, /2)-'.

Proof. The resultfollowsfromthe representation
(2.3)by bringing out a factor (f —1) '" "'/' exp(-&2(2t)
in the integrand and replacing it by its maximum
at t= 1+(x2 —z, )/2q2(2 If z., =2„ it is clear from
(2.3} that B,&B„,,

C. Bounds on Feynman graphs

Consider the x-space, Euclidean Feynman graph
I', in Fig. 1(a). We define

n, (0)'= p,
' '(4(() ' '(d/2 —1) '

x [()1'(2)' " ' —)1((2)]

where for small 0.,

)1(o() —= I'(2 —d/2), 2 &d & 4

(2.9)
r,(x„.. . , x,) -=lp' n. „(x,—y) g ( y)dy. (2.11)

The next lemma bounds I', by the graph E, in

Fig. 1(b}, which has the interaction "dissolved" in
one of three possible ways:

)I((2) =- - 1np'n, d = 4

n(o.) = (1 —d/2)(2 —d/2)(I1'o()' ""
(2.10)

The sharpness of the bound in Lemma 2 turns out
to reside in that fact.

l.emma 8. Let d&2, n&0. Then.

sup b, ()(x)n, [(1-)()x]«2~-2)/2n. ,(0)a„(x)[l+gd(o()],
0&}I.& &

F,(x„.. . , x,) =-~, (x, —x,)&.(x, —x,). (2.12)

We use the notation E, , for E, evaluated at mass
sguared p,

I emma 5. The following are pointwise bounds
at any value of x„... , x, '.

(a) o « I', «r((2)'ll g II,F, ,

where

r(~) =(2N) ',

where gd((2) &0 and qd(o. ) -0 as n -0.
Proof. Let )(=p ' and 1 —)(=(f ', and apply Lem-

ma 2 for p and q to the factors on the left-hand
side of the above. The factor 2~ " ' results from

X) Xg Xp

sup )( 1(1—)() ~ 1) = 2,
0&}I.& 1

and the factor 4 (0)(l+ q) = C from the discussion

X4 X4

(~)
FIG. 1. Basic tree graph and its bound.
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FIG. 2. Basic self-energy graph and its bound„

&.(», —y, )'&.(x, —y, )'g( y, )dy,

X Q X3 $2 Qfw X4 —g2 g

(ilgll 'sup& (x, —y, )& (», —y, )
1

x sup a (x, —y,)a, (x, - y, )a„*4„(»,—x,)

x Z *ye (x, x,). (2.13)

The suprema give y( )'nF, . Then we put E, &F, „
because 8, ,&B,„ from (2.3). The convolu-
tions may be estimated from Lemma 4, because

err zl n2r z2 0'1+n2r z3+z2

Here, we have z, +z =4,

(2.i4)

2Cgr4 ~ 2+r2r 6 ~ Qr2r 6
(2.16)

The last bound follows from the fact that B 2 is
monotone decreasing in n, according to (2.2).
Thus, the convolutions give q 4E, ,

%e want to bound one more graph, I'„shown in

Fig. 2(a), by F,(x„x,) = n (x, —x,), shown in Fig.
2(b). Here

y, (x„x)-=fx (-)x(yy, -xy.,)'x, .(y, —x)

&& g (y|)g(y.)dyidy. (2.16)

for d=l and n=0,
y(n) = C,'C, -'~„(0)',

defined for d = 2, 0 & n small, as in Lemma 1,

y(n) 2 (d-2 )/2C

defined for d&2, n&0, as in Lemma 2.
(b) Let 0 & q' &!),', and define y(n) as in (a). Then

o ~ 1', ~ ~ 'y(n)ll g II F,, ,

Proof. (a) The first estimate follows from (2.8)
and Lemmas I.b and 3, keeping in mind that
b, (0)[1+qd(n)]=C, upon replacing n„(x,-y)n (x, -y)
and 4 (x, —y)b (xd —y) in the integral that defines
I", by their suprema. The positivity of g and ~ is
also used.

(b) Note that

2q B3

-2& '&+ 2 e~ (2.iv)

where we used Lemma 4, and monotonicity in o.
for @=2.

HI. COMBINATORICS

The lth order term in the expansion of
S(x„.. . , x„) has the form f!S, = G„where G, is the
sum of all x-space Feynman graphs with n exter-
nal and / internal vertices constructed as follows:

:4':/4! graph ndles (i) E.very vertex, repre-
sented by a dot, is labeled by a position in R~, the
external vertices by x„.. . , x„ the internal ver-

s by», . . . , y, . Graphs which are topologi
cally equivalent after labeling are identified.

(ii) All lines have distinct vertices on the two
ends. One line ends on each external vertex, and
four lines on each internal vertex.

(iii) Each line corresponds to an x-space propa-
gator a,(x, —y,.) or & (y,.—y, ), with n=0 in case
0= 1, and otherwise n&0, the same for all lines.
There is a volume cutoff factor g(y,.) for each in-
ternal vertex. Each y,. argument is integrated; no

x, argument is integrated.
(iv) The effect of the (4!) ' in the interaction is

to assign to each graph a weight factor (s!) ' for
each set of s multiple lines between the same two
vertices.

(v) All graphs with a vacuum bubble are deleted.
Note that, because & &0 and g) 0, every graph

is positive, pointwise in x„.. . , x„, note that n
must be even; and note that we have imposed, to
conform with the normal ordering of the interac-
tion, thatno tadpole graphs, such as in Fig. 3, oc-
cur. In that figure, we have introduced the graphi-
cal notation that short, perpendicular bars isolate
parts of a subgraph.

Our strategy is to bound the sum of graphs of
order l by the sum of graphs of order / —1 and

I-emrr(a 6. Define y(n) as in Lemma 5:

(a) o =1,= II g II,'~.(0)'y(n)'F. ,

(b) 0=1.=2. 'Ilgll '~.(0)'F,...
Proof. (a) Use n (y, —y, )'( & (0)' in the inte-

gral (2.16) for 1'„and then use

sup sup a (xi - y|)n ( yi —y2)n ( y2 —x2)

- y(n)'n. (x, —x.) .
(t ) Note that

1'.- ~.(0)'ll gll '~.*~.*~.(x, - x.)
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FIG. 3. Tadpole.

E —2, with the help of Lemmas 5 and 6. Two pro-
cesses are involved. The first is that of "dis-
solving" the lth internal vertex of an /th order
graph according to each among the three ways
shown in Fig. 4 which gives a graph of order 3 —1
in the allowed class (no vacuum bubbles, no tad-
poles). The original graph is then bounded, be-
cause of Lemma 5.a, up to weight factors for
multiple lines, by y(n)')~ g (~, /r times the sum of
the r= 1, 2, or 3 graphs into which it dissolves.
To save words, we shall carry the discussion
through initially only for the II gll, case. At the
end, we shall describe the changes to get II gll
bounds.

The second process handles the exceptional case
where the lth internal vertex is an internal vertex
of a self-energy subgraph like that in Fig. 2(a).
Any way of dissolving such a vertex produces a
tadpole. These graphs are treated with the help
of Lemma 6.a by replacing the self-energy sub-
graph with a free 4 line, so that the original
graph is bounded by & (0)'y(a)'[) g)[,' times a graph
of order l -2, up to weight factors for multiple
lines.

We need to be sure that the last internal vertex
of every graph may be treated in one of these two

ways, and to classify and count the lower-order
graphs that result. To do that, it is helpful to

' think in terms of the inverse to the process of
dissolving a vertex, the process of pinching to-
gether two distinct lines of, a graph to create a new'

internal vertex.
First, we discuss the reduction when all allowed,

connected and disconnected graphs are included.
Then we treat separately the further exceptional
cases that arise from the restriction to connected
graphs only.

A. Graphs vvith no connectedness restriction

As notation, let (f) denote a typical graph of
order l.

First, let us handle the tadpoles. An allowed
(f) graph has none, by assumption. To see which
vertices can dissolve into a tadpole, we take an
(/ —1) graph with a tadpole and pinch it. We do not
pinch a line with itself, because that produces a
tadpole in the (l) graph, where it is absent. The
only possible pinches are shown in Fig. 5. The
first of these gives a self-energy graph, which
we treat separately. If the second of these is not
a self-energy graph, then neither of the upper
two barred ends connects, without an intervening
vertex, to either of the lower two. In that case,
each of the other two ways of dissolving the pinched
vertex produces an allowed graph: we get no tad-
pole, because there is another vertex beyond each
of the upper bars; we get no vacuum bubble, be-
cause neither dissolution disconnects, so that the
result is still connected to an external vertex,
since the (l) graph has no vacuum bubbles.

Conclusion. In an allowed graph, any nonself-
energy internal vertex which dissolves to produce
a tadpole also dissolves in two other, allowed
ways.

Next, consider vertices which dissolve to pro-
duce a vacuum bubble. We may assume the bubble
to be connected, because a dissolution cannot add

FIG. 4. Dissolutions of a vertex.

(b)
FIG. 5. Tadpole pinches.
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more than one disconnected piece. If we pinch a
line from the bubble with a line from the rest of
the graph, as in Fig. 6, we see that each of the
other two ways of dissolving the pinch produces
no disconnection, hence no vacuum bubble. The
pinch cannot be a self-energy vertex, because they
do not disconnect on dissolution. The pinch there-
fore cannot produce a tadpole on dissolution, for
the conclusion above would then require it to dis-
solve in two other allowed ways, and we know that
one of the other ways is a disallowed vacuum bub-
ble.

Conclusion. In an allowed graph, any internal
vertex which dissolves to produce a vacuum bub-
ble also dissolves in two other allowed ways.

Combining the conclusions, we have proved the
following:

Dissolution Lemma. Every nonself-energy in-
ternal vertex of an allowed graph dissolves in at
least two ways to produce an allowed graph.

To begin estimating, write

where G, , is the sum of allowed (/) graphs where
the last internal vertex is not a self-energy ver-
tex, and 6, , is the rest. We first want to esti-
mate how many times each (/ —1) graph occurs
when we dissolve the lth internal vertex of each
graph in G, , in every allowed way. Until further
notice, we disregard weight factors for multiple
lines. Then the number of times a given (/ —1)
graph occurs is exactly the number of distinct
pinches of two lines of the graph. (Note that
pinches of distinct lines never produce tadpoles
or vacuum bubbles. ) All pinches of distinct pairs
of lines produce distinct graphs, except when one
of the lines belongs to a multiplet between the
same pair of vertices. We overestimate the oc-
currences of an (/ —1) graph by pinching all pairs
of its lines. Since the number of lines in. (/ —1)
graphs is 2(/ —1)+n/2, each such graph results no
more than [2(/ —1)+n/2][2(/ —1)+n/2 —1]/2 times
from dissolutions of the 1th internal vertex of
graphs in 6».

Now we should like to insert the correct weights
for multiple lines, as in graph rule (iv). We claim
that the overcounting of (/ —1) graphs from pinches
of multiple lines gives an overestimation of cor-

rectly weighted (/ —1) graphs, when the residual
weight factors from (/) graphs are taken into ac-
count. To see that, we divide the possibilities into
two cases:

(i) The two lines in (/ —1) whose pinch gives the
vertex dissolved in (/) do not belong to the same
multiplet. We suppose that the first of these lines
in (/ —1) belongs to a multiplet of s, lines, and the
second to a multiplet of s, lines. We want these
multiplets to carry a weight (s, !s, !) '. The (/)
graph is related to the (/ —1) graph by s,s, pinches,
so if we count all pinches and insert the correct
weights, we get a factor [(s,- I)!(s, —1)!] ' as a
candidate for the weighted number of (/ —1) graphs
resulting from the corresponding dissolution of
(/). Now if s„s, is larger than one, then the s„s,
multiplet in (/ 1) must have corresponded to an

s, —1,s, -1 multiplet in (/), which carried a weight

[(s, —1)!(s, —1)!] '. Upon dissolving (/) into (/ —1);
this weight may be traded for the combination of
number of pinches and (/ —1) weights above, which
so far is an exact count and not an overestimation.
It becomes an overestimation in those cases
where (/) has multiple lines not present in (/ —1).
The only possibility consistent with our assumption
that the two lines being pinched do not lie between
the same vertices is shown in Fig. 7(a); note that
all triplets in (/) also belong to (/ —1), because we
are not dissolving a self-energy vertex. In this
case (/) carries a weight —,', which remains after
dissolution, so that our counting candidate above
overestimates these dissolutions by a factor of two.

(ii) In the remaining case, the two lines in (/ —1)
whose pinch gives the dissolved vertex belong to
the same multiplet. The only possibility is shown
in Fig. 7(b), where two of the barred lines on the
outer two vertices may actually be the same line.
The dissolution now gives a multiplet with s = 2 or
3 lines. There are now (;) pinches, and the cor-
rect weight for the multiplet in (/-1) is (s. ) ', so
counting all pinches with the correct weight gives

FIG. 6. Typical vacuum bubble pinch. FIG. 7. Multiple lines in (l) but not in (l —1).
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a factor [2(s —2}!] '. This is larger than the
weight that carries over from dissolution, which
is [4(s —2)!] '.

Thus, we conclude that the number of pinches
of all pairs of lines ot a correctly weighted (l —1)
graph overestimates its occurrences by dissolu-
tion of correctly weighted (l) graphs. Combining
this with Lemma 5.a and the Dissolution Lemma,
we get the bound

G, ,- c,(l, n}KG. ..
K -=r(o')'ll gll, ,

c,(i, n}=- (& —1+n/4}[i —1+ (n - 2)/4].

(3.1)

That leaves the graphs in G», where the lth
vertex is a self-energy vertex. Consider the sub-
set of these graphs where the (l —l)th and lth ver-
tices are part of the. same self-energy subgraph.
Replacing the subgraph by a single line gives an
allowed (l —2) graph, with. a weight factor (3!) '
left over. We need to absorb a factor 2 ' of this to
correct the weight in the (l —2) graph, in case the
replacement converts a singlet in (l) into a doublet
in (1 —2), and a factor 3 ' in case we convert a
doublet into a triplet. However, it emerges that
we shall overcount these (l —2) occurrences by
factors of 2 and 3, respectively, so that we get to
keep out all of the (3!} '. A given (l —2) graph
occurs twice as many times as it has lines, into
which a self-energy graph can be inserted with
two orientations, except that insertions into dif-
ferent lines of a multiplet are not distinct. Thus,
a precise count of correctly weighted, (l —2) oc-
currences from replacements of a self-energy
graph on the last two internal vertices is
2[2(l —2)+n/2]/3! . Taking into account that the
lth vertex may be in the same self-energy sub-
graph as the 1st through (i —1)th internal vertex,
and Lemma G.a, we find

G, , ~ c,(&, n)q'K'G, „
n = &„(0)/r(o.),-
c,(l, n) =. 2(l —1)(l —2+ n/4)/3,

(3.2)

and we have proved the following lexnma:
Lemma V. For l~ 1 and n~ 2, the sum of allowed

spatial and n cutoff graphs obeys the bound

0 G,(~„.. . , x„)
~ c,(&, n)KG, ,(x„.. . , x„)

+ C2(l, B}YJ K Gg 2(Xg, ~ ~ ~
p X„),

where c„c„K,and q are defined in Eqs. (3.1)
and (3.2). This bound may be interpreted for l = 1

by putting G, =O.
To solve the recursion in Lemma 7 for an upper

bound on G„we make the Ansatz for l & 1:

, , [i+ (n —5)/4]'(aK)'cG, . (3.3)

P ~ 32(n + 3) '/3; (3.6)

and that p also has a lower bound that is 0(~ ')
for n large; so that, for large n, a becomes just
a litt&e larger than, and c just a little smaller
than, unity. For smaller values of n, the values
of a and c can be improved by requiring the An-
satz only above a larger value of l, and treating
the smaller values of l explicitly by Lemma V.

We have now proved part (a) of the theorem in
Sec. I.

B. Connected graphs

Let G, denote the set of all connected Feynman
graphs with l internal and n external vertices. We

It is easy to check that the Ansatz is obeyed for
l=1 if ca~ 1, and for l=2 if

1+ 12&n(n —1) '(n+ 3) 'rP/3 ~ a'c.
As a, general induction step, for l ~ 3, we irisert

the Ansatz for l —1 and l —2 into the bound in Lem-
ma V, and demand that the result be no larger than
the Ansatz for l. Dividing out the Ansatz for l,
noting that

(l —1+n/4)[/ —1+ (n —2)/4][l -1+(n —1)/4] '- 1,
and defining

P =—sup 2(l —1}(!—2+&/4)P —1+ (n —1)/4] '
$ &~3

P 2. ( 1)/4]-'/3, (

we find that a sufficient condition for the Ansatg
in the induction step is

a '+q'pa '~ l.
This may be solved to give the value a ~ 1 listed
in Lemma 8, where we collect the results.

Lemma 8. A sufficient condition for the validity
of the Ansatz (3.3) for l ~ 1 and even n ~ 2 is

~ = [1+(1+4q'P)"']/2,

c= max(a ', a '[1+128n(n —1) '(n+3) 'q'/3]}.
The constant p is defined in (3.5), and q, defined
in (3.2), obeys 7! ~ 1 for all n, with the possible
exception of d = 2 dimensions. At a = 0

q(0)=1, d=-1

=0, d=-2

—2"&&-~}/2 d y2
9

The exceptional value of q(0} in two dimensions'
reflects the possibly nonoptimal estimate in Lem-
ma 1. Note tha, t
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l&n/2 —1: G', &2G', , (3 7)

Note that this bound appears optimal for large l.
Next, write

c c c
l L l Ll l L2

where the first term on the right-hand side is the
sum of graphs whose last internal vertex is a non-
self-energy loop vertex, and the second is the sum
of graphs whose last vertex is a self-energy ver-
tex. The self-energy vertices are treated just as
before; replacing a self-energy graph by a line
preserves connectedness, as does the inverse
operation of inserting a self-energy graph in a
line. Thus, we find, as in (3.2},

G, I. , ~ c2(l, n)'A'G, 2. (3 8)

A nonself-energy loop vertex may be dissolved
in at least two ways that leave the graph connected,
shown in Fig. 9. Of course this produces no dis-
connected vacuum bubbles. Going back to our ear-
lier discussion of nonself-energy dissolutions that
produce a tadpole, as in Fig. 5(b), we see that the

r~~rI
I
I I

r

FIG. 8. Tree vertex.

want to modify our dissolution procedure so that
we get allowed graphs of lower order that remain
connected. The lowest connected order corre-
sponds to tree graphs. Certain vertices dissolve
only into disconnected graphs, namely the "tree
vertices, " shown in Fig. 8, which connect to four
disconnected subgraphs. To handle that situation,
we decompose

G, =G, +G,C C C

where G» is the subsum of all graphs where the
lth (internal} vertex is a tree vertex, and Gc, ~ is
the rest, where the lth vertex is a "loop vertex, "
lying on some closed loop.

We estimate G» as follows. Unless $ is at the
connected tree order (no loops), l=n/2 —1, every
graph in G» has some loop vertex. For each of
these graphs, we permute the labels of the last
internal vertex and the loop vertex which is closest
to last. This converts G» into the subsum of all
graphs where the last internal vertex is a loop ver-
tex, and the next to last is a tree vertex. There-
fore, Gc»&G» (positivity of cutoff, Euclidean
graphs}, and we get for

FIG. 9. Connected dissolutions of a nonself-energy,
loop vertex.

Collecting estimates, we have proved the following:
Lemma 9. Let l &n/2 —1, n~ 2. Then

0 G, '(x„... , x„)

~ 2c,(l, n)xG', ,(x„.. . , x„)

+ 2c,(l, n)rf ~'G', ,(x„.. . , x ),
where c„c„~,and q are defined in Eqs. (3.1}
and (3.2), and where it is understood that Gc„&, ,
=0.

The recursion in Lemma 9 is the same as that
in Lemma 7, except for the overall factor of 2 and
the fact that the recursion stops at the tree level.

To solve it for a bound on G,c, we proceed as
before, but with the sensate for l ~ 1:

1
G ... ~ '"

[i+1„+(n—5)/4]'(are')'cz, G,
i=1

l„=n/2 —2, (3.10)

where the subscript T d notes "truncated" or
"connected. " Note that we should expect a~ to be
roughly twice the parameter a in Lemma 8, be-
cause of the factor two in the recursion. An an-
alysis like the previous one gives the following:

Lemma 10. A sufficient condition for the Ansatz
(3.10) for l ~ 1 and even n ~ 2 is

remaining two dissolutions are not only allowed,
but preserve connectedness. Thus we have
proved the following:

Connected Di ssolution L emma. Every
nonself-energy, internal loop vertex of an al-
lowed, connected graph dissolves in at least two
ways to produce an allowed, connected graph.

Since the inverse operation of pinching pairs of
lines of an allowed, connected graph produces an
allowed, connected graph whose last vertex is a
nonself-energy, loop vertex (from previous discus-
sion), exactly the same counting procedure for
dissolutions, with the same maximum weight, ap-
plies as before, and we find

(3 9)
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.,= I+(I+n'u )'"
cr ——max j2ar, 4ar (1+(l„+1)(l„+n/4)[l„+ (n+ 3)/4] [l„+(n —1)/4] /3)),

Pr —=sup 4(l+ l„—1)[l+l„+(n —8)/4][l+ l„+ (n —5)/4] [l+l„+(n —9)/4] /3.l»

The constant q is defined in Eg. (3.2).
Just as in Lemma 8, the constants here are

uniformly bounded in the cutoff and in n, and ap-
proach the values a~=2+, c~=1 —as n-. And

a~ and c~ may also be improved for small n by
enforcing the Ansatz only above some larger l.

We have now proved part (b) of the theorem in
Sec. I.

C. Removing the volume cutoff

We turn now to the application of Lemmas 5.b
and 8.b, to replace [[gll, by II g)(„ in our bounds,
so that we can remove the volume cutoff. The
translation of the recursions in Lemmas V and 9
is quite easy; we may simply replace the con-
stants z and g appearing there by analogous con-
stants depending on g derived from Lemms 5.b
and 6.b, while at the same time replacing G, „

, Gr-i and, G, 2 by G's with mass squared
reduced by q'.

The latter replacements overestimate the bounds
more than one perhaps would like; they replace the
mass squared in every line of the lower-order
graphs by p,

' —p', not just in those lines affected
by a single vertex dissolution or by a single self-
energy replacement. Unfortunately, we have not
found a way to use the recursion that efficiently
keeps track of which lines are necessarily affected
at each step.

To solve the recursions by Ansatze analogous to
(3.3) and (3.10), we take advantage of the fact that
the &'s in the l -1 and l —2 terms may be chosen
independently, and write the following:

Lemma 12. Let p, '&2q'&0. The sugns of al-
lowed, spatial and o. cutoff graphs and their con-
nected subsums obey the bounds

1 ~ 1: 0 ~ G,(x„.. .x„)

G, ~ [ [i+ (n —5)/4]'(a„«, ) 'c„G, „2, (3.11)

g
G „, ~ [i+ l„+(n; 5)/4]'(ar „«,)'cr „G,

i=1

(3.12)

with the understanding that for d = 1 or 2, the y in
the definition of g, is evaluated at.the same mass
squared, p,'- lq', as that appearing in G, and

G, . Then it is not hard to show the following:
5
L emma 13. Sufficient conditions for the validity

of the Ansatze (3.11) and (3.12) result by defining
a„, c„ through the replacement of g' by —,

' in the
definition of a, c in Lemma 8, and a~ „, c~ „
tnrough the same replacement in the definition of
az, c~ in Lemma 10.

The qualitative remarks about the approach of
a„, c„, a~ „, c~ „ to 1+, 1-, 2+, 1- as n grows
remain valid.

That completes the proof of all parts of our main
theorem.

Before formulating Ansatze to bound these re-
cursions, we need to mention the mass dependence
of «, and ri. Except when d = 1 or 2, y(n), defined
in Lemmas 2 and 5, is mass independent, so g, is
mass independent, for fixed q. Then q = 4 (0)/y(a)
~ 2 " '' '&1 has only a weak mass dependence,
which we may handle by replacing g by unity in
our bounds. In case d = 1 and a = 0, y= (2 p, ) ', while
g= l. In case 8 =2, y(a) is weakly mass dependent,
going like (In''o, )' for p'n small, and q may again
be replaced by unity for a not too large (Lemma
8). In both cases where y has a mass dependence,
it is monotone decreasing.

The Ansatze become, for l ~ 1 and p, '&lq'&0,

- c,(l, n)«, G. . .2(x„.. . , x„)

+ c,(l, n)(ri'/2) K,'G, 2 2 2(x». . . , x„),
0&Go... (x„.. . , x„)

~2c,(l+l, n)«, G ... , ,2(x„.. . , x„)

+ 2c,(l+ l„,n)(iP/2)
2~C&«, G ... , , 2(x„.. . , x„),

y(n)ll gll

ACKNOW'LEDGMENT

It is a pleasure, to thank Paul Federbush for
helpful conversations.

APPENDIX: PROOF OF LEMMA 1.a

By a change of variables in Eg. (2.3), we get the
following integral representation:
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d=c=2, 2gn -fxf~
OO ft

& (x}=(4w) ' + e '"""(t'—1) ' 'dt '

1 1

(A1)

u -=x/4pn+ gn/x.

Collecting these results, we get upper and
lower bounds for larger values of x,

I px
f

» max (1,2p'n't~

(4w) '(w/3)'"erf(l)- fpxf"'e'""'& (x)

~ (Bw)-"'. (A4)

Putting e =0, we get for all g For
f px f- 1, we use monotonicity in x, from

Eq. (2.2),
n.,(x) =(2w) ' c-I Pal t(t2 1)-1/2dt

= (2w)-'K, ( ftj,x f),
a standard representation for K„' and we find

(A2) In the lower bound, when 2p.2n ~ 1, we have 2p, n
~ p ', so we may use the representation (Al) to
conclude that

2pn- fx f~
t,(x)/2- n. (x) - n, (x), (A3)

2p'n 1 and fpxf='1~

(4w)-'Z, (1). ~.(x) - ~.(O). (A5)

SC(flax f)=fp, xf-'"c-~""' c '[t(2+ t/
f
p.x f)]-'"dt

- f2pxf-'"e-'"'1 (1/2),

while for
f p x

f
- 1, we can bound it below by

K,( fp, x f) ~ fpxf '~'e '""
1

x e-'[t(2+t/fp f)]-'"dt
0

1

f px
f

-' "8-'"' e '(3t) "'dt--
0

=

flax

f

~t2e "" (w/3) t erf(1).

where the lower bound comes from dropping the
second integral in (Al} and the upper bound from
monotonicity in n when a =2, shown by Eq. (2.2).

For all x, we bound K0 above by
2p, Q~+ 1~

C, - (1+ flax
f)"'e""'n..(x) C, ',

C, =- (4w) ' min(K, (1), (w/3)' 'erf(1)],

C, '=2' 'max(en. (0), (8w) 't'}.

(A6)

For small n, 4 (0) diverges logarithmically;
and then the constants in Lemma 1.a are given by
Eq. (A6) and

21/28 Q (A V)

It is straightforward to combine these results to
obtain
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