
PH YSICAL REVIEW 9 VOLUME 19, NUMBER 10 15 MAY 1979

Evaluation of the effective potential in quantum electrodynamics
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Starting with Schwinger's proper-time integral in QED, we here present the analytical and numerical
evaluation of the one-loop effective potential in the presence of a constant prescribed magnetic (electric) field.

I. INTRODUCTION (0, ~0 &"=exp{a W&'&[X]], (2.1)

Up till now a great deal of research has been in-
vested in studying the field-strength asymptotics
of one-loop effective Lagrangians in various model
field theories.

In two recent papers by one of the authors (W.
D.),"the one-loop effective potential in QED was
treated and, among others, an analytical expres-
sion was given for the one-loop effective Lagran-
gian in QED. Since there is growing interest in
one-loop corrections to classical Lagrangians in
Abelian as well as in non-Abelian gauge theories,
we here present an explicit evaluation of the func-
tional dependence of the effective Lagrangian in

QED, which is valid in the entire range of the mag-
netic (electric) field strength. Graphical repre-
sentations are also given, which, in the asymptot-
ic limit, agree with the well-known approxima-
tions calculated earlier by Heiseriberg and Euler, '
Weisskopf, ' and Schwinger. ' The location of the
relative minimum (maximum) for a constant mag-
netic (electric) field is found, the latter being of
great interest in the theory of spontaneous sym-
metry breaking. '

where

i W "l=i 4x 2 "'(x)

—exp(-ism')Tr(exp[is (yII)']}-,
S

(2.2)

1
II =-. 8 —eA, —(yii)2 = 112- ~ e c ~ .

g "&[H]=, —exp(-im's)
Sm2 0 S

The trace Tr is to be taken in coordinate and spin-
or space. In Ref. l. as well as in Ref. 8 one can
find alternative ways of evaluating the integral in
(2.2). The result is (for magnetic field only: E»
=-E~, =H)

II. EFFECTIVE LAGRANGIAN, .

f-FUNCTION REGULARIZATION

x (z cot z —1+-,' z'), z =eHs . (2.3)

More than four decades ago Heisenberg and
Euler' wrote down the quantum-mechanical cor-
rection to the classical Maxwell Lagrangian.
Thereafter Weisskopf' and Schwinger' gave their
own derivation of the so-called one-loop effective
Lagrangian. Our treatment is based on Schwinger's
source and proper-time technique as stated, e.g. ,
in Ref. 5 or 7. The process which summarizes
the effect that an external field can have on a sin-
gle fermion loop is given by the vacuum persis-'
tence amplitude

Z "'[H]=-8'
dS 1)Ps
S3

x (z cothz-1- 3z2). .

This expression can be easily evaluated by using
the n-dimensional regularization scheme together
with the formula~

With the rotation of the contour s --is in (2.3), we
find
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z" 'exp(-Pz) coth(z)dz = F(p)[2' g(p, P/2) —P '], Re@&1, ReP&0.

The result is'0
4

—V,"~',[h] =—2 "'[h]=32 z @~
[4g'(-l, h)+h2- 3 —(2h2- 2h+ 3) Ink], (2.5)

where

h =m /2eH = zH„/H .

Here we meet Riemann's generalized f function, t'(z, q); cf. also Ref. 9. Except for z = 1, f(z, q) is holo-
morphic everywhere. For a purely electric field we obtain the following expression:

4-V,'«[z) -=2 "'[c]= -32, , [4—t'(-I,i~) —~' - —,'+ (2e'+ 2ie ——,')In(i~)], (2.6)

where

a =m'/2eE .
The corresponding effective potential for scalar QED has also been worked out and is given by (cf. also
Ref. 11)

"ds 2 z—e ~ ~ — —1+~z2
~

0 S 8 lIlhz )

, —,[4l'(-1; &+ —,')+&'+ —', —(2h' ——', ) Inhl ~ (2 7)

'I

Here we employed the formula'

dzz" 'e ~' 1
sinh z

=2' F(p) f(IJ, ; '(P+I))—, Re p, &1, Re P&-l.

where

dz—,exp(-i 2hz)
p z

x (z cotz —1+-,'z') . (3.2)

The imaginary part in Eq. (2.6) is indicative of a
nonvanishing probability for pair creation in an
external electric field. That probability is ex-
pressed per unit time and volume by " —f(h) =-—+J(h),d 1

dh 3h
(3.3)

In order to evaluate (3.2), we consider the deriva-
tive

21mB [E]=—,E g —exp nv-(~) & 2~ 1 m

„~n eE (2.8) where

HI. EFFECTIVE LAGRANGIAN,

I',-FUNCTION REGULARIZATION

Before we continue with a more detailed discus-
sion of the generalized f function in Eq. (2.5), we
present still another evaluation of Schwinger's
proper-time integral, paralleling some parts of
Ref. 12. That is, without resort to the rs-dimen-
sional regularization method, we will attempt to
evaluate (2.3) 'directly in the four-dimensional
space-time.

Again, we may start with Eq. (2.3) which we
rewrite in the form

(3.1)

"dz
—,exp(-i2hz) (z cotz —1) .

0 z
(3.4)

J'(h) can be found by forming the derivative first
and then employing Eqs. (21) and (25) of Ref. 12.
This yields

d
Z(h) =-4

dh

"dz—exp(-i2hz)(z cotz —1)
p z

=-4 -$(1+h)+In h+—
2h

(3.5)

g (x) = InF(x) .

After integrating from 1 to h, Eq. (3.5) becomes

g denotes the logarithmic derivative of the I' func-
tion,
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J'(h) —J'(1) =-4[in (1+h)+h lnh

—8+1+zlnh]. (3.6)

The constant I, is known to be

A subsequent integration from 1 to h of expression
(3.3} then produces

L 1=3+ dxln&1 1+g =0.24SV. (3.14)

I(h) =I(l) —J(1)+3-—,'lnh —21n2w

+h[J(1)+ (4jh}lnI', (1+h) —4

+21n2w+h —2(l+h) lnh], (3.7}

Here then is the other version of the exact closed-
form expression of Schwinger's proper-time
integral

where it is important to note that the following
integrals are independent of h:

4
Z '"[h]= —I(h)

327t'2 h2
(3.15)

cfz—exp(-2iz }(zcotz —1),
g2

—exp(-2iz)(z cotz —1+—,'z') .
Zs

(3.8)

with I(h) given by

I(h) = -(—,
' + 2h+ 2h') lnh+ h'

The generalized I' function" l,(x), which is de-
fined by

—4L, +41nI",(1+h) . (3.16}

X

lnI', ( ) = dt lni'(t) + —,'x(x —1) ——', xln2w, (3.9)
Similar procedures can be used to evaluate the
spin-0 effective Lagrangian (2.'I).

comes in by virtue of the integral of (3.6):
h 1+h 2

dt lnI" (1+ t) = dt lni'(t) — dt lnl" (t)
0 0

IV. NUMERICAL TREATMENT OF

THE EFFECTIVE LAGRANGIAN

= lnl', (1+h)+ z(1+h)(ln2w —h)

+ 1 —ln2m. (3.10)

We also needed the relations I",(2) = I', (1)= l.
Finally, in order to determine J'(1) and I(1},

which are h independent, we observe that in the
weak-field limit (h» 1) the main contribution to
I(h) comes from z «1. Then, with the aid of the
expansion

2~zcotz —j.+3z = —~z
we find

The two different integrated forms, (2.5) and

(3.15) of the effective Lagrangian, (2.3), are
actually identical to each other. This can be easily
shown if we observe the following representation
of Riemann s generalized g function,

(4 I)

the recurrence relation of the generalized I func-
tion "

I(h) = ——,', z dz exp(-2ihz}
h»1 0

11
45 4a'

(3.ii)

lnI', (1+x) = x lnx+ Inl', (x)

and the numerical identity'

(4;2)

(4.3)
The formula stated in Eg. (3.7) should reproduce
this result in the weak-field limit:

I(h) = [I(l) —J(1)+3.-2ln2w+4L, ]

However, the expression (3.16) is more suitable
for numerical computation. If we use the explicit
representation of lnI", (1+x),

+ h[J(l) —4+ 2 ln2w]. (3.i2)

Hence, by comparing coefficients in (3.11) and

(3.12), we obtain

1+%

lnI', (1+x) = dt Ini'(t) + —,'x(x+ 1) ——,'xln2w,
1

J'(1) =4- 2 ln(2w),

I(1)= J'(1) —3+ 2 ln(2 w) —4L, = 1 —4L, .
(3.i3)

and introduce the notation that II stands for the
magnetic field strength in units of the critical field
II„[II„=m'/(4wo.)' '], the effective Lagrangian
can be expressed in the following form:
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lnI'(t) dt (4.4)
1+1/2H

8'"[H]=
2

—,'-H(ln2w- I) -4H I,+(~+H+ —,'H )ln2H+(2H)'

where 2'"[H] is.given in units of H„'=m4/4'. This expression can be evaluated numerically. Figure 1
shows the effective potential in the H-field region (in units of H„):0.1&Ha 0.35. The relative minimum
of the effective Lagrangian (relative maximum of the effective potential) is located at H =0.23 H„.

In the strong-field limit we can approximate the integral in (4.4) by

4H lnI' t dt =4t.P
1 1

lnI'(1)+ —lnI'(t) (t-1) dt
d

f-"1

1+1/2H
=4H -C t —1 t=-—'C, (4.5)

where C =0.5722 denotes Euler's constant. Now it is easy to observe that the strong-field behavior of
(2.5} or (4.4) is given by the expression

P

2'"[H] = — ln —1+12$'(-1)
H»H„SP m~ 3

n

Figure 2 shows the result of the numerical evaluation of the effective Lagrangian for a constant H field in
the range 0 &8 & 508„.

Returning to the effective Lagrangian for a constant electric field, Eq. (2.6), we obtain likewise

P+ 1/2E
8'"[E]= ——,'+ -', ln(2E) — E+ E'(-,' ——4g'(-I)}——,'E' ln(2E) + 4E' Im lnI (1+ty)}dy

+ j————E ln(2E) + E(ln(2v) —1)+ E' —4E~-
2m 4 6

1/2Q
a a[r(g '

)]rr I, (4.5)

with Z'"[E] expressed in units of m'/4vc] and the field strength E measured in units of m'/e. The struc-
ture of the imaginary part can be made more transparent by noticing'

Re in[I'(1+ jy)]= -~In
sinh(vy)

7TQ

and thereafter performing an integration by parts:

sjnh(7fy} I t 7f ]]
1 ln dy = In~ 2E sinh —

~

— [wy coth(wy) —1]dy .
vy 2E ], 2E]
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FIG. 1. Effective Lagrangian of a constant magnetic
fie)d, 0 —H-0.35H„.

FIG. 2.' Effective Lagrangian of a constant magnetic
fie M, 0 ~ H ~ 50H«.
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FIG. 3. Imaginary part of the effective Lagrangian in
a constant electric field.

FIG. 4. Heal part of the effective Lagrangian of a con-
stant electric field, 0 —E —50E„.

Consequently we obtain

1/2E
ImC"'[E] = ———+ E ln(2tr) + E'+ E l-n sinh —2E'

2m 4 6 2E try coth(try}dy

In the strong-field limit we may approximate the integrand in (4.7) by —,
' tr'y', so that

2 1Imt' t [E]= ———+ E(ln2tr —1}+ E2+ E ln—sinh
2g 4 . 6 2E 36 E (4.g)

This formula is, incidentally, a good approximation of the infinite series (2.8). Figure 3 shows graphical-
ly the functional dependence of Im@'" in terms of the electrical field strength.

Similarly one can readily approximate the real part of the effective Lagrangian for strong electric
fields:

ReZ'"[E] ———,'+ ~ ln(2E) — E+E (3 —4f'(—-I)}——,
' E'ln(2E) ——,

' C2r' '
2

(4.9)

The numerical evaluation of the real part of Eq.
(4.6) is pictorially presented in Fig. 4. At last,
Fig. 5 shows the real part in the region 0&E&5.
Here we plotted the negative value of the effective
Lagrangian, the effective potential, which shows
a local minimum at E=3E„.It is exactly this
relative minimum that makes the effective Lag-
rangian an important object in the theory of spon-
taneous symmetry breaking.

V«CONCLUSION

Recently the Heisenberg-Euler Lagrangian en-
joyed renewed interest in investigations concern-
ing 'the theory of spontaneous symmetry breaking.

Starting with the one-loop approximation in
QED, we presented two alternative calculations
of Schwinger's proper-time integral. The connec-
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FIG. 5. Heal part of the effective Lagrangian of a con-
stant electric field, 0 —E—58„.
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tion between the two regularization schemes is
given by a simple formula relating the two con-
stants of integration. The dependence of the
effective Lagrangian for constant magnetic (elec-
tric) fields was then numerically evaluated and
plotted over the entire field-strength region.
Finally, ' we exhibited graphically the location of
the relative minimum of the effective potential
in the presence of a constant electric field.
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