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Simple semiclassical model for the rotational states of mesons containing massive quarks

K.. Johnson ar.d C. &~, oh)

Cambridge, Massachusetts 02139
(Received 26 June 1978)

We present a semiclassical relativistic model for the orbital spectra of mesons, based on the assumption of
a universal, flavor-independent linear confining interaction. Flavor dependence of the spectra arises from the

quark masses.

I. INTRODUCTION

Most hadrons which consist of light quarks have
been grouped in rotational families' where

J=e M2+ao

is the relation between spin (J) and mass squared
(Chew-I rautschi plot). In the case of mesons
(which we shall discuss here) all integer J values
are included with alternating parity for the mesons
as J increases (exchange degeneracy}. The slope
parameter a' varies only slightly from family to
family (by about 10% or less). In some cases the
assignment to a particular family is not certain,
or the formula (1) fails. This failure is most a-
cute for the rotational family to which the pseudo-
scalar mesons (v and K) belong.

The quark model suggests a unique assignment
(Table I) and also indicates that the family is based
upon orbital angular momentum.

The mass spectrum (1) is obtained in any rela-
tivistic model where the orbital angular momen-
tum is carried by a rotating "linear" field (con-
stant rest energy per unit length) such as in the
dual string model or (approximately) in the bag
model with massless colored quarks and gluons. '
The bag model relates the slope parameter 0" to
parameters which are flavor independent (8 and
n,). Thus in this model one expects that flavor
variations in the form of the spectrum are govern-
ed by the quark mass. We shall explore this in
what follows.

It has already been pointed out4 how (1) becomes
modified in the same kind of model when equal-
mass particles are attached at the ends of the
string or are the sources of stretched color-elec-
tric flux lines. Here we would like to extend this
trivially to allow unequal masses at the ends. We
shall treat the system as a string, but the same
results will be obtained when quarks of various
masses are treated classically in the colored-
quark bag model. We have in mind in particular,
application to the spectrum of rotationally excited
D's (and D*'s) and F's (and F*'s). The results will
of course also apply to mesons containing still

heavier quarks.
Our model is classical, but we shall argue that

a slightly modified version of it still could give an
accurate representation of the mass spectrum in a
full quantum theory. For example, the classical
string model gives (1) without the intercept o.p.
The full quantum treatment provides only the
"quantum defect" no in J. In situations where a
full quantum-mechanical treatment is difficult or
impossible, it may also be true that a "quantum-
defect" correction to the classical relation be-
tween angular momentum and mass is quite accur-
ate even though not exact. It has been suggested~
that in the absence of a complete theory a useful
approximation might be obtained by calculating
the ground-state mass and using that result to-
gether with (1) to determine no. We can test this
suggestion in the limit opposite to the massless
relativistic string. Consider two equal- mass
quarks moving nonrelativistically in a linear po-
tentialwith slope I/2vn' The clas. sical(Bohr) mod-
el with a "quantum defect" in l gives

l =f0+ 3i2n'Wm(M —2m)3i2, (2)

where M is the particle mass and m is the quark
mass. We shall compare (2) with the predictions
of the Schrodinger equation. We determine the
"defect" Io by fitting (2} to the exact ground state
(I =0). The Schrodinger equation was solved nu-
merically for several low values of l. The com-
parison is displayed in Table II. The agreement
is impressive. (We are aware of the fact that a
quantum "defect" determined in this way will not
in general agree with the leading eorreetions to
the classical formula which can be calculated with
the WEB approximation. This is evident in Table
II by the fact that the difference between the exact
eigenvalue and the approximate one is not decreas-
ing with l,.}

What should we infer from this'P We guess that
such a quantum-defect formula can give a reason-
able representation of the excited states of a sys-
tem which corresponds to the balancing of an in-
finitely rising long-range attraction against a cen-
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TABLE I. Light-quark mesons grouped in rotational families (Begge trajectories). Only the
states with maximum J consistent with a given l and 8 are numerous enough to allow compari-
sons.

Quarks

IGJP
1 0
0 0"

0-1

0

QQ +dl-2SS
gg +dd +ss + ~

SS

m' (0.140)
n(0.549)
n' (0.958)
p (0.773)

co (0.783)

y (1.020)

K (0.495)
E *{0.892)

& (1.228)g g+
~ ~ 0

~ 0 ~

A,{1.31O), ,+
A ,(1.10)~ ,+
6 (0.980)~ p+

f (1.271)~ 2+

D (1.285)~,+
c(1.300)g pf' (1.516), ,+
z(1.420)& &+

S *(0.980)~ p+

Qa (1.355)
E *(1.421)~ 2+

Q~(1.335)~ g+

g (1.40)» p+

A, (1.64), ,-

e ~ s

g(1.690), ,-

(1.667)g 3"
~ ~ e

~ ~ ~

I (1.765)
X *(1.783)~ 3-

~ ~ e

h (2.040)
~ ~ ~

'The identification of the observed scalar flavor nonet as the J =0 state L =1, S =1 quark-
antiquark state is not necessarily the best from a phenomenological point of view. It may be
a djquark-diantiquark state (Ref. 7).

trifugal repulsion, since in this case the quantum
wave function is well localized about a classical
orbit. When would we expect such a guess to fail'P
It should fail in those situations where in addition
to a long-range attraction there are strong attrac-
tive short-range interactions. In states with / 4 0,
these could be relatively unimportant, but in the
i=0 state they would have an important effect. In
such a case we would not expect that the energies
of the excited states mould be simply determined
by the quantum defect approximation with /p ob-
tained from the l =0 mass. The wave function
would first have to climb out of the attractive hole
before finding itself in the long-range rising po-
tential whose dominance for finite / is the physics

Schrodinger
e

Eq. (2) Difference

0

2
3

2.338
3.361
4.248
5.051
5.794

fit
3.365
4.253
5.056
5.800

0.004
0.005
0.005
0.006

TABLE II. Comparisons between the eigenvalues
obtained from a numerical solution of the Schrodinger
equation and the semiclassical quantum-defect formula
given by Eq. (2.1). To put (2) in a convenient demension-
less form we have set M-2m = (i/2 su')2i3 (1/m is)e, so
l =l p+(2/33/2) e3/2 The "defect" l p is equal to -1.376.

of the quantum-defect approximation. On the other
hand, if the short-range interactions are repulsive
then the particles are already apart in the ground
state and orbital excitation would just move them
farther into the lang-range part of the interaction.
Hence one might anticipate that the classical for-
mula with the quantum defect could work quite well
even in going from l=0 to l =1.

In the case where the relationship fails for the
l =0 state, one might still expect that the excited
states are well represented by such a formula since
short-range effects are greatly reduced when / 0.
In this circumstance- the defect. would be better de-
termined by fitting the mass of the l =1 state, for
example. .

We would like to remark that the meson spec-
trum indicates that this kind of dynamics may be
operating. The states m and K which do not lie on
linear Chew-Frautschi plots are ones where the
short-range quark spin-spin interaction (which is
proportional to &, v2) is strong and attractive
(o, a, =-S). Incontrast, in the case of the p and Ks
states, the short-range interaction is repulsive
and weaker (v, @2=+1), and the p and Ke belong
to families where the linear dependence is quite
accurate. It is amusing to note that if one draws
a straight line through the B and A.;, which we hake
as the l =1 and 1=2 cousins of the m, the line has
almost the same slope (o. ' =0.85) as for the p fam-
ily and passes through f = 0 at m2 = (0.57)2. Accord-
ing to the above discussion, this would be the mass
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of the m with the short-range interaction removed.
It is interesting that it is much closer to the p
mass, consistent with the dynamics which is be-
lieved to govern the spin-spin interaction (short
range}. An equivalent way of making the compari-
son is to notice that as / increases, the w and p
familieS become approximately spin degenerate;
that is, the states which differ by one unit in J
(equal I) have nearly equal masses (A3 ——1640, g

1690).
The same exercise can also be applied to the E

with the Qs(1.35) and L (1.VV) identified as tbe I = 1
and l =2 partners. In this case we find the
straightline goes through I =0 at m2=(O. V2}2, clos-
er to degeneracy with the Z~(0.89). [Also, E,(1.765)
and Z~(1.783), the J=2, and 8=3 states have
nearly the same mass. ]

Of course the classical model which we shall
investigate, as well as being incomplete in regard
to the spin-spin interaction, also is not capable of
incorporating the effects of spin-orbit splittings.
Just as the spin-spin interaction is repulsive in
the maximum-spin states, the spin-orbit interac-
tion is observed to be repulsive in the states of
maximum total angular momentum, which (with
one exception) are the states for which the most
information is available. This is also consistent
with quantum chromodynamics, at least in the
nonrelativistic limit. Hence in applying our mod-
el we shall restrict ourselves to quark states with
maximum spin and total angular momentum.

The paper will be organized as follows. In Sec.
II we shall present the classical formula. In Sec.
IG we shall apply it to the various cases of mesons
which contain massive quarks: K's, K~'s, P's,
D's, D~'s, E's, and E~'s.

H. SEMICLASSICAL MASS FORMULA

A classical relativistic string with masses m,
and m2 attached at its extremities, and moving in
its own rest system with the maximum angular .

momentum consistent with a given total mass M,
is straight and rotates rigidly with mass and an-
gular momentum

v& and v2 of the ends are determined so that the
masses m, and m2 move under the tension at their
respective ends of the string. This gives the re-
lation between the ends speeds v& and v2 and the
rotational frequency m,

v —(1+m 'w'n "(o')'"-m wc '(u (2.2)

1/2wn' is the energy per unit length in the rest
system of a point along the string, that is, the in-
variant tension. With the speeds determined by
(2.2), (2.1) may be regarded as a parametric (u&)

representation of the dependence J=J(M).
The results should be the same when two colored

point particles move classically in the bag formed
from the balance of the classical color field energy
carried by the particles against the bag confine-
ment energy. The special case with massless
quarks was worked out earlier. 3

We suggest as a semiclassical version of (2.1}
the same formulas with J in (2.1}replaced by
J Jp„where Jp is taken as a quantum defect. We
will now discuss various limiting cases of (2.1}
modified by the inclusion of the "defect". As m&

and m2 tend to zero, the ends move at the velocity
of light [but m/(1 —v2)'~2 =0(&m) 0] and (2.1) re
duces to the linear trajectory

M =—, J- Jp ——,2, or J=n'M +Jp.
2Q (al 4Q (d

When m& and m2 are large and equal and 0. ' is such
that v, =v2«1, we obtain (1.2).

Since both (1.1) and (1.2) give a good represen-
tation of the observed spectrum of mesons, (in one
case those which contain two light quarks and in
the other those which contain two heavy quarks) we
expect with some confidence that the mesons which
contain one massless quark and one heavy quark
should also be well represented by (2.1) with
J-8-80. Although (2.1) is perfectly suited to
actual calculations, we shall conclude this section
with some alternative expressions which might be
useful in special cases. If we apply (2.1) to the
case of one massless quark and one heavy quark,
it can be written in the simpler parametric form
based upon tbe velocity of the heavy quark,

m| m2
(1- ')"' (1-v')'

1 dv
2wn'(o .„2 (1-v')'~ '

(2.1)

v3 v2

(1 p)3y2+(1 ~~)(w/2+sin v)
~

(2.3}

M =m —
2 ~+ 2 (w/2+sin v)

1 v
1-v 1 —v

mdiv( m2V2
2 2

=~(l v 2)~+~(l v 2)rn

1+ f2' M a
2

where (o is the rotational frequency. The speeds

In the limit when M —m/m «1 and the velocity
v «1, we obtain the approximate form

(2l 2M-mZ=2n'(M-m)' 1 —
I

—
I

— + "
~w) m (2.4)

In the opposite limit v 1 (M»m) we of course
recover the linear (in M2) dependence, J' n'M2.
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TABLE III. Linear (in M ) fits of the p trajectory, for various values of the slope n'.
u' =0.877 is obtained by fitting the A 2 and g; n' =0..894 by fitting the p and A 2. +' =0.886 is
obtained from a least squares fit to the three states. The intercept up is calculated from (1)
with 8' = l +1. Masses are given in GeV.

p
l =0 CEp

o.' =0.877
cE' =0.894
n' =0.886
Observed mass

0.759

0.770
0.773+ 0.003

1.312
1.310+ 0.005

1.684
1.688
1.690 + 0.020

0.495
0.466
0.520

In the ease of the D's, the relativistic dependence
is sufficiently important that (2.3) is about as con-
venient to use as the approximate form (2.4). In
the case of the heaviest quarks discovered so far
(m = 5 GeV), the simple form J —J'~= 2a'(iVl —m)'
will be sufficiently accurate for the lowest angular
excited states of mesons with one heavy quark
and one light quark.

III. APPLICATIONS

We can test the mass formula by comparing its
predictions with the mass spectrum of the K* fam-
ily, which has three fairly well measured mem-
bers, the K~(892), K*(1434), and Z*(1784). These
masses are accurately represented by a linear
plot (see Table III) but with a, somewhat lower
slope parameter than that of the p family. How-
ever, if we use (2.1) and in accordance with the
expected flavor independence, we choose for n'
the same parameter used for the p states (see
Table IV), and attempt to fit the spectrum by al-
lowing the strange quark mass to be different from
zero, we get an even mare accurate representation

(Table III) of the spectrum when m, = 0.29 GeV.
Although this great Becuracy is probably fortuitous,
we note that in a study of the ground states of the
light hadrons using the MIT bag model with mass-
less up and down quarks, rn, =0.28 GeV was ob-
tained. As a further test of the flavor independence
of n' and validity of (2.1) we can compute the mass
of the f' meson, if we assume that it is the rota-
tionally excited version of the Q which contains
two strange quarks. In this ease we determine
the defect from the mass of the Q(1.020) and use
the strange-quark mass m, =0.29 GeV obtained
from the K* system and universal parameter n'
=0.886 GeV 2. We find the mass to be 1.540,
which is to be compared to the experimentally de-
termined mass 1.516. Because (2.1) works so
well in this case, we propose to use the same
parameter o." (=0.88 GeV ~) in all cases for the
heavy-quark s tates.

Naturally, we may also calculate the spectrum of
E's with m, =0.29 GeV using the general form
(2.1). The predicted masses of D's and F's, etc.
are given in Table V with two values for the

TABLE IV. The K * trajectory with a least-squares fit to a straight line (I) and then (II) fits
to the mass formula (2.1) with one massive quark {m~) and one massless quark. In the latter
case the "slope parameter" n' used is that obtained from the p trajectory by least-squares
fit. The "defect" J p and mass m & are obtained by fitting theK *{0.892) andK*(1.434). To
see the sensitivity to the quark mass we also fit the K *(0.892) and K *(1.784) and compare
with the intermediate case where m& is given by the average of these fitted values. All
quantities are in GeV units.

Observed masses

Case I
Linear fit

n' =0.837

Case II

o.' =0.886
m =0.250:
m =0.330
m =0.290
(average)

K *(0.892)
(+ 0.004)

0.904

fit
.fit
fit

K *(1.434)
(+0.005)

1.418

1.416
fit
1.425

K *(1.784)
(+ o.olo)

1.791

fit
1.805
1.794

Intercept

ap =0.316

Defect

~p = 0.506
=0.595
=0.55O
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TABLE V. Predicted masses in GeV of rotationally excitedD's andE's based upon (2.1).
Predictions for two different heavy-quark masses are shown: m, = 1.51 GeV allows one to
parameterize semiclassically the observed cc spectrum, and m, =1.65 GeV is obtained by a
detailed study of the phenomenology of the charmonium spectrum (Ref. 8). The universal slope
parameter u' =0.886 GeV obtained from the p spectrum is Used. The defects" Jo are
obtained by fitting the l =0 states to the observed masses of the D 's and E 's (Refs. 9 and 10).

fit
1=0

tnc. = 1.65
m = 1.51

E*m~ =1.65
mc =1.51

2.030
2.030
2.140
2.140

2.620
2.539
2.660
2.596

2.960
2.869
2.990
2.914

3g233
3.139
3.259
3.177

(max J)

m~ =0.29 obtained from X* spectrum

D m, =1.65
1.51

D* 165
1.51

J'/g m, =1.51

1.865
1.865
2.009
2.009
3.097
fit

2.492
2.409
2.546
2.482
3.554
fit

(max J)

2.845 3.126
2.752 3.029
2.885 3.160
2.808 3.077
3.840 (predicted) maximum J state

(a=1, t =2 3.vv)

charmed-quark mass. In one case we take the m,
which allows a fit of the charmonium spectrum us-
ing the semiclassical formula. In another case we
used the charmed quark mass which best fits the
detailed calculation of charmonium including some
of the effects of short-range interactions which are
important in l =0 states.

quark mass differences in a semiclassical rela-
tivistic model based upon a universal, flavor-in-
dependent linear confining interaction. 6 We have
also indicated how this can be tested when the ro-
tationally excited states of D's and E's are dis-
covered.

IV. CONCLUSIONS

We have shown in the case of the light-quark me-
sons that the observed flavor variations in the
Chew-Frautschi plots can be accounted for by
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