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Field theories on conformally related space-times: Some global considerations
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The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in

conformally Aat spaces is clarified. The simple but essential point is.that the relevant spaces should have

conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are
divided into two families according to whether they are conformally equivalent to Minkowski space or to the
Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor
for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two
families,

I. INTRODUCTION

The renormalized vacuum expectation values of
stress tensors for conformally invariant field

theories iq conformal space-times are related by
the trace anomaly. This relation, specialized to
conformally flat spaces, is'

(Tq") =g gt,
' '(T„")i,+,(a(s)[2(R q" R.Rq')+—2 g„"(R'—4CIR)]

+&(s)t :RR,"-R, a""-- 'g, "(R'- »-.,R"SHE,

where the constants a(s) and b(s) depend only on
the spin s of the field under consideration and take
the values exhibited in Table I.' In (1) and in sub-
sequent equations we use ( T„") to denote the re
new maligned vacuum expectation value and the
symbol "I"to denote that the corresponding quantity
refers to a flat manifold.

As has been noted, more or less explicitly, by
several authors' ' relation (1) carries with it an
assumption aboiit boundary conditions, i.e., about
the vacuum states implicit in the equation. In this
paper we wj.sh to examine the nature of these vac-
ua through some illustrative examples. Before
displaying these some general comments are per-
haps in order.

From the consideration that relation (1) is de-
rived by the integration of a functional differential
equation governing the behavior of ( T„")under

TABLE I. The values of the coefficients appearing in
Eq. (1) for different values of the spin s.

a (s)

I

conformal deformations of the manifold it follows
that it connects a flat space, M~, with a curved
space, M, each supposed globally hyperbolic and
endowed with a conformal vacuum, 4 if the follow-
ing criterion is satisfied:

There exist subspaces Vt, & M~ and V&Mand a
conformal transformation &u such that (i) e is a
diffeomorphism of Vp onto V and (ii) the Cauchy
developments of V~ and V are M~ and M, re-
spectively.

The essential point of this criterion is that Vj
and V should have a common global Cauchy sur-
face under the conformal mapping. This ensures
that the mapping preserves the definition of a pos-
itive frequency in the following sense: Where there
exists on Ma global conformal timelike Killing
field distinct from the one inherited from Mt,
under co both Killing fields define the same vac-
uum.

Thus it is the Green's functions corresponding
to these vacua that are conformally related in
the usual way, i.e.,

G(x, x') =0-'(x)G&(x, x')0-'(~'),

when g»= g». This has been detailed explicitly
by Unrub in a number of cases. '
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FIG. l. The images under conformal transformation into the Einstein universe, of unit radius, of some commonly
considered conformally flat space-times. Every point other than those for which Q = 0, ~ represents a two-sphere.
In {b)—{g) the Einstein universe is shown unwrapped, the two vertical lines are to be identified. The spaces in {a)-{e)
have the surface t@=0, 0 & $ & & in common as the image of global Cauchy surfaces, whQe those in {f) and {g)belong
to a separate family sharing the surface t @=x/2, 0 & P& m/2 as the conformal image of global Cauchy surfaces.

II. EXAMPLES

We proceed now to the examples in order to
clarify the above discussion. Figure 1 exhibits
the conformal images in the Einstein universe'
of several commonly occurring space-times. This
representation is convenient because it allows one

it =-w'
K

FIG. 2. The conformal images of Minkowski space
and de Sitter space shown superimposed. The shaded re-
gion is the image of both Vy and V.

to appreciate easily the various conformal map-
pings. An example is provided by Fig. 2 where
we have superimposed Figs. 1(b}and 1(c}in such
a way that the surface ts =0, 0& $& n is the com-
mon conformal image of a global Cauchy surface
for each space. In this case the shaded region
will represent the conformal image of both Vy
and V. Clearly the Cauchy developments of this
region are the entire Minkowski and de Sitter
spaces, respectively.

It is now clear from Fig. 1 that the spaces in
l(a)-l(e) constitute a family which has in common
the surface ts =0, 0 & g & s as the conformal image
of global Cauchy surfaces. Relation (1) should
therefore be applied to these spaces with M~ Min-
kowski space, and hence (T„")&=0. The spaces
in 1(f) and. l(g), however, constitute a separate
family which has in common the surface t~ = &/2,
0 & i'& v/2 as the conformal images of global
Cauchy surfaces Relation. (1) should therefore be
applied to these spaces with ML, the Rindler wedge
and hence (T„')&4 0.

To fix conventions we remind the reader that the
Rindler wedge is the region x& it~, — &y&
—&z &~ of Minkowski space which is covered by
the coordinates (v, g, p, z) with
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f =gsinhTr x=gcoshr,

in terms of which

ds2 ]2d72 +d(2 + dy2 + dzn (p & ( & en)

x diag (—1, 2, 2, 2 ), (3)

where h(s) is the number of helicity states for the
massless spin s(=0, —2, 1) field.

A few examples of the application of (1) follow.
First let M be the Einstein universe of radius

a with metric

ds2 =- dt ~2+ and(2+ a2 sin2&(d8'+ sin28 dttt2} .

Then by (1),

rt C(s) . 1 1 1
(Tt )E n~ 2 4 &ag(

2n a

(4)

where the coefficients C(s) take the values

The vacuum stress for the Rindler wedge has been
calculated to bev

h(s)
" dvv(v2+s2)

( t
").in4ter =

2@F4 e22v ( 1)24
0

Ricci tensor terms in (1) are the same for both
the open and closed Einstein universe, we find
that

40 v(T tt )iti-etfer p (Ttt )Einstein

which is just the relation (6). This last equality
is all the more striking when account is taken of
the fact that the anomalous trace takes the value
zero in both flat space and the Einstein universe.
Nevertheless this trace is not zero "in between"
and its residual influence manifests itself in the
end-point relation (8).

It is of interest to record that dimensional reg-
ularization, with its different value for a(1),
alters the values of (T„„)in both the Einstein and
open Einstein universes for spin one. In particu-
lar it is nonzero for the latter space. This mod-
ifies equation (8}such that the difference of (T&")
in these two spaces enters on the right-hand side.

In this approach we can also see the origin of
the "nongeometrical" term that Bunch finds' in
(T„")for the b =-1 Robertson-Walker space and
the Milne universe. It is just the first term on
the right-hand side of (1), viz. ,

Expression (5) agrees with the standard result. '
It was noticed'7 that, numerically,

dvv(v'+s')
gnrtrt

( I )22 tC(s) =h(s) (6)

1/2 I /2 (T
Rincger 0 ~ Rindlef

For completeness we next treat de Sitter space
which has been discussed already from this point
of view. ' Taking Mt, to be Minkowski space we
have

a somewhat surprising coincidence which we are
now able to explain.

To this end we take Min (1) to be the open Ein-
stein universe, 7.'xII', and MI, the Rindler wedge.
It is implicit in (1) that the coordinates of the two
spaces should be conformally related. Thus we
take the metric for the open Einstein universe in

the form

d('+ dy'+ dg' &,

b(s)K2
( tt )tteSttter 860&2

where K ' ' is the radius of the de Sitter hyper-
boloid and b(s} is as in Table I.

We now proceed to static de Sitter space with
metric

(1 K2 2)— , Kdr 2

K (1-Krn)2

where the coordinates have the same ranges as in

(2). The relation between the coordinates in (7)
and the more usual hyperbolic set can be found in

the Appendix together with the transformations
that justify Fig. 1.

Now, it can be shown independently' that (T„")= 0
on the open Einstein universe. 'The reason for
this is that the WEB approximation is exact on
7.'xII' and since there is only one geodesic con-
necting any two points on H' (in contradistinction
to the situation on 82) the renormalization re-
moves the entire expression. Then, since the

Er~
+

(1 K 2) (d& +sin gdttt )

(10)

where we shall obtain an expression for ( T„")in
the "observer dependent" vacuum of Gibbons and

Hawking. '2 Figure l(f) reveals that ~i, is again
the Rindler wedge [for the relation that connects
the coordinates in (2) and (10) see the Appendix].
Relation (1) then yields
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C(s) K'
2v2 (1 Kyg)2 d~ag( 1&3y3y3)

b(s) JP
960g2 gv"

We observe that the stress tensor diverges (in an
orthonormal frame} at the horizons Kr' =1 which
bound the static region.

The final example is the steady-state universe.
From Fig. 1(d) and (1) it is immediately apparent
that the vacuum stress takes the same value as
in de Sitter space (9) since the Ricci tensor terms
in (1) are the same in each case.

III. THERMAL CONSIDERATIQNS

It is well known that the Minkowski vacuum is
a thermal state of temperature (2m) ' relative to
the Rindler-Fock spa.ce." This is the origin of
the thermal character of expression (3) for
(T„")„d„,. Despite the non-Planckian form of the
numerator in (3}the spectrum is precisely ther-
mal. The unconventional form of this factor is

due to the fact that the important frequencies in
the integral are of order g

' corresponding to
wavelengths of the same order as the distance
from the boundary. Normally the Planck spec-
trum is derived under the assumption that the
important wavelengths are very much smaller
than the size of the cavity. The surprise, if any,
then is that the deviation from the Planckian form
is so simple. This is explained by noting that the
space relevant for thermal considerations is not
so much the physical space as the optical one '2"
which in this case is just the open Einstein uni-
verse TxH' of unit radius [cf. metric (7)]. As we
have previously noted the WKB approximation is
exact on this space so that all the Hamidew co-
efficients, a„, vanish bar ao and, for s =-,', 1, a, .
Furthermore there are no "exponentially small"
terms, as there would be in the Einstein universe
T& S for which the WKB approximation is exact
as well. From this consideration it follows that
the asymptotic distribution of eigenvalues is also
exact being just h(s)(v'+s'}. As a corollary we
note that the thermal distribution in 7.'x EP, at a
temperature T, will be

h(s)
" dvv(v'+s') h(s) $ 15+(-1)"3, , %+(—].)"g

( 1)" -
960

i.e., a combination of T' and T' for all T.
That a, should be nonzero for s =-,', 1 is because

the relevant second-order equations are not con-
formally invariant. This has the effect of produc-
ing a tail in the propagation inside the light cone.

We have remarked previously tha, t the Green's
function for the spaces within one family are con-
formally related. For those static spaces in the
Rindler family the factor Q is time independent
so that the corresponding finite-temperature
Green's functions, Gs (p=T '}, obtained by (anti}.
periodizing in imaginary time are similarly con-
formally related. For the nonstatic spaces, the

Milne universe and the k =-1 Robertson-Walker
space, the thermal theory can be defined by con-
formal transformation from any one of the static
spaces.

The statement that the Minkowski vacuum is
a thermal Rindler-Fulling state of temperature
(2v} ' is the statement that

~ Rindieg + Minkowski

We then see that the following diagram must com-
mute:

the Rindler wedge

static de Sitter space
Il
1~

open E instein universe
~I

k =- 1 Robertson-Walker
~l

I

1 (

the Milne universe

(2v) '

(2~K-")-'

(2via) '

Minkowski space
Il

de Sitter space

E instein universe

& =1 Robertson-Walker

& =0 Robertson-Walker
II

steady-state universe,
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where the vertical arrows denote conformal trans-
formation of the Green's functions an& the hori-
zontal arrows signify thermalization to the indi-
cated temperature. The appearance of an imagi-
nary temperature connecting the two types of
Einstein universe is dictated by the fact that the
process links the dual spaces 0' and 8'. To be
more precise (for spin zero, with a similar equa-
tion obtaining for other spine)

and, trivially, the Minkowski space metric can
all. be brought to the form

ds' =0,'(t)[—dt'+dh'+r'(18'+sin'8dp')].

A further. coordinate transformation with

t+ ~=tanl
2

~rxs'(&s —4.&.&)

Gr „zs (t s —t ~ +n2 va, y, ia), (12)

where y is the spatial geodesic distance. Note
that the Green's functions on the right-hand side
of this equation refer to a hyperboloid of imagi-
nary radius. Thus the Casimir (zero tempera-
ture) energy in the Einstein universe can be re-
garded, in a sense justified by (12), as having a
thermal character. This sheds further light on

(6)
Since a hyperboloid of imaginary radius is a

sphere, Eq. (12) is just as well expressed by
saying that the usual, zero-temperature, Green's
function on the Einstein universe is obtained by
thermalizing to a temperature T =(2wai) ' its own
direct path contribution. This gives in general
the high-temperature expansion" of, say, (T,')
which here has only the two terms proportional
to T4 and T' corresponding to the nonvanishing of
a, and a, . En this way we may directly. relate the
high- and low-temperature theories on the Ein-
stein universe. '4

relates them to the Einstein universe (4) of unit
radius:

Q~', / t~+ Q ),ftJ, —
ds' = — sec'

I
[sec'/'-4

~
2 ) I 2

x [dt +dP+sin'((dH'+sin'Hdg')].

The de Sitter space metric

ds =. —dt +K cosh (K t)

&& [dP + sin'$(dH'+ sin'8 dP')]

and the & = I Robertson-Walker metric

ds' = —dt'+8'(t )[dg'+ sin'$(dH'+ sin'8 dP')]

are trivially written in the form

ds' =0'(t)[- dt'+dg'+ sin'g (d8'+sin' 8dg')].
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The metrics for the remaining spaces, which
are those referred to in Figs. 1(f) and 1(g) are
dealt with by first reducing them to "hyperbolic"
form

ds' =0,' [-dv'+ d)P +sinh'g(dH'+ sin' 8 dP')] .

APPENDIX
(Al)

1

We record here the conformal transformations
that justify Fig. 1.

The steady-state metric

ds' = —dt'+ p(2eKx' 't)[dh'+r'(dH'+sin'Hdg~)],

k =0 Robertson-Walker metric

df2 /gal(f)[dg2 +y&(dP + sin28 dy&)]

For the k = —1 Robertson-Walker space

ds = —dt '+8'(t )[dg' sin+h'g(d 8' si +Hdng')]

and the Milne universe with metric

ds = -dt'+ t [dy„'+ sinhQ(d 8'+ sin'8 dP')]

this is trivially done. Static de Sitter space, (10),
is brought to the form (A1) by the coordinate
change K' 'x =tanh g. To bring the remaining two
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cases, the Rindler metric (2}and the open Ein-
stein metric ('1), to the form (A1) requires the
coordinate transformation

1
cosh X —sin11$ cos ~

sinhX sin8 cosP
coshx —sinhx cos 8

sinh)( sin8 sing
cosh/ —sinhgcoso '

For these cases we will have 0, equal to ( and a,
respectively. Finally we define

so that (A1}becomes

6s O~

cos(ts+g}cos(t~- g)

&& [-dts'+dP+sin'$(d8'~sin'8dg')].
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