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Quantum nondemolition and gravity-wave detection
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A variety of quantum nondemolition measurement schemes are defined and examples are given to
demonstrate their theoretical and practical possibilities. They show that the quantum limit of measurement of
weak forces does not exist.

In the attempts to detect gravitational radiation
there has been concern that the fundamental quan-
tum nature of the detection apparatus might set an
ultimate limit on the strength of gravitational rad-
iation detectable. The principal problem lies not
in the weakness of the gravitational radiation pulse
(which is of the order of ergs/cm' sec at kilohertz
frequencies, far from any limit in which the gravi-
tational quantum effects are expected to play a
role) but in the weakness of any known coupling of
the gravitational radiation to present detectors.
In particular, for realistic sources, estimates'
have suggested that only of the order of one quanta
would be deposited into a cold detector of the
Weber type.

Braginsky' has suggested that these difficulties
may have a solution, which has come under the
name of quantum nondemolition detection. He
realized that the cross section for the interchange
of a quantum of energy with the gravity wave could
be increased by somehow placing the bar in a high-
ly excited state. The coherent interaction of the
many quanta in the bar with the gravity wave in-
creases the probability of emission or absorption
of one quantum by a factor N, the number of:
quanta in the bar.

The difficulty arose as to how one could detect
the change induced in the bar by the gravity wave.
The standard techniques suggested that one could
at best detect a change in the number of quanta in
the bar to within av N quanta, which would pre-
cisely eliminate the gain achieved by the increase
in cross section due to the coherent stimulated
emission/absorption effect.

The original question posed by Braginsky was
whether one could design a scheme for measuring
the number of quanta in the bar to sufficient ac-
curacy (say +1 quanta) to take advantage of the in-
creased interaction.

Until recently, ' there has been confusion as to
exactly what one wanted to achieve by "quantum
nondemolition" measurement of gravity waves. In
clarifying this measurement technique, let us first
define some component parts to the system (see
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FIG. 1. Stages in detection apparatus for gravity
wave.

Fig. 1). The first is the strength of the gravity
wave itself at the detector, which I will denote by
G(t). Iwill assume throughout that G(t) is a given
c-number field. For gravitational radiation, this
is a very good approximation. Furthermore, as
there exists no quantum theory of gravity, one
could not treat the gravity wave quantum mechan-
ically, even if one wanted to. The second part of
the system will be called the detector. It is via
the interaction between the dynamic degrees of
freedom of the detector and the gravity wave that
one can obtain information about the gravity wave.
The detector wi1.1 be assumed to be a quantum de-
vice. Finally there will be the readout system
which interacts with the detector. It is via cor-
relations induced in the readout system by the in-
teraction: with the detector that one ultimately ob-
tains information about the gravity wave. The
first stages of the readout system will also be
treated quantum mechanically.

We will write down the Hamiltonian for the sys-
tem as

X=p, TG+Hn+a QR+H„,

where p, and e are coupling constants, H~ is the
free Hamiltonian for the detector, T and Q are
functions which depend only on the dynamic var-
iables of the detector, and B depends only on the
dynamic variables of the readout system.

I will work throughout in the Heisenberg repre-
sentation. An examination of the behavior of any
readout variable shows that it depends on the de-
tector only via Q. That is, if P is a readout var
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iable, then

i « = [e,ff.]+.Q[~, ff].

As far as the readout system (and thus as far as
the experimentalist) is concerned, we need only
worry about the behavior of the variable Q of the
detector. We find

i
&

——[Q, Ha]+ PG[q, , T].

Following Thorne et al. ' now define quantum non-
demolition readout (QNDR) by demanding that the
time development of Q does not depend on any
property of the readout system if G = 0 (or if p= 0).
This implies that in the absence of a gravity wave,
Q will be determined only by the state of the de-
tector itself, and will be completely independent
of the state of the readout system. The readout
system, therefore, cannot inject noise into the
variable Q, no matter what the state of the readout
system, and no matter what one does to the read-
out system.

The simplest requirement is that we demand

[q, e,]=o.
Another possibility is that

[Q, &a]= &Q
I

with e constant.
In general we want that

[P„q]=0for all i

where

f, = [" [[q,a,],z, ]" e,]

with i commutators on the right-hand side.
These conditions ensure that with p, = 0, Q will

depend only on the dynamics of the detector and
not of the readout systems. In the following dis-
cussion, I will choose the condition [Q,H~] = 0 as
the definition of quantum nondemolition readout.

The second idea one can include under quantum
nondemolition is the idea of full quantum nondem-
olition detection (QNDD). This assumes that
QNDR obtains, and adds the condition that the
resPonse of Q to a gravity wave is also to be in-
dependent of the state of the readout system.
This ensures that, if the readout accurately mea-
sures Q, one can uniquely determine the shape of
the gravity wave which caused the given change
in Q. It implies that the change in Q depends only
on the gravity wave and the state of the detector.
If this condition is not satisfied, but only QNDR is
satisfied, then a change in Q will imply that a

gravity wave has interacted with the system, but
that the change in Q cannot be used to (uniquely)
determine the properties of the wave.

In terms of a classical amplifier, QNDR would
imply a noise free amplifier —i.e. , no signal —no
output, while QNDD would imply that the given in-
put signal produces a unique output (non QNDD
could be likened to a noise free amplifier with a
partially random gain). (Note that noise free in
this context is in terms of a classical input signal.
The quantum noise, due to the amplifier's spon-
taneous emission of "gravitons" is neglected. ~)

In formal terms, the simplest way to implement
QNDD is to place an additional demand on the
forms of Q and &. In particular, we demand the
conditions

[q,a,]=o,
[q, Tl»0,

[[q, r],a,]=o,
[[Q,T],Ql= o.

The first ensures that we have QNDR. The second
ensures that Q will be affected by the presence of
a gravity wave. The third and fourth conditions
together ensure that the response of Q to the pre-
sence of a gravity wave will be independent of the
state of the readout system. The third could be
weakened in a similar manner to the QNDR ca,se
[Eq. (6)], but I will maintain the conditions in this
form.

A fully QNDD system which is physically real-
izable has yet to be found. 'The closest to such a
system is a model for the Thorne et al.' system
with an ideal clock to be described later.

The final condition one could demand of one' s
detector-readout system, is that the response of
the detector be tunable by an appropriate choice
of the initial state of the detector. It is this idea,
which I will call detector-dependent response,
DDR, which essentially motivated Braginsky in his
original attempts at quantum nondemolition mea-
surement. In forrnal terms, we can define DDR as
a system which obeys the condition

[Q, T]» c number .

As the above descriptions are rather formal, it
will probably be of interest to examine a variety
of systems to discover exactly how they fit into
the above scheme. Most of the examples will be
cases in which part of the detector is a simple
harmonic oscillator. The reason is that the con-
ventional Weber-bar-type detector can be re-
garded as a simple harmonic oscillator where
the oscillator is the lowest 1'ongitudinal mode of
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the bar. I will also discuss another scheme of
QNDR using a rotating sphere.

In all of these discussions I will completely ig-
nore the possibility of other interactions with the
detector besides those with the gravity wave and
the readout system. In particular a11 sources of
external noise besides those concerned with the
readout system will be ignored for the present.
Ultimately, of course, the response of the various
systems to extraneous noise sources will also be
of importance.

I. LINEAR COUPLINGS —HARMONIC-OSCILLATOR
DETECTOR

The usual readout schemes (capacitive, squids,
piezoelectric, etc. ) are linear in one of the fun-
daxnental dynamic variables of the detector. In
particular, we can model the detector as a simple
harmonic oscillator with

Analysis of this situation by B'raginsky led him to
the conclusion that G(t) would have to be larger
than some specified minimum to be detectable.
This was what came to be known as the quantum
limit on measurability of the gravitational wave.

II. HARMONIC OSCILLATOR QNDR

In this example I will retain the model of the
detector as a harmonic oscillator with

+u = 2 (P z + ~ Wi ) ~ (14)

Furthermore, I will retain the linear coupling with
the gravitational field, &=q,.

In order to obtain QNDR, we must have [Q,Hn)
= 0. It can be shown that the only possible Q's
which obey this are Q's which are functions of
&~ and of the identity operator. The simplest
such function is

where p, and q, are the normalized momentum
and coordinate of the detector (for the bar q,
would be related to the amplitude of vibration).

The coupling with the gravity wave is invariably
linear in P, and q„and can, by a canonical trans-
formation, always be written such that

(10)

i.e. , the gravity wave acts as a generalized force
on the system. Furthermore, the coupling with
the readout system in these schemes is also
linear —i.e., the readout system "measures"
(couples to) usually q, the amplitude of vibration.
VYe therefore have

=(I ~

We now have that Q obeys the equation

(12)

where the division by & is for later conven-
ience. Q now corresponds to the operator
giving the number of quanta in the oscillator.

An example of such a system is given in Fig. 2.
Here the harmonic oscillator is an L-C circuit,
where the first stage in the readout system is a
pivoted bar connected to the inductor and the
capacitor in such a way that L/C is independent of
the angle of the bar. (Since the capacitance de-
pends inversely on the plate separation, and the
inductance depends inversely on the length of the
inductor, the bar is arranged so as to alter the
capacitor separation and the inductor length by the
same ratio. )

If we define P as the angle of the bar from the
equilibrium position, J as the conjugate angular
momentum of the bar, I as the moment of inertia
of the bar, and I and C as the inductance and
capacitance with L, and Co the values when P = 0,
we obtain the total Hamiltonian

Although Q does not directly depend on the read-
out system, it does through p„ for we have

Because 8 is in general unknown and variable (par-
tially because of the large number of in general
unknown and unknowable inter3, ctions the readout
system has with the outside world) the dependence
of p, on 8 will produce a random and uncalculable
effect on Q, and thus back on the readout system.
Furthermore, because the dependence of P, and
thus of Q on G is independent of the state of the
detector, the change in Q produced by a given G
will also be independent of the state of the detector.

Bar

Pivot

FIG. 2 Bar readout system of quanta in I -C circuit.
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where e is the charge on the capacitor, g is the
conjugate momentum to e and is proportional to
the flux in the inductor, and H~ is the interaction
of the ba,r with the rest of the readout system. I
have also assumed that the "gravity wave" inter-
acts only with the charge on the capacitor.

As both 1/L and 1/C are directly proportional
to the inductor length and plate separation, re-
spectjvely, and since both of these are of the form
d+-', I&fP where d is the minimum inductor length
and plate separation, and 2/ is the length of'the
bar, we have

e'
$C= $86 =2C +2~

lQ' e' v'
2d 2C 2I, 2I

Defining

qi=~oe ~

P,=rio,
(L C ) 1/2

Eco
E'

d '

8=
2

u= v/~o,
we obtain the required form for 'K. For H&

——0
and for 6= 0, this system is exactly solvable.

The eigenfunctions are

=e ~sn, m~(~Q„I) ~ H„(~(gq)H (QQj y),
E„=n(o+mQ„+ (u+Q„)/2,
Q„=[(~+-,')&/I]'~',

I

where H„are the normalized oscillator eigenfunc-
tions

d
H„( ) = (n+-', )H„(x),

(2o)

H„H~ x dx=5„„s .

The pivoted bar therefore acts as a harmonic
oscillator with frequency directly proportional to
(n+ ~)'~', where n is the number of quanta in the
L -C circuit. By measuring the frequency of the
bar oscillator, one can obtain a direct reading of
the number of quanta in the circuit. This frequen-
cy can be measured, for example, by driving the
bar by an externalforce to discover the resonance
frequency. Vfe have

(y„„H,~i~,) = o,
for n &n' as HI is a function only of the readout
va, riables. Therefore the coupling to the bar can-
not change the number of quanta in the I -C circuit.
This is a demonstration of the QNDR feature of this
system.

This system is not QNDD, however, The re-
sponse of the oscillator to a nonzero 6 depends on
the state of the bar. The first-order transition
probability for the system to go from $„,to g+ „.
is given by

2
I'n ~,g~ = P' e' &~' &m"6 t dt Hg ~i H„(dq, ~q&d&& ~e~a Hme QADI H QQ I d

(2i)

Since

E~„, -E„„=m'Q~ mQ+(n-'-n)(o

depends on m and on m', and since the final inte-
gral is not 0 for m 4m' the response of the system
to the gravity wave will depend not only on the
state of the detector (i.e. , on g) but also on the
initial and final state of the readout (i.e. , on m
and m'). This means that in addition to exciting
the detector (changing m) the wave also has a non-
zero probability of changing the number of quanta
in the readout (m'4m). Furthermore, as Q+ 4Q„,

even if the number of quanta in the rea.dout does
not change, the change in energy of each such
quantum creates an m dependence in the transition
probability through the first term.

If (as would usually be the case if one wanted to
keep track of n on a continuous basis) one had the
P bar interacting with further links in the read-
out, the response of the system to G(t) would in
general depend on the state of the whole readout
chain. As it is pra. ctically impossible to take the
dynamic evolution of the whole readout chain into
account, this introduces a random unknown factor
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into the response of the system to the gravity
wave. This reflects the fact that this system is
not QNDD since

(22)

sibilities for Q. In particular, we then have the
quantities

=1 2X,=—(P P + & q qm),24)

Effectively, the readout system makes the fre-
quency response of the detector uncertain. Re-
ferring back to Fig. 1, this is understandable, as
monitoring the energy of the bar will jiggle the
bar, which will alter both L and C and thus alter
the frequency Q I C. Furthermore, the more the
bar is monitored (in order to keep closer watch
on the number of quanta in the oscillator) the more
unknown this frequency becomes.

III. QNDR-TWO-OSCILLATOR DETECTOR

If we introduce a second oscillator into our de-
tector, such that we have

Hn= -', (p,'+ (g'q, ') + —,
'
(p, '+ 0'q, '), (23)

then there are a few more possibilities for a
QNDR system. I et us assume that again we have
T = q, (i.e. , the gravity wave interacts with only
one of the oscillators). In addition to choosing Q
to be a function of 0» it can be an arbitrary func-
tion of

(24)

The dependence of Q on H, is not of much direct
use as II, cannot be affected by a gravity wave
([H„T]=0). It can, however, be of use in can-
celing out some of the background effect of H, on
the readout system. In particular, if we choose
Q= H, /u -H, /Il and choose the initial number of
quanta in each oscillator to be the same, then the
initial force of the detector on the readout system
is zero. The readout system, would, however,
still be sensitive to changes in Q caused by the
gravity wave. Furthermore, since the interaction,
with the gravity wave depends only on the state of
the first oscillator ([Q, T]= ip, /&u) we can have the
advantage of increased coupling with the gravity
wave, without also increasing the intera, ction with
the readout system in the absence of gravity
waves. (For example, if in the previous L C-
circuit example the interaction of the L-C circuit
with the bar deviated from that assumed for large
P, we could rig up a second L-C circuit to cancel
the static force of the first on the bar and keep
the system out of the regime where the simple
analysis fails to apply. )

If m= 0, it would seem that there are more pos-

—[(p,'+ ~'q, ') —(p,'+ ~'q, ')],2'

[Q, 2']= [X., q,]= -fq. .
One might imagine that one could choose the

second oscillator to be in a highly excited state
(for example a highly excited semiclassical state
for which p, =A cosset). However, this assumption
leads to difficulties. In particular, during the
measurement of X, the value of I', will become
unknown. If we determine X, to have the exact
value A. (i.e. , we are in an eigenstate

~
X& of X,)

then we find

(26)

(Z(p, (Z&=2(oi(Z) [X„q,](Z&

=2~i(~) (Xq, -q,~) [~&

= 0 0+ cos(ch . (27)

This arises because of the effect of the readout
system on the second oscillator. %'e have

dp2 g(gq~R

cN 2
—(d Q'2 ~ (28)

Although q, may initially be very small (the 1st
oscillator in a low state of excitation), the process
of determining X, will quickly drive the first os-
cillator to a high 1.evel of excitation and will there-
fore also affect the second oscillator.

The above discussion indicates that one must
use great care in analyzing QND systems. Thorne
et a/. proposed a quantity

which all commute with 8~ and are thus all pos-
sible candidates for Q. Furthermore, X, and X,
are linear in the variables of the first oscillator.

However, all three of these quantities are es-
sentially equivalent as fa,r as their use as possible
candidates for Q. Each cari be obtained from any
of the others by a simple canonical transforma-
tion. Furthermore, these quantities obey the an-
gular momentum commutation relations, and thus
have identical spectra. As X, simply corresponds
to the previous choice of Q for two oscillators,
we ca,n find that the only advantage to using any of
these is that one can choose the initial state so that
the effect of the detector on the readout is minimal
while the coupling with the gravity wave is large.
For example, choosing Q=X, we find that this
system is DDR.
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IV. QNDD SYSTEM

It is, however, possible to realize, at least
mathematically, the Thorne et a/. kind of QNDD
system. The detector will consist of a, ha, rmonic
oscillator with Hamiltonian 2(p + &u'q'}. It will
also have as a component part a clock with Hamil-
tonian H, . We now demand that

(30)

where II and 4 are functions of the clock's dynamic
variables. In order that this system be QNDR, we
find that we must have

d+
(3la}

or

[H„II]=+(ir 0',

[H„4]=-II. (3lb)

The interaction with the gravity wave is assumed
to be via linear interaction with T=q.

We now obtain QNDD only. if the variable

~= f[Q, Tl (33)

is independent of the readout system (in particular,
only if 4 commutes with Q). This therefore gives

[ll, ~]=0.
The ideal clock system therefore obeys

(33)

d+
dt (34)

[II,C]=0.
The first two relations are the simple harmonic-
oscillator relations, but the last relation ensures

sinwt+= coscotq, + p,(0

as a suitable candidate for Q in a QNDD system.
However, time-dependent functions can be real-
ized in nature only by a suitable choice of dynamic
variables and states. (That is, one. mustdesign a
clock or oscillator to produce the requisite func-
tion cosset. ) The above arguments indicate that a,

second harmonic oscillator is not a suitable candi-
date for such a clock to realize the Thorne et al.
system as an exact QNDD system. It is of course,
QNDR, just as the energy measuring system (ex-
ample II}is.

that the clock cannot be realized as a simple har-
monic oscillator.

However, the Hamiltonian

H, =P„'+P„' y(-yP„-xP„), (35)

which is that of a charged particle in a, suitable
constant magnetic field and quadrupole electric
field (to cancel the quadratic terms in the magnet-
ic Hamiltonian), and with

(36)II =yP„, 4=P„, y =~
gives the relations of, e. g. , (34). Such a clock
will be perfect in the sense that the readout sys-
tem will not affect the clock. By setting up the
initial state of the clock

~
A) such that

II, ,~A&= ~A&, q, ,~A&=0, (3

we will have

II A) =A cosset iA),

A
g A) = —sinu&t A),

V. QNDR-ROTATING SPHERE

Most gravity wave detectors are ha, rmonic os-
cillators to good approximation, and the above
arguments have therefore concentrated on QND on
harmonic oscillators. The technique is, however,
more widely applicable. I will now sketch the ap-
plication of QNDR to determining changes in the
angular momentum of a spinning sphere. Although
such a sphere is probably not a good gravity wave
detector (although a gravity wave would be ex-
pected to interact with such a, sphere, mainly by
changing the moment of inertia of the sphere, the
effect is probably too small to be of real benefit),
the frame-dragging experiment of Everitt and
Fairbgnk'does look for changes in the angular mo-
mentum direction.

As a simple demonstration of a QNDR system
for measuring changes in one component of angular
momentum let us place a uniformly charged spin-
ning sphere within a set of superconducting Helm-
holtz coils. The coils are the first step in the
readout system. 'The free Hamiltonian of the

at all times, and

Q = qA cosset +—sin&et .pA
(d

This therefore represents an ideal realization of
the Thorne et al. prescription for QNDD. How-
ever, I have not yet discovered a physically real-
istic technique for coupling such a clock to a, har-
monic oscillator and a readout system in the re-
quired manner. '
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coils

(43)y,F(t)J„.
[If, F(t) were a magnetic field in the x direction,
the coupling would be of just this form. ] In this
case we find

FIG. 3. L-C readout system for angular momentum of
spinning sphere.

'dJ»—'= pJ F(t)
dt

dJ„" = —iJ.JzF(t) +eZ„B.
dt

(44)

sphere will just be J'/2I where I is the moment of
inertia of the sphere and J is its total angular mo-
mentum. The interaction of the sphere with the
coils will be via the magnetic moment of the
sphere which is proportional to the angular mo-
mentum. ' In particular, for the arrangement
shown in Fig. 3, the interaction is proportional to
J,B, where B, is the magnetic field produced by
the current in the coils. If the coils are now con-
nected to a capacitor C, we can finally write the
full Hamiltonian as

2I (40)

where q is the charge on the capacitor plates, p
is essentially the flux through the coils, L is the
coil inductance, and e is the coupling constant
which is related to the charge distribution on the
sphere, the dimensions of the coils, etc.

We therefore have

0 J»II~ — +

L (4l)

As [Q,Hn]= 0, this system is QNDR.
From the equations of motion for the L -C circuit

we find

d'q dJ»= -L Cq —C(y
dt' dt

(42)

If the frequency of the LC circuit is very high, the
term C o. dJ, /dt will simply act as adisplacement of
the equilibrium charge on the capacitor. By mon-
itoring the equilibrium position of the oscillator
(i.e. , the average charge on the capacitor plates
or average field in the capacitor over a number of
cycles) one can obtain a direct measurement of the
changes in J,.

The simplest coupling to such a sphere to change
its z component of angular momentum would be via
the angular momentum —e.g. , the coupling would
be of the form

The system is not QNDD because of the dependence
of J, on R via J'„. It is, however, QNDR and DDR.
The latter can be put to use by placing the sphere
into a state of large J„(i.e. , the sphere spinning
rapidly about an axis j. to the z axis).

VI. CONCLUSIONS

In the above, I have formally defined what is
meant by a number of possible quantum nondem-
olition measurement schemes and have given a
number of examples to illustrate that such schemes
are in theory possible. Furthermore, I have
demonstrated that at least QNDR is realistic in
that one could hope to realize it physically as well.

One point which should be clarified is the divi-
sion of the measuring apparatus into detector and
readout system. This division is of course ar-
bitrary, and the dividing line could be placed any-
where along the chain leading from the gravity
wave to the experimentalist. The basic assump-
tion is that the detector be part of the beginning
of the chain which is simple enough to be com-
pletely analyzable. The readout system will then
consist of the rest of the chain, which is in general
far too complex to be analyzed in any way but a
crude semiclassicaI manner. The purpose of
quantum nondemolition measurement (as opposed
to DDR) is to isolate the analyzable portion of the
detection chain from the rest of the chain, so that
one can accurately predict the response of the
system to a gravity wave.

The above schemes are also what could be called
strict quantum nondemolition schemes in which the
detector is exactly isolated. One could, however,
also approximate quantum nondemolition schemes
by suitable couplings. This was the approach fol-
lowed by myself' and by Braginsky' in some
of the original attempts at quantum. nondemolition.
For example, instead of coupling to the energy of
the free harmonic oscillator p'+ cg'q', one could
couple to the quantity q' alone. This is not QNDR.
However, if the readout system can be set up so
as to respond only to the low-frequency compo-
nents of q', the system becomes essentially equiv-
alent to a coupling to p + (o q as long as the
change in p'+ co'q' due to the gravity wave is not
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too rapid. For example in the L -C circuit oscil-
lator, a device measuring the long-term averaged
force on the capacitor plates will be approximately
QNDR.

One can furthermore design systems which are
QNDR, and which approximate a QNDD-type sys-
tem. Essentially the problem with the QNDR sys-
tems is that the response of the system to gravity
waves is made random by the dependence of the
"amplifying factor" [T,Q] on the readout system.
This amplifying factor need not be exactly known,
however, as it can cause only a fractional (not an
absolute) error in the determination of G(t), and
thus by itself offers no limit to the weakness of
gravity waves one can detect.

However, we have for a non-QNDD scheme that

[[Q, T],Q]«.
Thus we have an uncertainty relation

~[Q, T]~Q - -'I & [[Q,T], Q]& I
~

(45)

(46)

In general, therefore, to maintain d[Q, T)/[Q, T],
the fractional error in the "amplifying factor",
small, we must have a nonzero bQ —i.e. , we can-
not measure the desired quantity Q to arbitrary
accuracy and still keep the fractional error in the
"amplifying factor" small.

To give an example of an approximate QNDD

system, let us return to example II of a QNDR

system im which the coupling was to the energy of
the oscillator. The problem here is that in the
process of measuring the energy exactly, the
readout system's interaction with the oscillator
will make the amplifying factor

An approximate solution is
I

p =pocos ur (1+eR)dt

1
+ poco sin Q7 1 + QB cN (60)

-&
df

=[4»Hsl+&[p R]Q ~

The change in P caused by Q is just proportional
to [P,R] which enters the uncertainty relation.

Crudely, in a time r, the change in Q caused by

Q is

Once we determine 5Q of the readout, which we

will know only with accuracy +0 @, we will know

Q with accuracy &Q,

The uncertainty in 8 is now reflected as an uncer-
tainty in the phase of p.

To minimize the uncertainty in the phase, the
probable values of 8 for the state of the readout
system must be kept as small as possible. How-

ever, one can show that if the readout system is
to be observably affected by changes in the number
of quanta H/a&, the readout cannot be in the state
of 8=0, and 8 must have some finite uncertainty.

Let Q be some variable of the readout system
which is to respond to changes in H/&o.

We have

~p~R =-,' ~([y, R)&
~
.

But we also have

f[Q, T]=~[H/~, q]=p/~ (4V) (64)

uncertain. Using a crude uncertainty-principle
argument, we have that, if H/&o is known exactly,
then

(p/~& = 0,
&p'/~'& = (H/~'&

(46)

p= -(I+cR)(u'q,

.q= (I+eR)p.
(49)

We therefore have a very large uncertainty in p
and thus a very large uncertainty in the reaction
of the oscillator (and in particular of the relevant
variable Q=H/a&) to a gravity wave. This uncer-
tainty in p/or is essentially due to the "energy-
phase uncertainty" for a harmonic oscillator. If
we know the energy exactly, we do not know the
phase of the oscillator at all, and thus do not know

p/~;
The time development of p and of q reinforces this

view ~

or
1

e I ([P,R]& I & e«f&~7'

{Ihave neglected all time dependence of ([P,R]&,
etc.) We therefore have

ehQ(ARr)~ 1.
For Q=H/u&, enRv willbe approximately the un-
certainty in the phase of p as in Eq. (50).

This suggests a possible approximate QNDD

scheme. The change in H/&o caueed by a gravity
wave G(t) is given by

d(H/(u) p
CV (d

(66)

At any time t, let us assume that we know the mag-
nitude p of p to an accuracy of +&p. Let us as-
sume that over a short time period we measure
H/&o to an accuracy &(H/&o). The value of G(t)
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a(H/~)
p/(u5t &(H/~)

' (58)

The second term represents a fractional error in
the measurement of G. For an accuracy of I /O in
the determination of G, r H/&u must be greater
than or of the order of 100 quanta. The first
term represents an absolute error in the deter-
mination of G, and sets the limit on the strength
of the signal which is detectable. For any given
accuracy of measurement of 4H/+, this term can
be made arbitrarily small by ma9ring p sufficiently
large. (i.e. , by placing the detector into a highly
excited state).

This QNDR system therefore can be used as an
approximate QNDD system by making the inter-
action between the readout and the oscillator suf-
ficiently weak (so that in the measuring time 5t the
number of quanta H/&u cannot be measured to ab-

during this time period is given by

GO&=
5 (H/(o) + 4(H/(u)

P/~+ &(P/~)

5(H/~) ~P ~(H/~)
P/~ p P/~

where 5(H/v) is the measured change in H/&u in the
time interval 5t.

Now the error rhP in p is assumed to be princi-
pally due to the error in phase &~St. 'The error
introduced during the readout is at least

~p =p ~~St.
By careful selection of the readout state we can at
best have [by Eq. '(55)]

q~ -1/&(H/(u)5t .
Re therefore have an error in the measurement of
G of

solute accuracy), by choosing the state of the
readout system suffit. iently carefully to minimize
&8 given the accuracy with which H/m is to be
measured, and by placing the oscillator into an
initial state wit/ a very large amplifying factor p.
(As P is an oscillating function, we will have P
large only during certain periods of oscillation of
the oscillator, which implies that the oscillators
sensitivity will vary depending on when in its cycle
the gravity wave hits the oscillator. )

Furthermore, as the phase error caused by the
uncertainty in 8 is cumulative, , one will have to
measure P occasionally to reduce the error in p to
an acceptable fractional magnitude. This will of
course upset the QNDR nature of the readout sys-
tem. It is thus obvious that an ideal QNDD read-
out system would be the best possibly form of
readout, as one then does not have to concern one-
self with the state of the readout system (required
above to reduce 68) except insofar as one must
measure changes in the readout to detect changes
in the appropriate oscillator variable Q.

However, one can probably design an approxi-
mate QNDD system to sufficient accuracy to be of
use in the ultimate detection of gravity waves.
Such systems are at present undergoing intensive
investigation by a group working with Thorne.
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